Present Scenario of Long Non-Coding RNAs in Plants
Abstract
:1. Introduction
2. Salient Features/Characteristics of lncRNAs
2.1. Biotypes/Classes
2.2. Similarity to mRNAs
2.3. Tissue-Specificity
2.4. Cell-Type-Specificity
2.5. Mechanisms of Action
3. Emerging Significance of lncRNAs and Status in Plants
4. Managing the Information: Repositories/Databases of Plant lncRNAs
4.1. NONCODE v4
4.2. lncRNAdb v2.0
4.3. RNAcentral
4.4. TAIR10
4.5. PlantNATsdb
4.6. PLNlncRbase
4.7. GreeNC
4.8. CANTATAdb
4.9. PNRD
4.10. PLncRNAdb
4.11. PLncDB
4.12. DsTRD
5. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Berretta, J.; Morillon, A. Pervasive transcription constitutes a new level of eukaryotic genome regulation. EMBO Rep. 2009, 10, 973–982. [Google Scholar] [CrossRef] [PubMed]
- Djebali, S.; Davis, C.A.; Merkel, A.; Dobin, A.; Lassmann, T.; Mortazavi, A.; Tanzer, A.; Lagarde, J.; Lin, W.; Schlesinger, F.; et al. Landscape of transcription in human cells. Nature 2012, 489, 101–108. [Google Scholar] [CrossRef] [PubMed]
- David, L.; Huber, W.; Granovskaia, M.; Toedling, J.; Palm, C.J.; Bofkin, L.; Jones, T.; Davis, R.W.; Steinmetz, L.M. A high-resolution map of transcription in the yeast genome. Proc. Natl. Acad. Sci. USA 2006, 103, 5320–5325. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, X.; Stolc, V.; Li, X.; Zhang, D.; Su, N.; Tongprasit, W.; Li, S.; Cheng, Z.; Wang, J.; et al. Genome-wide transcription analyses in rice using tiling microarrays. Nature Genet. 2006, 38, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Ponting, C.P.; Oliver, P.L.; Reik, W. Evolution and functions of long noncoding RNAs. Cell 2009, 136, 629–641. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Barrera, L.O.; Zheng, M.; Qu, C.; Singer, M.A.; Richmond, T.A.; Wu, Y.; Green, R.D.; Ren, B. A high-resolution map of active promoters in the human genome. Nature 2005, 436, 876–880. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, E.J.; Warren, C.L.; Kuehner, J.N.; Panbehi, B.; Ansari, A.Z.; Brow, D.A. Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol. Cell 2006, 24, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Lister, R.; O’Malley, R.C.; Tonti-Filippini, J.; Gregory, B.D.; Berry, C.C.; Millar, A.H.; Ecker, J.R. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 2008, 133, 523–536. [Google Scholar] [CrossRef] [PubMed]
- Ponting, C.P.; Belgard, T.G. Transcribed dark matter: meaning or myth? Hum. Mol. Gen. 2010, ddq362. [Google Scholar] [CrossRef] [PubMed]
- Van Bakel, H.; Nislow, C.; Blencowe, B.J.; Hughes, T.R. Most “dark matter” transcripts are associated with known genes. PLoS Biol. 2010, 8, e1000371. [Google Scholar] [CrossRef] [PubMed]
- Amor, B.B.; Wirth, S.; Merchan, F.; Laporte, P.; d’Aubenton-Carafa, Y.; Hirsch, J.; Maizel, A.; Mallory, A.; Lucas, A.; Deragon, J.M.; et al. Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res. 2009, 19, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Ulitsky, I.; Bartel, D.P. LincRNAs: Genomics, evolution, and mechanisms. Cell 2013, 154, 26–46. [Google Scholar] [CrossRef] [PubMed]
- Dieci, G.; Fiorino, G.; Castelnuovo, M.; Teichmann, M.; Pagano, A. The expanding RNA polymerase III transcriptome. Trends Genet. 2007, 23, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Wierzbicki, A.T.; Haag, J.R.; Pikaard, C.S. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 2008, 135, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Wierzbicki, A.T.; Ream, T.S.; Haag, J.R.; Pikaard, C.S. RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nature Genet. 2009, 41, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Holoch, D.; Moazed, D. RNA-mediated epigenetic regulation of gene expression. Nature Rev. Genet. 2015, 16, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Böhmdorfer, G.; Sethuraman, S.; Rowley, M.J.; Krzyszton, M.; Rothi, M.H.; Bouzit, L.; Wierzbicki, A.T. Long non-coding RNA produced by RNA polymerase V determines boundaries of heterochromatin. eLife 2016, 5, e19092. [Google Scholar] [CrossRef] [PubMed]
- Kapranov, P.; Cheng, J.; Dike, S.; Nix, D.A.; Duttagupta, R.; Willingham, A.T.; Stadler, P.F.; Hertel, J.; Hackermüller, J.; Hofacker, I.L.; et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 2007, 316, 1484–1488. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.C.; Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 2011, 43, 904–914. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, X.; Deng, W.; Fan, X.; Liu, T.T.; He, G.; Chen, R.; Terzaghi, W.; Zhu, D.; Deng, X.W. Genomic features and regulatory roles of intermediate-sized non-coding RNAs in Arabidopsis. Mol. Plant 2014, 7, 514–527. [Google Scholar] [CrossRef] [PubMed]
- Di, C.; Yuan, J.; Wu, Y.; Li, J.; Lin, H.; Hu, L.; Zhang, T.; Qi, Y.; Gerstein, M.B.; Guo, Y.; et al. Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features. Plant J. 2014, 80, 848–861. [Google Scholar] [CrossRef] [PubMed]
- Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.; Knowles, D.G.; et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 2012, 22, 1775–1789. [Google Scholar] [CrossRef] [PubMed]
- Yotsukura, S.; Hancock, T.; Natsume-Kitatani, Y.; Mamitsuka, H. Computational recognition for long non-coding RNA (lncRNA): Software and databases. Brief. Bioinform. 2016, 18, bbv114. [Google Scholar] [CrossRef] [PubMed]
- Karapetyan, A.R.; Buiting, C.; Kuiper, R.A.; Coolen, M.W. Regulatory roles for long ncRNA and mRNA. Cancers 2013, 5, 462–490. [Google Scholar] [CrossRef] [PubMed]
- Gerstein, M.B.; Bruce, C.; Rozowsky, J.S.; Zheng, D.; Du, J.; Korbel, J.O.; Emanuelsson, O.; Zhang, Z.D.; Weissman, S.; Snyder, M. What is a gene, post-ENCODE? History and updated definition. Genome Res. 2007, 17, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Guttman, M.; Amit, I.; Garber, M.; French, C.; Lin, M.F.; Feldser, D.; Huarte, M.; Zuk, O.; Carey, B.W.; Cassady, J.P.; et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009, 458, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Khemka, N.; Singh, V.K.; Garg, R.; Jain, M. Genome-wide analysis of long intergenic non-coding RNAs in chickpea and their potential role in flower development. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Wang, Q.; Lu, C.; Yang, W.; Zhang, Y.; Cheng, H.; Feng, X.; Prosper, M.A.; Song, G. Transcriptome analysis reveals long noncoding RNAs involved in fiber development in cotton (Gossypium arboreum). Sci. China Life Sci. 2016, 59, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Dinger, M.E.; Amaral, P.P.; Mercer, T.R.; Pang, K.C.; Bruce, S.J.; Gardiner, B.B.; Askarian-Amiri, M.E.; Ru, K.; Soldà, G.; Simons, C.; et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res. 2008, 18, 1433–1445. [Google Scholar] [CrossRef] [PubMed]
- Tsoi, L.C.; Iyer, M.K.; Stuart, P.E.; Swindell, W.R.; Gudjonsson, J.E.; Tejasvi, T.; Sarkar, M.K.; Li, B.; Ding, J.; Voorhees, J.J.; et al. Analysis of long non-coding RNAs highlights tissue-specific expression patterns and epigenetic profiles in normal and psoriatic skin. Genome Biol. 2015, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Liu, Z. Global identification and analysis of long non-coding RNAs in diploid strawberry Fragaria vesca during flower and fruit development. BMC Genomics 2015, 16, 815. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Sun, L.; Luo, H.; Ma, Q.; Zhao, Y.; Pei, D. Genome-Wide Identification and Characterization of Long Non-Coding RNAs from Mulberry (Morus notabilis) RNA-seq Data. Genes 2016, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Cabili, M.N.; Trapnell, C.; Goff, L.; Koziol, M.; Tazon-Vega, B.; Regev, A.; Rinn, J.L. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011, 25, 1915–1927. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.J.; Nowakowski, T.J.; Pollen, A.A.; Lui, J.H.; Horlbeck, M.A.; Attenello, F.J.; He, D.; Weissman, J.S.; Kriegstein, A.R.; Diaz, A.A.; et al. Single-cell analysis of long non-coding RNAs in the developing human neocortex. Genome Biol. 2016, 17, 67. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yamada, M.; Han, X.; Ohler, U.; Benfey, P.N. High-resolution expression map of the Arabidopsis root reveals alternative splicing and lincRNA regulation. Dev. Cell 2016, 39, 508–522. [Google Scholar] [CrossRef] [PubMed]
- Quek, X.C.; Thomson, D.W.; Maag, J.L.; Bartonicek, N.; Signal, B.; Clark, M.B.; Gloss, B.S.; Dinger, M.E. lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res. 2014, 43, gku988. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.H.; Wang, M.B. Molecular functions of long non-coding RNAs in plants. Genes 2012, 3, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Kung, J.T.; Colognori, D.; Lee, J.T. Long noncoding RNAs: past, present, and future. Genetics 2013, 193, 651–669. [Google Scholar] [CrossRef] [PubMed]
- Marín-Béjar, O.; Huarte, M. Long noncoding RNAs: from identification to functions and mechanisms. Adv. Genomics Genet. 2015, 5, 257–274. [Google Scholar]
- Wu, R.; Su, Y.; Wu, H.; Dai, Y.; Zhao, M.; Lu, Q. Characters, functions and clinical perspectives of long non-coding RNAs. Mol. Genet. Genomics. 2016, 291, 1013–1033. [Google Scholar] [CrossRef] [PubMed]
- Lukiw, W.J.; Handley, P.; Wong, L.; McLachlan, D.C. BC200 RNA in normal human neocortex, non-Alzheimer dementia (NAD), and senile dementia of the Alzheimer type (AD). Neurochem. Res. 1992, 17, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Amaral, P.P.; Dinger, M.E.; Mercer, T.R.; Mattick, J.S. The eukaryotic genome as an RNA machine. Science 2008, 319, 1787–1789. [Google Scholar] [CrossRef] [PubMed]
- Volders, P.J.; Helsens, K.; Wang, X.; Menten, B.; Martens, L.; Gevaert, K.; Vandesompele, J.; Mestdagh, P. LNCipedia: A database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res. 2013, 41, D246–D251. [Google Scholar] [CrossRef] [PubMed]
- Bhartiya, D.; Pal, K.; Ghosh, S.; Kapoor, S.; Jalali, S.; Panwar, B.; Jain, S.; Sati, S.; Sengupta, S.; Sachidanandan, C.; et al. lncRNome: A comprehensive knowledgebase of human long noncoding RNAs. Database 2013, 2013, bat034. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Bai, J.; Wu, A.; Wang, Y.; Zhang, J.; Wang, Z.; Li, Y.; Xu, J.; Li, X. Co-LncRNA: Investigating the lncRNA combinatorial effects in GO annotations and KEGG pathways based on human RNA-Seq data. Database 2015, 2015, bav082. [Google Scholar]
- Li, J.H.; Liu, S.; Zhou, H.; Qu, L.H.; Yang, J.H. StarBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2013, 42, D92–D97. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wang, Z.; Wang, D.; Qiu, C.; Liu, M.; Chen, X.; Zhang, Q.; Yan, G.; Cui, Q. LncRNADisease: A database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 2013, 41, D983–D986. [Google Scholar] [CrossRef] [PubMed]
- Ning, S.; Zhang, J.; Wang, P.; Zhi, H.; Wang, J.; Liu, Y.; Gao, Y.; Guo, M.; Yue, M.; Wang, L.; et al. Lnc2Cancer: A manually curated database of experimentally supported lncRNAs associated with various human cancers. Nucleic Acids Res. 2015, 44, D980–D985. [Google Scholar] [CrossRef] [PubMed]
- Fritah, S.; Niclou, S.P.; Azuaje, F. Databases for lncRNAs: A comparative evaluation of emerging tools. RNA 2014, 20, 1655–1665. [Google Scholar] [CrossRef] [PubMed]
- Jalali, S.; Kapoor, S.; Sivadas, A.; Bhartiya, D.; Scaria, V. Computational approaches towards understanding human long non-coding RNA biology. Bioinformatics 2015, 31, 2241–2251. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.C.; Katinakis, P.; Hendriks, P.; Smolders, A.; Vries, F.; Spee, J.; Kammen, A.; Bisseling, T.; Franssen, H. Characterization of GmENOD40, a gene showing novel patterns of cell-specific expression during soybean nodule development. Plant J. 1993, 3, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Crespi, M.D.; Jurkevitch, E.; Poiret, M.; d’Aubenton-Carafa, Y.; Petrovics, G.; Kondorosi, E.; Kondorosi, A. enod40, a gene expressed during nodule organogenesis, codes for a non-translatable RNA involved in plant growth. EMBO J. 1994, 13, 5099. [Google Scholar] [PubMed]
- Liu, C.; Muchhal, U.S.; Raghothama, K.G. Differential expression of TPS11, a phosphate starvation-induced gene in tomato. Plant Mol. Biol. 1997, 33, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Wasaki, J.; Yonetani, R.; Shinano, T.; Kai, M.; Osaki, M. Expression of the OsPI1 gene, cloned from rice roots using cDNA microarray, rapidly responds to phosphorus status. New Phytol. 2003, 158, 239–248. [Google Scholar] [CrossRef]
- Franco-Zorrilla, J.M.; Valli, A.; Todesco, M.; Mateos, I.; Puga, M.I.; Rubio-Somoza, I.; Leyva, A.; Weigel, D.; García, J.A.; Paz-Ares, J. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genet. 2007, 39, 1033–1037. [Google Scholar] [CrossRef] [PubMed]
- Swiezewski, S.; Liu, F.; Magusin, A.; Dean, C. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 2009, 462, 799–802. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.B.; Sung, S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 2011, 331, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Lu, Q.; Ouyang, Y.; Mao, H.; Zhang, P.; Yao, J.; Xu, C.; Li, X.; Xiao, J.; Zhang, Q. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc. Natl. Acad. Sci. USA 2012, 109, 2654–2659. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Liu, Q.; Li, J.; Jiang, D.; Zhou, L.; Wu, P.; Lu, S.; Li, F.; Zhu, L.; Liu, Z.; et al. Photoperiod-and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res. 2012, 22, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.D.; Sung, S. Long noncoding RNA: Unveiling hidden layer of gene regulatory networks. Trends Plant Sci. 2012, 17, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Mujahid, H.; Hou, Y.; Nallamilli, B.R.; Peng, Z. Plant long ncRNAs: a new frontier for gene regulatory control. Am. J. Plant Sci. 2013, 4, 1038. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Chua, N.H. Long noncoding RNA transcriptome of plants. Plant Biotech J. 2015, 13, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hao, L.; Li, D.; Zhu, L.; Hu, S. Long non-coding RNAs and their biological roles in plants. GPB 2015, 13, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Parker, B.J.; Weiller, G.F. In Silico identification and characterization of mRNA-like noncoding transcripts in Medicago truncatula. In Silico Biol. 2007, 7, 485–505. [Google Scholar] [PubMed]
- Xin, M.; Wang, Y.; Yao, Y.; Song, N.; Hu, Z.; Qin, D.; Xie, C.; Peng, H.; Ni, Z.; Sun, Q. Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol. 2011, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jung, C.; Xu, J.; Wang, H.; Deng, S.; Bernad, L.; Arenas-Huertero, C.; Chua, N.H. Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 2012, 24, 4333–4345. [Google Scholar] [CrossRef] [PubMed]
- Boerner, S.; McGinnis, K.M. Computational identification and functional predictions of long noncoding RNA in Zea mays. PLoS ONE 2012, 7, e43047. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Zhu, C.; Lu, G.; Guo, Y.; Zhou, Y.; Zhang, Z.; Zhao, Y.; Li, W.; Lu, Y.; Tang, W.; et al. Strand-specific RNA-seq reveals widespread occurrence of novel cis-natural antisense transcripts in rice. BMC Genomics 2012, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Xie, S.; Liu, Y.; Yi, F.; Yu, J. Genome-wide annotation of genes and noncoding RNAs of foxtail millet in response to simulated drought stress by deep sequencing. Plant Mol. Biol. 2013, 83, 459–473. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhao, S.; Gu, C.; Zhou, Y.; Zhou, H.; Ma, J.; Cheng, J.; Han, Y. Deep RNA-Seq uncovers the peach transcriptome landscape. Plant Mol. Biol. 2013, 83, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Yang, J.; Li, X.; Liu, X.; Sun, C.; Wu, F.; He, Y. Global analysis of cis-natural antisense transcripts and their heat-responsive nat-siRNAs in Brassica rapa. BMC Plant Biol. 2013, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chung, P.J.; Liu, J.; Jang, I.C.; Kean, M.J.; Xu, J.; Chua, N.H. Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis. Genome Res. 2014, 24, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.H.; Stephen, S.; Taylor, J.; Helliwell, C.A.; Wang, M.B. Long noncoding RNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana. New Phytol. 2014, 201, 574–584. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Eichten, S.R.; Shimizu, R.; Petsch, K.; Yeh, C.T.; Wu, W.; Chettoor, A.M.; Givan, S.A.; Cole, R.A.; Fowler, J.E.; et al. Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol. 2014, 15, 1. [Google Scholar] [CrossRef] [PubMed]
- Shuai, P.; Liang, D.; Tang, S.; Zhang, Z.; Ye, C.Y.; Su, Y.; Xia, X.; Yin, W. Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa. J. Exp. Bot. 2014, 65, eru256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.C.; Liao, J.Y.; Li, Z.Y.; Yu, Y.; Zhang, J.P.; Li, Q.F.; Qu, L.H.; Shu, W.S.; Chen, Y.Q. Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol. 2014, 15, 1. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Quan, M.; Zhang, D. Genome-wide identification of novel long non-coding RNAs in Populus tomentosa tension wood, opposite wood and normal wood xylem by RNA-seq. Planta 2015, 241, 125–143. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Fan, C.; Cheng, T.; Su, Y.; Wei, Q.; Li, G. Genome-wide identification, characterization and evolutionary analysis of long intergenic noncoding RNAs in cucumber. PLoS ONE 2015, 10, e0121800. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Yang, Y.; Li, R.; Fu, D.; Wen, L.; Luo, Y.; Zhu, H. RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening. J. Exp. Bot. 2015, 66, 4483–4495. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yu, W.; Yang, Y.; Li, X.; Chen, T.; Liu, T.; Ma, N.; Yang, X.; Liu, R.; Zhang, B. Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection. Sci. Rep. 2015, 5, 16946. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Liu, Q.; Zheng, L.; Cui, Y.; Shen, Z.; Zheng, L. RNA-Seq analysis of rice roots reveals the involvement of post-transcriptional regulation in response to cadmium stress. Front. Plant. Sci. 2015, 6, 1136. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.Z.; Liu, M.; Zhao, M.G.; Chen, R.; Zhang, W.H. Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago truncatula using genome-wide high-throughput sequencing. BMC Plant Biol. 2015, 15, 1. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Song, Y.; Du, Q.; Yang, X.; Ci, D.; Chen, J.; Xie, J.; Li, B.; Zhang, D. Population genomic analysis of gibberellin-responsive long non-coding RNAs in Populus. J. Exp. Bot. 2016, 67, erw057. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hu, W.; Hao, J.; Lv, S.; Wang, C.; Tong, W.; Wang, Y.; Wang, Y.; Liu, X.; Ji, W. Genome-wide identification and functional prediction of novel and fungi-responsive lincRNAs in Triticum aestivum. BMC Genomics 2016, 17, 1. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Liang, Z.; Ge, M.; Qi, W.; Zhang, T.; Lin, F.; Peng, Z.; Zhao, H. Genome-wide identification and functional prediction of nitrogen-responsive intergenic and intronic long non-coding RNAs in maize (Zea mays L.). BMC Genomics 2016, 17, 1. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, C.; Bao, H.; Chen, H.; Wang, Y. Genome-wide identification and characterization of novel lncRNAs in Populus under nitrogen deficiency. Mol. Genet. Genomics. 2016, 291, 1663–1680. [Google Scholar] [CrossRef] [PubMed]
- Flórez-Zapata, N.M.; Reyes-Valdés, M.H.; Martínez, O. Long non-coding RNAs are major contributors to transcriptome changes in sunflower meiocytes with different recombination rates. BMC Genomics 2016, 17, 490. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.K.; Megha, S.; Basu, U.; Rahman, M.H.; Kav, N.N. Genome wide identification and functional prediction of long non-coding RNAs responsive to Sclerotinia sclerotiorum infection in Brassica napus. PLoS ONE 2016, 11, e0158784. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Zhang, Y.; Dong, J.; Sun, Y.; Lim, B.L.; Liu, D.; Lu, Z.J. Systematic characterization of novel lncRNAs responding to phosphate starvation in Arabidopsis thaliana. BMC Genomics 2016, 17, 655. [Google Scholar] [CrossRef] [PubMed]
- Kwenda, S.; Birch, P.R.; Moleleki, L.N. Genome-wide identification of potato long intergenic noncoding RNAs responsive to Pectobacterium carotovorum subspecies brasiliense infection. BMC Genomics 2016, 17, 614. [Google Scholar] [CrossRef] [PubMed]
- Lamesch, P.; Berardini, T.Z.; Li, D.; Swarbreck, D.; Wilks, C.; Sasidharan, R.; Muller, R.; Dreher, K.; Alexander, D.L.; Garcia-Hernandez, M.; et al. The Arabidopsis Information Resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Res. 2012, 40, D1202–D1210. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Yuan, C.; Zhang, J.; Zhang, Z.; Bai, L.; Meng, Y.; Chen, L.L.; Chen, M. PlantNATsDB: A comprehensive database of plant natural antisense transcripts. Nucleic Acids Res. 2012, 40, D1187–D1193. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Liu, J.; Wang, H.; Wong, L.; Chua, N.H. PLncDB: Plant long non-coding RNA database. Bioinformatics 2013, 29, 1068–1071. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Yuan, J.; Li, H.; Li, M.; Zhao, G.; Bu, D.; Zhu, W.; Wu, W.; Chen, R.; Zhao, Y. NONCODEv4: Exploring the world of long non-coding RNA genes. Nucleic Acids Res. 2014, 42, D98–D103. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Zhang, Z.; Ling, Y.; Xu, W.; Su, Z. PNRD: A plant non-coding RNA database. Nucleic Acids Res. 2015, 43, D982–D989. [Google Scholar] [CrossRef] [PubMed]
- Xuan, H.; Zhang, L.; Liu, X.; Han, G.; Li, J.; Li, X.; Liu, A.; Liao, M.; Zhang, S. PLNlncRbase: A resource for experimentally identified lncRNAs in plants. Gene 2015, 573, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Gallart, A.P.; Pulido, A.H.; de Lagrán, I.A.; Sanseverino, W.; Cigliano, R.A. GREENC: A Wiki-based database of plant lncRNAs. Nucleic Acids Res. 2016, 44, D1161–D1166. [Google Scholar]
- Szcześniak, M.W.; Rosikiewicz, W.; Makałowska, I. CANTATAdb: A Collection of Plant Long Non-coding RNAs. Plant Cell Physiol. 2016, 57, e8. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Wei, J.; Wu, F.; Zhang, H.; Yang, D.; Liang, Z.; Jin, W. DsTRD: Danshen Transcriptional Resource Database. PLoS ONE 2016, 11, e0149747. [Google Scholar] [CrossRef] [PubMed]
- RNAcentral Consortium. RNAcentral: A comprehensive database of non-coding RNA sequences. Nucleic Acids Res. 2016, 45, gkw1008. [Google Scholar]
- PLncRNAdb Ming Chen’s Lab. Available online: http://bis.zju.edu.cn/PlncRNADB/index.php (accessed on 25 December 2016).
- Cunningham, F.; Amode, M.R.; Barrell, D.; Beal, K.; Billis, K.; Brent, S.; Carvalho-Silva, D.; Clapham, P.; Coates, G.; Fitzgerald, S.; et al. Ensembl 2015. Nucleic Acids Res. 2015, 43, D662. [Google Scholar] [CrossRef] [PubMed]
- Pruitt, K.D.; Brown, G.R.; Hiatt, S.M.; Thibaud-Nissen, F.; Astashyn, A.; Ermolaeva, O.; Farrell, C.M.; Hart, J.; Landrum, M.J.; McGarvey, K.M.; et al. RefSeq: An update on mammalian reference sequences. Nucleic Acids Res. 2014, 42, D756–D763. [Google Scholar] [CrossRef] [PubMed]
- Mituyama, T.; Yamada, K.; Hattori, E.; Okida, H.; Ono, Y.; Terai, G.; Yoshizawa, A.; Komori, T.; Asai, K. The Functional RNA Database 3.0: databases to support mining and annotation of functional RNAs. Nucleic Acids Res. 2009, 37 (Suppl. 1), D89–D92. [Google Scholar] [CrossRef] [PubMed]
- Belinky, F.; Bahir, I.; Stelzer, G.; Zimmerman, S.; Rosen, N.; Nativ, N.; Dalah, I.; Stein, T.I.; Rappaport, N.; Mituyama, T.; et al. Non-redundant compendium of human ncRNA genes in GeneCards. Bioinformatics 2013, 29, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Paraskevopoulou, M.D.; Georgakilas, G.; Kostoulas, N.; Reczko, M.; Maragkakis, M.; Dalamagas, T.M.; Hatzigeorgiou, A.G. DIANA-LncBase: Experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Res. 2013, 41, D239–D245. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, H.; Fang, S.; Kang, Y.; Hao, Y.; Li, Z.; Bu, D.; Sun, N.; Zhang, M.Q.; Chen, R. NONCODE 2016: An informative and valuable data source of long non-coding RNAs. Nucleic Acids Res. 2015, gkv1252. [Google Scholar] [CrossRef] [PubMed]
- RNAcentral Consortium. RNAcentral: An international database of ncRNA sequences. Nucleic Acids Res. 2014, gku991. [Google Scholar]
- File-lncRNAdb. Available online: http://www.lncrnadb.org/tools/ (accessed on 25 December 2016).
- Wagner, F.; Heidtke, K.R.; Drescher, B.; Radelof, U. Development and perspectives of scientific services offered by genomic biological resource centres. Brief. Funct. Genomic Proteomic 2007, 6, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40, D1178–D1186. [Google Scholar] [CrossRef] [PubMed]
- Agostini, F.; Zanzoni, A.; Klus, P.; Marchese, D.; Cirillo, D.; Tartaglia, G.G. catRAPID omics: A web server for large-scale prediction of protein–RNA interactions. Bioinformatics 2013, 29, 2928–2930. [Google Scholar] [CrossRef] [PubMed]
S.No. | Year | Publication Details and Reference No. | Approach of Identification | Plant Species | Biotypes and Number | Tissues/Developmental Stages | Stimuli/Biological Process | ||
---|---|---|---|---|---|---|---|---|---|
Abiotic Stress | Biotic Stress | Others | |||||||
1. | 2007 | Wen et al. In silico Biology [64] | Expressed and genomic sequence data + Computational Pipeline | Medicago truncatula (Barrelclover) | mRNA-like non-coding transcripts: 503 | - | ✕ | ✕ | ✕ |
2. | 2009 | Amor et al. Genome Research [11] | Genome-wide bioinformatic analysis of full-length cDNA databases | Arabidopsis | Long non-protein coding RNAs: 76 | Inflorescences, stems, and leaves | ✓ Salt stress, Phosphate starvation, and Water stress | ✕ | ✕ |
3. | 2011 | Xin et al. BMC Plant Biology [65] | Microarray Analysis + SBS Sequencing | Triticum aestivum (Wheat) | Long non-protein coding RNAs: 125 | Leaf samples at 0 and 12 hours post inoculation | ✓ Heat stress | ✓ Powdery mildew infection | ✕ |
4. | 2012 | Liu et al. The Plant Cell [66] | RNA sequencing + computational prediction | Arabidopsis thaliana | lincRNAs: 2708 | Root and leaf samples of 30-day-old plants and two-week-old seedlings | ✓ Drought, Cold, High-salt, and Abscisic acid treatment | ✕ | ✕ |
5. | 2012 | Boerner and McGinnis PLoS ONE [67] | Full-length cDNA sequences + computational pipeline | Zea mays (Maize) | lncRNAs | - | ✕ | ✕ | ✕ |
6. | 2012 | Lu et al. BMC Genomics [68] | Strand-specific RNA-seq + computational pipeline | Oryza sativa ssp. japonica cv. Nipponbare (Rice) | Cis-NATs: 3819 | Seedlings and epidermal cells | ✓ Drought, salt stress and cold treatment | ✕ | ✕ |
7. | 2013 | Qi et al. Plant Mol. Biology [69] | Deep transcriptomic sequencing | Setaria italic (Foxtail millet) | lncRNAs: 584
| Shoots | ✓ Drought | ✕ | ✕ |
8. | 2013 | Wang et al. Plant Mol. Biology [70] | Deep RNA-seq | Prunus persica (Peach) | ncRNAs: 1417 | Leaves, flowers, and fruits | ✕ | ✕ | ✕ |
9. | 2013 | Yu et al. BMC Plant Biology [71] | RNA-seq + computational pipeline | Brassica rapa | Cis-NATs: 1031 | Seedling (three weeks old) and inflorescence apices (two months old) | ✕ | ✕ | ✕ |
10. | 2014 | Wang et al. Genome Research [72] | Strand-specific RNA-seq + strand-specific tiling arrays | A. thaliana | Sense–antisense transcript pairs: 37,238 | Cotyledons, hypocotyls, and roots of seedlings | ✕ | ✕ | ✓ Light |
11. | 2014 | Zhu et al. New Phytologist [73] | Strand-specific RNA-seq | A. thaliana | lncRNAs | Two-week old seedlings | ✕ | ✓ Fusarium oxysporum | ✕ |
12. | 2014 | Li et al. Genome Biology [74] | EST databases, maize whole genome sequence annotation and RNA-seq datasets + computational pipeline | Z. mays (Maize) | lncRNAs: 20,163 | Thirdteen distinct tissues (leaf, immature ear, immature tassel, seed, endosperm, embryo, embryo sac, anther, ovule, pollen, silk, and root and shoot apical meristem) | ✕ | ✕ | ✕ |
13. | 2014 | Shuai et al. Journal of Experimental Botany [75] | RNA-seq + computational pipeline | Populus trichocarpa (Poplar) | lincRNAs: 2542 | Mature leaves | ✓ Drought | ✕ | ✕ |
14. | 2014 | Zhang et al. Genome Biology [76] | Strand-specific RNA-seq + computational pipeline | O. sativa (Rice) | lncRNAs: 2224
| Anthers, pistils, seeds five days after pollination, and shoots 14 days after germination | ✕ | ✕ | ✓ Sexual reproduction |
15. | 2015 | Chen et al. Planta [77] | High-throughput RNA-seq + computational pipeline | Populus tomentosa (Poplar) | lncRNAs: 1377 | Tension, opposite, and normal wood xylem from 30-year old trees | ✕ | ✕ | ✕ |
16. | 2015 | Hao et al. PLoS ONE [78] | RNA-seq data + computational pipeline | Cucumis sativus (Cucumber) | lincRNAs: 3274 | Fruits at five ages, root, stem, leaf, male and female flowers, ovary, expanded fertilized and unfertilized ovary, base of the tendril, and tendril | ✕ | ✕ | ✕ |
17. | 2015 | Zhu et al. Journal of Experimental Botany [79] | Paired-end strand-specific RNA-seq | Solanum lycopersicum cv. Ailsa Craig (Tomato) | lncRNAs: 3679 | Fruits: immature green, mature green, breaker, pink, and red-ripe stages (Ripening) | ✕ | ✕ | ✕ |
18. | 2015 | Wang et al. Scientific Reports [80] | Strand-specific paired-end RNA-seq + computational pipeline | S. lycopersicum (Tomato) | lncRNAs: 1565 | Leaves | ✕ | ✓ Tomato yellow leaf curl virus | ✕ |
19. | 2015 | He et al. Frontiers in Plant Science [81] | RNA-seq + computational pipeline | O. sativa spp. Japonica cv. Nipponbare (Rice) | lncRNAs | Roots | ✓ Cadmium stress | ✕ | ✕ |
20. | 2015 | Wang et al. BMC Plant Biology [82] | High-throughput sequencing + bioinformatic analysis | M. truncatula (Barrelclover) | lncRNAs: 23,324 | Leaves and roots | ✓ Osmotic and salt stress | ✕ | ✕ |
21. | 2015 | Kang and Liu BMC Genomics [31] | RNA-seq data + computational pipeline | Fragaria vesca (Woodland strawberry) | lncRNAs: 5884 | Thirty-five distinct floral and fruit tissues and two vegetative tissues: seedlings and young leaves (Flower and fruit development) | ✕ | ✕ | ✕ |
22. | 2016 | Zou et al., Science China Life Sciences [28] | Strand-specific RNA-seq + computational pipeline | Gossypium arboretum (Cotton) | lncRNAs: 5996
| Ovules and fibers on 1, 10, and 15 days post anthesis; leaves from 2-week-old seedlings (Fiber development) | ✕ | ✕ | ✕ |
23. | 2016 | Tian et al., Journal of Experimental Botany [83] | RNA-seq + computational pipeline | Populus | lncRNAs: 7655 | Leaves | ✕ | ✕ | ✓ Hormone responses (Gibberellin) |
24. | 2016 | Song et al. Genes [32] | RNA-seq data + computational pipeline | Morus notabilis (Mulberry) | lncRNAs: 1133 | Winter bud, leaf, flower, root and bark | ✕ | ✕ | ✕ |
25. | 2016 | Zhang et al. BMC Genomics [84] | RNA-seq + computational pipeline | T. aestivum (Wheat) | lincRNAs: 58,218 | Leaves at 0, 1, 2, and 3 days post inoculation | ✕ | ✓ Stripe rust and Powdery mildew infection | ✕ |
26. | 2016 | Khemka et al. Scientific Reports [27] | RNA-seq data + computational pipeline | Cicer arietinum (Chickpea) | lincRNAs: 2248 | Three vegetative tissues: germinating seedling, young leaves, and shoot apical meristem; and eight successive stages of flower tissues from closed flower bud to drooped flower (Flower development) | ✕ | ✕ | ✕ |
27. | 2016 | Lv et al. BMC Genomics [85] | Ribosomal RNA depletion and ultra-deep total RNA-seq | Zea mays L. (Maize) | lncRNAs: 7245
| Leaf | ✓ Nitrogen stress | ✕ | ✕ |
28. | 2016 | Chen et al. Mol Genet Genomics [86] | Genome-wide strategy | Populus tomentosa (Poplar) | lncRNAs: 388 | - | ✓ Nitrogen stress | ✕ | ✕ |
29. | 2016 | Flórez-Zapata et al. BMC Genomics [87] | RNA-seq + computational pipeline | Helianthus annus (Sunflower) | lncRNAs: 25,327 | Prophase I meiocytes from disc florets of the floral bud | ✕ | ✕ | ✕ |
30. | 2016 | Joshi et al. PLoS ONE [88] | RNA-seq + computational pipeline | Brassica napus (Canola) | lncRNAs: 3181 | Leaves | ✕ | ✓ Sclerotiniasclerotiorum Infection | ✕ |
31. | 2016 | Yuan et al. BMC Genomics [89] | Strand-specific RNA libraries + RNA-seq + computational pipeline | A. thaliana | lncRNAs: 1212 | Shoot and root of 10-day-old seedlings | ✓ Phosphate starvation | ✕ | ✕ |
32. | 2016 | Kwenda et al. BMC Genomics [90] | Strand-specific RNA-seq + computational pipeline | Solanum tuberosum (Potato) | lincRNAs: 1113 | Stems | ✕ | ✓ Pectobacterium carotovorum subsp. brasilience | ✕ |
S.No. | Name of the Database | Publication Details and Reference No. | Plant Species | Number of Plant lncRNAs | Description/Main Features | Data Sources | Link/URL |
---|---|---|---|---|---|---|---|
1. | TAIR10 | Lamesch et al., (2012) Nucleic Acids Research [91] | Arabidopsis | Information available about 33,602 genes of Arabidopsis |
| AFGC cDNA arrays, the literature, and sequencing and function genomics projects | https://www.arabidopsis.org/ |
2. | PlantNATsDB | Chen et al. (2012) Nucleic Acids Research [92] | Seventy plant species | NATs (including both protein coding and non-coding transcripts): 2,146,803 |
| Various data sources such as TAIR9, JGI Glyma1, JGI Cassava 1 | http://bis.zju.edu.cn/pnatdb/ |
3. | PLncDB | Jin et al. (2013) Bioinformatics [93] | Arabidopsis thaliana | >13,000 lncRNAs |
| Data in the study by Liu et al., 2012 [63] | http://chualab.rockefeller.edu/gbrowse2/homepage.html |
4. | NONCODE v4 | Xie et al. (2014) Nucleic Acids Research [94] | A. thaliana | 3853 lncRNA transcripts and 2477 lncRNA genes |
| The literature, specialized databases, and GenBank | www.bioinfo.org/NONCODEv4/ |
5. | PNRD | Yi et al. (2015) Nucleic Acids Research [95] | Four plant species: A. thaliana, Oryza sativa, Populus trichocarpa, and Zea mays. | 5573 lncRNAs |
| Integration of data from other databases and publications | http://structuralbiology.cau.edu.cn/PNRD |
6. | lncRNAdb v2.0 | Quek et al. (2015) Nucleic Acids Research [36] | A. thaliana and other plant species such as O. sativa, Medicago truncatula, Brassica rapa, Glycine max, etc. | Seven lncRNA entries for A. thaliana and single-digit entries for other plant species |
| Manually curated from evidence supported by the literature | http://www.lncrnadb.org/ |
7. | PLNlncRbase | Xuan et al. (2015) Gene [96] | Forty-three plant species | 1187 lncRNAs |
| Manually curated from evidence supported by the literature (over 200 studies) | http://bioinformatics.ahau.edu.cn/PLNlncRbase |
8. | GreeNC | Gallart et al. (2016) Nucleic Acids Research [97] | Thirty-seven plant species and 6 algae | >120,000 (high-confidence) lncRNAs |
| In silico identification based on data downloaded from Phytozome v10.3 | http://greenc.sciencedesigners.com/ |
9. | CANTATAdb | Szczesśniak et al. (2016) Plant Cell Physiology [98] | 10 plant species: Amborella trichopoda, A. thaliana, Chlamydomonasreinhardtii, G. max, O. sativa, Physcomitrella patens, Selaginellamoellendorffii, Solanum tuberosum, Vitis vinifera, and Z. mays. | 45,117 lncRNAs |
| In silico identification based on publicly available RNA-Seq sample data | http://cantata.amu.edu.pl/ |
10. | DsTRD | Shao et al. (2016) PLoS ONE [99] | Salvia miltiorrhiza | 27,687 lncRNAs |
| In silico identification using an in-house Perl script | http://bi.sky.zstu.edu.cn/DsTRD/home.php |
11. | RNACentral | The RNAcentral Consortium. (2016) Nucleic Acids Research [100] | Z. mays and A. thaliana | ≈673 lncRNAs |
| 40 expert databases | http://rnacentral.org/ |
12. | PLncRNAdb | Ming Chen’s Lab [101] | Four plant species: A. thaliana, Arabidospsis lyrata, P. trichocarpa, and Z. mays | 5000 lncRNAs |
| In silico identification and the literature | http://bis.zju.edu.cn/PlncRNADB/index.php |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatia, G.; Goyal, N.; Sharma, S.; Upadhyay, S.K.; Singh, K. Present Scenario of Long Non-Coding RNAs in Plants. Non-Coding RNA 2017, 3, 16. https://doi.org/10.3390/ncrna3020016
Bhatia G, Goyal N, Sharma S, Upadhyay SK, Singh K. Present Scenario of Long Non-Coding RNAs in Plants. Non-Coding RNA. 2017; 3(2):16. https://doi.org/10.3390/ncrna3020016
Chicago/Turabian StyleBhatia, Garima, Neetu Goyal, Shailesh Sharma, Santosh Kumar Upadhyay, and Kashmir Singh. 2017. "Present Scenario of Long Non-Coding RNAs in Plants" Non-Coding RNA 3, no. 2: 16. https://doi.org/10.3390/ncrna3020016
APA StyleBhatia, G., Goyal, N., Sharma, S., Upadhyay, S. K., & Singh, K. (2017). Present Scenario of Long Non-Coding RNAs in Plants. Non-Coding RNA, 3(2), 16. https://doi.org/10.3390/ncrna3020016