Amorphous Metallic Cobalt-Based Organophosphonic Acid Compounds as Novel Photocatalysts to Boost Photocatalytic CO2 Reduction
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of CoP-N and Co3O4
2.3. Material Characterization
2.4. Characterization of CO2’s Photocatalytic Properties
3. Discussion and Results
3.1. Morphology and Structure Characteristics
3.2. Photocatalytic Activity Investigation
3.3. Electrocatalytic Activity Investigation
3.4. Mechanism of the Photocatalytic Reduction of CO2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, X.M.; Daasbjerg, K. Carbon dioxide efficiently converted to methanol. Nature 2019, 575, 598–599. [Google Scholar] [CrossRef]
- Lei, Q.; Yuan, H.; Du, J.; Ming, M.; Yang, S.; Chen, Y.; Lei, J.; Han, Z. Photocatalytic CO2 reduction with aminoanthraquinone organic dyes. Nat. Commun. 2023, 14, 1087–1097. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Yu, H.; Shi, J.; Li, B.; Wu, L.; Wang, M. Dislocated Bilayer MOF Enables High-Selectivity Photocatalytic Reduction of CO2 to CO. Adv. Mater. 2023, 35, 2209814. [Google Scholar] [CrossRef]
- Lobus, N.V.; Knyazeva, M.A.; Popova, A.F.; Kulikovskiy, M.S. Carbon Footprint Reduction and Climate Change Mitigation: A Review of the Approaches, Technologies, and Implementation Challenges. C J. Carbon Res. 2023, 9, 120–147. [Google Scholar] [CrossRef]
- Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the Valorization of Exhaust Carbon: From CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2. Chem. Rev. 2014, 114, 1709–1742. [Google Scholar] [CrossRef] [PubMed]
- Fung, C.M.; Ng, B.J.; Er, C.C.; Kong, X.Y.; Tan, L.L.; Mohamed, A.R.; Chai, S.P. Synergistic Hybridization of Twin-Induced Red/Black Phosphorus and Tungsten Oxide as Homo–Hetero Dynamic Dual Junctions for Z-Scheme CO2 Photoreduction. ACS Appl. Energy Mater. 2022, 5, 15257–15268. [Google Scholar] [CrossRef]
- Zhai, R.; Zhang, L.; Gu, M.; Zhao, X.; Zhang, B.; Cheng, Y.; Zhang, J. A review of phosphorus structures as CO2 reduction photocatalysts. Small 2023, 19, 2207840. [Google Scholar] [CrossRef]
- Qiu, L.-Q.; Yao, X.; Zhang, Y.-K.; Li, H.-R.; He, L.-N. Advancements and challenges in reductive conversion of carbon dioxide via thermo-/photocatalysis. J. Org. Chem. 2022, 88, 4942–4964. [Google Scholar] [CrossRef]
- Dong, K.; Razzaq, R.; Hu, Y.; Ding, K. Homogeneous reduction of carbon dioxide with hydrogen. Chem. Transform. Carbon Dioxide 2018, 376, 203–228. [Google Scholar]
- Abbas, T.; Yahya, H.S.M.; Amin, N.A.S. Insights and Progress on Photocatalytic and Photoelectrocatalytic Reactor Configurations and Materials for CO2 Reduction to Solar Fuels. Energy Fuels 2023, 37, 18330–18368. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, M.; Zheng, N.; He, X.; Hu, R.; Wang, R.; Zhou, Q.; Hu, Z. Promoting the protonation step on the interface of titanium dioxide for selective photocatalytic reduction of CO2 to CH4 by using red phosphorus quantum dots. Nano Res. 2022, 15, 3042–3049. [Google Scholar] [CrossRef]
- Zhou, G.; Yang, J.; Zhu, X.; Li, Q.; Yu, Q.; El-alami, W.; Wang, C.; She, Y.; Qian, J.; Xu, H. Cryo-induced closely bonded heterostructure for effective CO2 conversion: The case of ultrathin BP nanosheets/g-C3N4. J. Energy Chem. 2020, 49, 89–95. [Google Scholar] [CrossRef]
- Li, L.; Guo, H.; Yao, G.; Hu, C.; Liu, C.; Tian, Z.; Li, B.; Zhang, Q.; Chen, L. Visible/infrared light-driven high-efficiency CO2 conversion into ethane based on a B–Co synergistic catalyst. J. Mater. Chem. A 2020, 8, 22327–22334. [Google Scholar] [CrossRef]
- Lu, H.; Wang, Z.; Wang, L. Photocatalytic and photoelectrochemical carbon dioxide reductions toward value-added multicarbon products. ACS EST Eng. 2021, 2, 975–988. [Google Scholar] [CrossRef]
- Ran, J.; Jaroniec, M.; Qiao, S.Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xia, B.; Ran, J.; Davey, K.; Qiao, S.Z. Atomic-level reactive sites for semiconductor-based photocatalytic CO2 reduction. Adv. Energy. Mater. 2020, 10, 1903879. [Google Scholar] [CrossRef]
- Han, C.; Wang, B.; Wu, N.; Shen, S.; Wang, Y. Deep and selective photoreduction of CO2 to CH4 over ultrafine Pt nanoparticles-decorated SiC nanosheets. Appl. Surf. Sci. 2020, 515, 1459522. [Google Scholar] [CrossRef]
- Li, X.; Sun, Y.; Xu, J.; Shao, Y.; Wu, J.; Xu, X.; Pan, Y.; Ju, H.; Zhu, J.; Xie, Y. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 2019, 4, 690–699. [Google Scholar] [CrossRef]
- Yao, S.; Liu, J.; Liu, F.; Wang, B.; Ding, Y.; Li, L.; Liu, C.; Huang, F.; Fang, J.; Lin, Z. Robust route to photocatalytic nitrogen fixation mediated by capitalizing on defect-tailored InVO4 nanosheets. Environ. Sci. Nano 2022, 9, 1996–2005. [Google Scholar] [CrossRef]
- Xu, J.; Xu, Y.; Lai, C.; Xia, T.; Zhang, B.; Zhou, X. Challenges and perspectives of covalent organic frameworks for advanced alkali-metal ion batteries. Sci. China Chem. 2021, 64, 1267–1282. [Google Scholar] [CrossRef]
- Yao, S.; He, J.; Gao, F.; Wang, H.; Lin, J.; Bai, Y.; Fang, J.; Zhu, F.; Huang, F.; Wang, M. Highly selective semiconductor photocatalysis for CO2 reduction. J. Mater. Chem. A 2023, 11, 12539–12558. [Google Scholar] [CrossRef]
- Tan, L.; Xu, S.M.; Wang, Z.; Xu, Y.; Wang, X.; Hao, X.; Bai, S.; Ning, C.; Wang, Y.; Zhang, W. Highly selective photoreduction of CO2 with suppressing H2 evolution over monolayer layered double hydroxide under irradiation above 600 nm. Angew. Chem. Int. Ed. 2019, 58, 11860–11867. [Google Scholar] [CrossRef] [PubMed]
- Lan, D.; Sheng, W.; Fu, Q.; Ge, J. Enhancement of CO2 photoreduction efficiency by supporting blue TiO2 with photonic crystal substrate. Nano Res. 2023, 16, 9310–9317. [Google Scholar] [CrossRef]
- Li, S.; Bai, L.; Ji, N.; Yu, S.; Lin, S.; Tian, N.; Huang, H. Ferroelectric polarization and thin-layered structure synergistically promoting CO2 photoreduction of Bi2MoO6. J. Mater. Chem. A 2020, 8, 9268–9277. [Google Scholar] [CrossRef]
- Raza, A.; Haidry, A.A.; Yao, Z.; Saleem, M.F.; Alothman, A.A.; Mohammad, S. Synergistic effect of CuO and Sr doped g-C3N4 for CO2 photoreduction into hydrocarbon fuels. Chem Eng. J. 2023, 480, 148162. [Google Scholar] [CrossRef]
- Liu, S.; Chen, L.; Liu, T.; Cai, S.; Zou, X.; Jiang, J.; Mei, Z.; Gao, Z.; Guo, H. Rich S vacant g-C3N4@ CuIn5S8 hollow heterojunction for highly efficient selective photocatalytic CO2 reduction. Chem. Eng. J. 2021, 424, 130325. [Google Scholar] [CrossRef]
- Posada-Pérez, S.; Solà, M.; Poater, A. Carbon dioxide conversion on supported metal nanoparticles: A brief review. Catalysts 2023, 13, 305. [Google Scholar] [CrossRef]
- Parastaev, A.; Muravev, V.; Osta, E.H.; van Hoof, A.J.; Kimpel, T.F.; Kosinov, N.; Hensen, E.J. Boosting CO2 hydrogenation via size-dependent metal–support interactions in cobalt/ceria-based catalysts. Nat. Catal. 2020, 3, 526–533. [Google Scholar] [CrossRef]
- Ruland, H.; Song, H.; Laudenschleger, D.; Stürmer, S.; Schmidt, S.; He, J.; Kähler, K.; Muhler, M.; Schlögl, R. CO2 hydrogenation with Cu/ZnO/Al2O3: A benchmark study. ChemCatChem 2020, 12, 3216–3222. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Y.; Huang, L.B.; Liu, X.Z.; Zhang, Q.H.; He, C.; Wu, Z.Y.; Zhang, L.J.; Wu, J.; Yang, W. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 2019, 10, 1278. [Google Scholar] [CrossRef]
- Sun, X.; Chen, C.; Liu, S.; Hong, S.; Zhu, Q.; Qian, Q.; Han, B.; Zhang, J.; Zheng, L. Aqueous CO2 Reduction with High Efficiency Using α-Co(OH)2-Supported Atomic Ir Electrocatalysts. Angew. Chem. Int. Ed. 2019, 58, 4669–4673. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, S.; Zhang, S.L.; Lou, X.W. Formation of hierarchical FeCoS2–CoS2 double-shelled nanotubes with enhanced performance for photocatalytic reduction of CO2. Angew. Chem. Int. Ed. 2020, 59, 11918–11922. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Cheng, S.; Cometto, C.; Anxolabehere-Mallart, E.; Ng, S.M.; Ko, C.C.; Liu, G.; Chen, L.; Robert, M.; Lau, T.C. Highly efficient and selective photocatalytic CO2 reduction by iron and cobalt quaterpyridine complexes. J. Am. Chem. Soc. 2016, 38, 9413–9416. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Qian, G.; Kong, X.-P.; Zhao, X.; Hou, T.; Chen, L.; Fang, R.; Li, Y. Hierarchical double-shelled CoP nanocages for efficient visible-light-driven CO2 reduction. ACS Appl. Mater. Inter. 2021, 13, 45609–45618. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Guan, B.Y.; Wang, X.; Lou, X.W.D. Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution. J. Am. Chem. Soc. 2018, 140, 15145–15148. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Zang, S.Q.; Lou, X.W. Hierarchical hollow heterostructures for photocatalytic CO2 reduction and water splitting. Small Methods 2020, 4, 1900586. [Google Scholar] [CrossRef]
- Lancellotti, I.; Ponzoni, C.; Barbieri, L.; Leonelli, C. Alkali activation processes for incinerator residues management. Waste Manag. 2013, 33, 1740–1749. [Google Scholar] [CrossRef]
- Leung, C.F.; Ho, P.Y. Molecular catalysis for utilizing CO2 in fuel electro-generation and in chemical feedstock. Catalysts 2019, 9, 760. [Google Scholar] [CrossRef]
- Dong, Y.; Kong, L.; Wang, G.; Jiang, P.; Zhao, N.; Zhang, H. Photochemical synthesis of CoxP as cocatalyst for boosting photocatalytic H2 production via spatial charge separation. Appl. Catal. B Environ. 2017, 211, 245–251. [Google Scholar] [CrossRef]
- Fung, C.M.; Er, C.C.; Tan, L.L.; Mohamed, A.R.; Chai, S.P. Red phosphorus: An up-and-coming photocatalyst on the horizon for sustainable energy development and environmental remediation. Chem. Rev. 2021, 122, 3879–3965. [Google Scholar] [CrossRef]
- Pu, Z.; Liu, Q.; Tang, C.; Asiri, A.M.; Sun, X. Ni2P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode. Nanoscale 2014, 6, 11031–11034. [Google Scholar] [CrossRef]
- Wang, P.; Wu, T.; Wang, C.; Hou, J.; Qian, J.; Ao, Y. Combining heterojunction engineering with surface cocatalyst modification to synergistically enhance the photocatalytic hydrogen evolution performance of cadmium sulfide nanorods. ACS Sustain. Chem. Eng. 2017, 5, 7670–7677. [Google Scholar] [CrossRef]
- Liu, G.; Sheng, Y.; Ager, J.W.; Kraft, M.; Xu, R. Research advances towards large-scale solar hydrogen production from water. Energy Chem. 2019, 1, 100014. [Google Scholar] [CrossRef]
- Fu, Z.C.; Xu, R.C.; Moore, J.T.; Liang, F.; Nie, X.C.; Mi, C.; Mo, J.; Xu, Y.; Xu, Q.Q.; Yang, Z. Highly efficient photocatalytic system constructed from CoP/Carbon nanotubes or graphene for visible-light-driven CO2 reduction. Chem. A Eur. J. 2018, 24, 4273–4278. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, S.; Lou, X.W. Dispersed nickel cobalt oxyphosphide nanoparticles confined in multichannel hollow carbon fibers for photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 2019, 59, 17236–17240. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, P.; Zhang, H.; Zhao, J.; Shi, H.; Huang, Y.; Yang, H. Oxygen vacancies in Co3O4 promote CO2 photoreduction. Appl. Catal. B Environ. 2022, 300, 120729. [Google Scholar] [CrossRef]
- Xing, W.; Yin, S.; Tu, W.; Liu, G.; Wu, S.; Wang, H.; Kraft, M.; Wu, G.; Xu, R. Rational synthesis of amorphous iron-nickel phosphonates for highly efficient photocatalytic water oxidation with almost 100% yield. Angew. Chem. Int. Ed. 2020, 59, 1171–1175. [Google Scholar] [CrossRef]
- Pan, Z.; Niu, P.; Hou, Y.; Fang, Y.; Liu, M.; Wang, X. LiCl as Phase-Transfer Catalysts to Synthesize Thin Co2P Nanosheets for Oxygen Evolution Reaction. ChemSusChem 2019, 12, 1911–1915. [Google Scholar] [CrossRef]
- Hu, E.; Ning, J.; Zhao, D.; Xu, C.; Lin, Y.; Zhong, Y.; Zhang, Z.; Wang, Y.; Hu, Y. A Room-Temperature Postsynthetic Ligand Exchange Strategy to Construct Mesoporous Fe-Doped CoP Hollow Triangle Plate Arrays for Efficient Electrocatalytic Water Splitting. Small 2018, 14, 1704233. [Google Scholar] [CrossRef]
- Cao, S.; Chen, Y.; Wang, C.J.; Lv, X.J.; Fu, W.F. Spectacular photocatalytic hydrogen evolution using metal-phosphide/CdS hybrid catalysts under sunlight irradiation. Chem. Commun. 2015, 51, 8708–8711. [Google Scholar] [CrossRef]
- Boppella, R.; Tan, J.; Yang, W.; Moon, J. Homologous CoP/NiCoP heterostructure on N-doped carbon for highly efficient and pH-universal hydrogen evolution electrocatalysis. Adv. Funct. Mater. 2019, 29, 1807976. [Google Scholar] [CrossRef]
- Li, H.; Sun, Y.; Yuan, Z.Y.; Zhu, Y.P.; Ma, T.Y. Titanium phosphonate based metal–organic frameworks with hierarchical porosity for enhanced photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 2018, 57, 3222–3227. [Google Scholar] [CrossRef] [PubMed]
- Niu, P.; Pan, Z.; Wang, S.; Wang, X. Tuning crystallinity and surface hydrophobicity of a cobalt phosphide cocatalyst to boost CO2 photoreduction performance. ChemSusChem 2021, 14, 1302–1307. [Google Scholar] [CrossRef]
- Li, J.; Gao, G.; Liu, Y.; Li, Y.; Liu, Z. Highly-interspersed biomass-derived carbon quantum dots onto floral CoAl-LDH for significantly enhanced CO2 photoreduction into CO and CH4. J. CO2 Util. 2022, 65, 102257. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, R.; Liu, Y.; Wang, Z.; Wang, P.; Zheng, Z.; Qin, X.; Zhang, X.; Dai, Y.; Huang, B. Two transition metal phosphonate photocatalysts for H2 evolution and CO2 reduction. Chem. Commun. 2018, 54, 7195–7198. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Jin, X.; Ge, T.; Xie, H.; Sun, R.; Su, F.; Li, X.; Ye, L. Realizing efficient CO2 photoreduction in Bi3O4Cl: Constructing van der Waals heterostructure with g-C3N4. Chem. Eng. J. 2021, 409, 128178. [Google Scholar] [CrossRef]
- Wang, T.; Shi, L.; Tang, J.; Malgras, V.; Asahina, S.; Liu, G.; Zhang, H.; Meng, X.; Chang, K.; He, J. A Co3O4-embedded porous ZnO rhombic dodecahedron prepared by the use of zeolitic imidazolate frameworks as precursors for CO2 photoreduction. Nanoscale 2016, 8, 6712–6720. [Google Scholar] [CrossRef]
- Yang, J.; Gao, G.; Zhu, Z.; Yu, X. Biochar modified Co-Al LDH for enhancing photocatalytic reduction CO2 performance and mechanism insight. Res. Chem. Intermed. 2022, 48, 2313–2323. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, D.; Qin, Y.; Xie, Y.; Ling, Y.; Ye, H.; Zhang, Y. Facile construction of BiOBr/CoAl-LDH heterojunctions with suppressed Z-axis growth for efficient photoreduction of CO2. Sep. Purif. Technol. 2022, 302, 122090. [Google Scholar] [CrossRef]
- Zhong, X.; Liang, X.; Lin, X.; Wang, J.; Shahid, M.Z.; Li, Z. A new 0D-2D CsPbBr3-Co3O4 heterostructure photocatalyst with efficient charge separation for photocatalytic CO2 reduction. Inorg. Chem. Front. 2023, 10, 3273–3283. [Google Scholar] [CrossRef]
- Yu, X.; Ordomsky, V.; Khodakov, A. Selective Deposition of Cobalt and Copper Oxides on BiVO4 Facets for Enhancement of CO2 Photocatalytic Reduction to Hydrocarbons. ChemCatChem 2020, 12, 740–749. [Google Scholar] [CrossRef]
- Hong, Y.; Liu, E.; Shi, J.; Lin, X.; Sheng, L.; Zhang, M.; Wang, L.; Chen, J. A direct one-step synthesis of ultrathin g-C3N4 nanosheets from thiourea for boosting solar photocatalytic H2 evolution. Int. J. Hydrog. Energy 2019, 44, 7194–7204. [Google Scholar] [CrossRef]
- Wang, T.; Liu, W.; Gao, Y.; Liu, S. Effects of sodium oleate on synthesis and photocatalytic activity of Bi2WO6/Bi2O3@RGO. J. Mater. Sci. Mater. Electron. 2017, 28, 14949–14953. [Google Scholar] [CrossRef]
- Wang, S.; Hou, Y.; Wang, X. Development of a stable MnCo2O4 cocatalyst for photocatalytic CO2 reduction with visible light. ACS Appl. Mater. Inter. 2015, 7, 4327–4335. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, P.; Tian, D.; Zhang, M.; Dai, W.; Zou, J.; Luo, S.; Luo, X. Co engineered CoP catalyst for photochemical CO2 reduction with accelerated electron transfer endowed by the space-charge region. J. Colloid Interface Sci. 2023, 648, 389–396. [Google Scholar] [CrossRef]
- Reljic, S.; Martinez-Escandell, M.; Silvestre-Albero, J. Effect of porosity and surface chemistry on CO2 and CH4 adsorption in S-doped and S-/O-co-doped porous carbons. C J. Carbon Res. 2022, 8, 41–59. [Google Scholar] [CrossRef]
- Zheng, H.; Huang, S.; Luo, M.; Wei, Q.; Chen, E.; He, L.; Lin, Q. Photochemical in-situ exfoliation of metal-organic frameworks for enhanced visible-light-driven CO2 reduction. Angew. Chem. Int. Ed. 2020, 52, 23588–23592. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Wu, F.; Tang, Y.; Chai, B.; Liang, J.; Han, J.; Xing, W.; Huang, Y.; Wu, G. Amorphous Metallic Cobalt-Based Organophosphonic Acid Compounds as Novel Photocatalysts to Boost Photocatalytic CO2 Reduction. C 2024, 10, 12. https://doi.org/10.3390/c10010012
Zhou C, Wu F, Tang Y, Chai B, Liang J, Han J, Xing W, Huang Y, Wu G. Amorphous Metallic Cobalt-Based Organophosphonic Acid Compounds as Novel Photocatalysts to Boost Photocatalytic CO2 Reduction. C. 2024; 10(1):12. https://doi.org/10.3390/c10010012
Chicago/Turabian StyleZhou, Chengwei, Fan Wu, Yonggong Tang, Boyuan Chai, Jiaxin Liang, Jiangang Han, Weinan Xing, Yudong Huang, and Guangyu Wu. 2024. "Amorphous Metallic Cobalt-Based Organophosphonic Acid Compounds as Novel Photocatalysts to Boost Photocatalytic CO2 Reduction" C 10, no. 1: 12. https://doi.org/10.3390/c10010012
APA StyleZhou, C., Wu, F., Tang, Y., Chai, B., Liang, J., Han, J., Xing, W., Huang, Y., & Wu, G. (2024). Amorphous Metallic Cobalt-Based Organophosphonic Acid Compounds as Novel Photocatalysts to Boost Photocatalytic CO2 Reduction. C, 10(1), 12. https://doi.org/10.3390/c10010012