Can Artificial Intelligence Accelerate Fluid Mechanics Research?
Abstract
:1. Introduction
2. A Brief Overview and Methods Classification
3. Applications of ML in Fluid Mechanics
4. Challenges
- ML algorithms are well-defined mathematically and widely supported by software. An open question on their applicability in high-precision fluid mechanics, such as in biological or aerodynamic flows, is the availability of high-fidelity data to train ML models effectively [187].
- Open databases should become available to the scientific community and play a crucial role in machine learning, enabling knowledge sharing and advanced development.
- Modern computers and experimental devices have higher speed, power, and flexibility, making access to data easy. However, concerns about storage, retrieval, post-processing, and other challenges may arise, especially when dealing with massive turbulence data.
- ML in fluids extends beyond image processing as fluid imaging is not static and includes dynamic information [3]. Furthermore, when flow images are provided in time sequence, the computational load increases dramatically, and algorithmic selection is essential.
- Algorithms perform differently depending on the problem they are called on to solve. For example, there is no need to dive into a complex DL architecture when the task is the property prediction of a specific fluid based on several variable-type input parameters [188].
- Differential equation solutions with PINNs may fail in complex physical phenomena, such as turbulence, compared to traditional numerical methods [189]. There seems to be much to do to consider PINNs as the dominant PDE solver for fluid dynamics.
- At the nanoscale, problems originate from time and length scales. Complex aqueous environments and fluid/solid interfaces can only come to light through atomistic simulation techniques with first-principles accuracy. Machine learning potentials have been successfully introduced over the past years and are now close to standardization as ab-initio simulation alternatives [190].
- There are many instances in the physical sciences where decision-making is based on empirical relations. The challenge for future ML methods is to provide accurate data-derived physics-based equations rather than empirical ones. Symbolic regression can help towards this goal. [191].
5. Perspectives
6. Conclusions
- 1.
- Exploring how to accelerate numerical simulations by introducing ML.
- 2.
- Investigating the accuracy limitations of ML methods in experiments and numerical simulations.
- 3.
- Exploring ML methods when using big fluid dynamics data and when data are scarce.
- 4.
- Developing a better theoretical understanding of ML methods that will allow better explainability of the results.
- 5.
- Avoiding AI hyping such as “new equations will be discovered through AI”, as first principles will drive fluid dynamics (and other physics) research.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
BF | Basis Function |
CFD | Computational Fluid Dynamics |
CNN | Convolutional Neural Network |
DL | Deep Learning |
DNN | Deep Neural Network |
DMD | Dynamic Mode Decomposition |
ELU | Exponential Linear Unit |
FNN | Feedforward Neural Network |
FFC | Feedforward Fully Connected |
GANs | Generative Adversarial Networks |
GCV | Generalized Cross Validation |
GELU | Gaussian Linear Unit |
GP | Genetic Programming |
NN | Neural Network(s) |
MARS | Multivariate Adaptive Regression Splines |
ML | Machine Learning |
MLP | Multi-Layer Perceptron |
MSE | Mean Squared Error |
PINNs | Physics Informed Neural Networks |
POD | Proper Orthogonal Decomposition |
ReLU | Rectified Linear Unit |
RNN | Recurrent Neural Network |
SL | Shallow Learning |
SNR | Signal to Noise Ratio |
SR | Symbolic Regression |
SVM | Support Vector Machine |
References
- Pugliese, R.; Regondi, S.; Marini, R. Machine learning-based approach: Global trends, research directions, and regulatory standpoints. Data Sci. Manag. 2021, 4, 19–29. [Google Scholar] [CrossRef]
- Frank, M.; Drikakis, D.; Charissis, V. Machine-Learning Methods for Computational Science and Engineering. Computation 2020, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Brunton, S.L.; Noack, B.R.; Koumoutsakos, P. Machine Learning for Fluid Mechanics. Annu. Rev. Fluid Mech. 2020, 52, 477–508. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.P.; Alatyar, A.M.; Berrouk, A.S.; Saeed, M. Numerical modelling of rotating packed beds used for CO2 capture processes: A review. Can. J. Chem. Eng. 2023. [Google Scholar] [CrossRef]
- Guo, S.; Agarwal, M.; Cooper, C.; Tian, Q.; Gao, R.X.; Guo, W.; Guo, Y. Machine learning for metal additive manufacturing: Towards a physics-informed data-driven paradigm. J. Manuf. Syst. 2022, 62, 145–163. [Google Scholar] [CrossRef]
- Nazemi, E.; Dinca, M.; Movafeghi, A.; Rokrok, B.; Choopan Dastjerdi, M. Estimation of volumetric water content during imbibition in porous building material using real time neutron radiography and artificial neural network. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2019, 940, 344–350. [Google Scholar] [CrossRef]
- Leverant, C.J.; Greathouse, J.A.; Harvey, J.A.; Alam, T.M. Machine Learning Predictions of Simulated Self-Diffusion Coefficients for Bulk and Confined Pure Liquids. J. Chem. Theory Comput. 2023, 19, 3054–3062. [Google Scholar] [CrossRef]
- Sofos, F.; Charakopoulos, A.; Papastamatiou, K.; Karakasidis, T.E. A combined clustering/symbolic regression framework for fluid property prediction. Phys. Fluids 2022, 34, 062004. [Google Scholar] [CrossRef]
- Papastamatiou, K.; Sofos, F.; Karakasidis, T.E. Calculating material properties with purely data-driven methods: From clusters to symbolic expressions. In Proceedings of the 12th Hellenic Conference on Artificial Intelligence (SETN ’22), Corfu, Greece, 7–9 September 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 1–9. [Google Scholar] [CrossRef]
- Amsallem, D.; Farhat, C. Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity. AIAA J. 2008, 46, 1803–1813. [Google Scholar] [CrossRef] [Green Version]
- Sofos, F.; Karakasidis, T. Nanoscale slip length prediction with machine learning tools. Sci. Rep. 2021, 11, 12520. [Google Scholar] [CrossRef]
- Scherl, I.; Strom, B.; Shang, J.K.; Williams, O.; Polagye, B.L.; Brunton, S.L. Robust principal component analysis for modal decomposition of corrupt fluid flows. Phys. Rev. Fluids 2020, 5, 054401. [Google Scholar] [CrossRef]
- Schmid, P.J. Dynamic Mode Decomposition and Its Variants. Annu. Rev. Fluid Mech. 2022, 54, 225–254. [Google Scholar] [CrossRef]
- Deo, I.K.; Jaiman, R. Predicting waves in fluids with deep neural network. Phys. Fluids 2022, 34, 067108. [Google Scholar] [CrossRef]
- M S, V.M.; Menon, V. Measuring Viscosity of Fluids: A Deep Learning Approach Using a CNN-RNN Architecture. In Proceedings of the First International Conference on AI-ML Systems, AIML Systems ’21, Bangalore, India, 21–23 October 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Stergiou, K.; Ntakolia, C.; Varytis, P.; Koumoulos, E.; Karlsson, P.; Moustakidis, S. Enhancing property prediction and process optimization in building materials through machine learning: A review. Comput. Mater. Sci. 2023, 220, 112031. [Google Scholar] [CrossRef]
- Hadavimoghaddam, F.; Ostadhassan, M.; Sadri, M.A.; Bondarenko, T.; Chebyshev, I.; Semnani, A. Prediction of Water Saturation from Well Log Data by Machine Learning Algorithms: Boosting and Super Learner. J. Mar. Sci. Eng. 2021, 9, 666. [Google Scholar] [CrossRef]
- Guo, K.; Yang, Z.; Yu, C.H.; Buehler, M.J. Artificial intelligence and machine learning in design of mechanical materials. Mater. Horiz. 2021, 8, 1153–1172. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, D.; Zeng, J. Deep-learning of parametric partial differential equations from sparse and noisy data. Phys. Fluids 2021, 33, 037132. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems; Pereira, F., Burges, C., Bottou, L., Weinberger, K., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; Volume 25. [Google Scholar]
- Farabet, C.; Couprie, C.; Najman, L.; LeCun, Y. Learning Hierarchical Features for Scene Labeling. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1915–1929. [Google Scholar] [CrossRef] [Green Version]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Jiang, Y.G.; Wu, Z.; Wang, J.; Xue, X.; Chang, S.F. Exploiting Feature and Class Relationships in Video Categorization with Regularized Deep Neural Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 352–364. [Google Scholar] [CrossRef]
- Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.r.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Process. Mag. 2012, 29, 82–97. [Google Scholar] [CrossRef]
- Leung, M.K.K.; Xiong, H.Y.; Lee, L.J.; Frey, B.J. Deep learning of the tissue-regulated splicing code. Bioinformatics 2014, 30, i121–i129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callaham, J.L.; Maeda, K.; Brunton, S.L. Robust flow reconstruction from limited measurements via sparse representation. Phys. Rev. Fluids 2019, 4, 103907. [Google Scholar] [CrossRef] [Green Version]
- Tohme, T.; Liu, D.; Youcef-Toumi, K. GSR: A Generalized Symbolic Regression Approach. arXiv 2022, arXiv:2205.15569. [Google Scholar] [CrossRef]
- Angelis, D.; Sofos, F.; Karakasidis, T.E. Artificial Intelligence in Physical Sciences: Symbolic Regression Trends and Perspectives. Arch. Comput. Methods Eng. 2023, 30, 3845–3865. [Google Scholar] [CrossRef] [PubMed]
- Rider, W.; Kamm, J.; Weirs, V. Verification, Validation, and Uncertainty Quantification for Coarse Grained Simulation. In Coarse Grained Simulation and Turbulent Mixing; Cambridge University Press: Cambridge, UK, 2016; pp. 168–189. [Google Scholar]
- Drikakis, D.; Kwak, D.; Kiris, C. Computational Aerodynamics: Advances and Challenges. Aeronaut. J. 2016, 120, 13–36. [Google Scholar] [CrossRef] [Green Version]
- Norton, T.; Sun, D.W. Computational fluid dynamics (CFD) ‚Äì an effective and efficient design and analysis tool for the food industry: A review. Trends Food Sci. Technol. 2006, 17, 600–620. [Google Scholar] [CrossRef]
- Kobayashi, T.; Tsubokura, M. CFD Application in Automotive Industry. In Notes on Numerical Fluid Mechanics and Multidisciplinary Design; Hirschel, E.H., Krause, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 100. [Google Scholar]
- Bai, K.; Fan, H.; Zhang, H.; Zhou, F.; Tao, X. Real Time Torque and Drag Analysis by Combining of Physical Model and Machine Learning Method. In Proceedings of the 10th Unconventional Resources Technology Conference, Houston, TX, USA, 20–22 June 2022. [Google Scholar] [CrossRef]
- Bikmukhametov, T.; Jäschke, J. First Principles and Machine Learning Virtual Flow Metering: A Literature Review. J. Pet. Sci. Eng. 2020, 184, 106487. [Google Scholar] [CrossRef]
- Gul, S. Machine learning applications in drilling fluid engineering: A review. In Proceedings of the ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering, Online, 21–30 June 2021; Volume 10. [Google Scholar] [CrossRef]
- Belazreg, L.; Mahmood, S.; Aulia, A. Random forest algorithm for CO2 water alternating gas incremental recovery factor prediction. Int. J. Adv. Sci. Technol. 2020, 29, 168–188. [Google Scholar]
- Khan, A.; BinZiad, A.; Al Subaii, A. Boosting algorithm choice in predictive machine learning models for fracturing applications. In Proceedings of the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Virtual, 12–14 October 2021. [Google Scholar] [CrossRef]
- Olukoga, T.; Feng, Y. Practical Machine-Learning Applications in Well-Drilling Operations. SPE Drill. Complet. 2021, 36, 849–867. [Google Scholar] [CrossRef]
- Zhong, R.; Salehi, C.; Johnson, R. Machine learning for drilling applications: A review. J. Nat. Gas Sci. Eng. 2022, 108, 104807. [Google Scholar] [CrossRef]
- Agwu, O.; Akpabio, J.; Ekpenyong, M.; Inyang, U.; Asuquo, D.; Eyoh, I.; Adeoye, O. A critical review of drilling mud rheological models. J. Pet. Sci. Eng. 2021, 203, 108659. [Google Scholar] [CrossRef]
- Anifowose, F.; Mezghani, M.; Badawood, S.; Ismail, J. Contributions of machine learning to quantitative and real-time mud gas data analysis: A critical review. Appl. Comput. Geosci. 2022, 16, 100095. [Google Scholar] [CrossRef]
- Arief, H.A.; Wiktorski, T.; Thomas, P.J. A survey on distributed fibre optic sensor data modelling techniques and machine learning algorithms for multiphase fluid flow estimation. Sensors 2021, 21, 2801. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Zhang, W. Data-driven and physical-based identification of partial differential equations for multivariable system. Theor. Appl. Mech. Lett. 2022, 12, 100334. [Google Scholar] [CrossRef]
- Chen, G.; Zhu, G.; Zhu, Y. Advances in safety assessment and risk management for deepwater oil and gas exploitation. J. China Univ. Pet. (Ed. Nat. Sci.) 2019, 43, 136–145. [Google Scholar] [CrossRef]
- Guo, J.; Lu, Q.; He, Y. Key issues and explorations in shale gas fracturing. Nat. Gas Ind. B 2023, 10, 183–197. [Google Scholar] [CrossRef]
- Mata, C.; Saputelli, L.; Badmaev, D.; Zhao, W.; Mohan, R.; Gönczi, D.; Schweiger, A.; Manasipov, R.; Schweiger, G.; Krenn, L.; et al. Automated Reservoir Management Workflows to Identify Candidates and Rank Opportunities for Production Enhancement and Cost Optimization in a Giant Field in Offshore Abu Dhabi. In Proceedings of the Offshore Technology Conference, Virtual and Houston, TX, USA, 16–19 August 2021. [Google Scholar] [CrossRef]
- Mawlod, A.; Memon, A.; Varotsis, N.; Gaganis, V.; Anastasiadou, V.; Nighswander, J.; Al Shuaibi, M. Reducing Composition Characterization Uncertainties Through Advanced Machine Learning (ML) Techniques—Data Clustering. In Proceedings of the ADIPEC, Abu Dhabi, United Arab Emirates, 31 October–3 November 2022. [Google Scholar] [CrossRef]
- Mehmani, Y.; Anderson, T.; Wang, Y.; Aryana, S.; Battiato, I.; Tchelepi, H.; Kovscek, A. Striving to translate shale physics across ten orders of magnitude: What have we learned? Earth-Sci. Rev. 2021, 223, 103848. [Google Scholar] [CrossRef]
- Ojeda, L.; Olubode, M.; Karami, H.; Podio, T. Application of Machine Learning to Evaluate the Performances of Various Downhole Centrifugal Separator Types in Oil and Gas Production Systems. In Proceedings of the SPE Oklahoma City Oil and Gas Symposium, Oklahoma City, OK, USA, 17–19 April 2023. [Google Scholar] [CrossRef]
- Osarogiagbon, A.; Khan, F.; Venkatesan, R.; Gillard, P. Review and analysis of supervised machine learning algorithms for hazardous events in drilling operations. Process. Saf. Environ. Prot. 2021, 147, 367–384. [Google Scholar] [CrossRef]
- Syed, F.; AlShamsi, A.; Dahaghi, A.; Neghabhan, S. Application of ML & AI to model petrophysical and geomechanical properties of shale reservoirs – A systematic literature review. Petroleum 2022, 8, 158–166. [Google Scholar] [CrossRef]
- Dindoruk, B.; Ratnakar, R.; He, J. Review of recent advances in petroleum fluid properties and their representation. J. Nat. Gas Sci. Eng. 2020, 83, 103541. [Google Scholar] [CrossRef]
- Buzzicotti, M. Data reconstruction for complex flows using AI: Recent progress, obstacles, and perspectives. EPL 2023, 142, 23001. [Google Scholar] [CrossRef]
- Duraisamy, K. Perspectives on machine learning-augmented Reynolds-averaged and large eddy simulation models of turbulence. Phys. Rev. Fluids 2021, 6, 050504. [Google Scholar] [CrossRef]
- Rabault, J.; Ren, F.; Zhang, W.; Tang, H.; Xu, H. Deep reinforcement learning in fluid mechanics: A promising method for both active flow control and shape optimization. J. Hydrodyn. 2020, 32, 234–246. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, X. Data-driven turbulence modelling based on gene-expression programming. Lixue Xuebao/Chin. J. Theor. Appl. Mech. 2021, 53, 2640–2655. [Google Scholar] [CrossRef]
- Hammond, J.; Pepper, N.; Montomoli, F.; Michelassi, V. Machine Learning Methods in CFD for Turbomachinery: A Review. Int. J. Turbomach. Propuls. Power 2022, 7, 16. [Google Scholar] [CrossRef]
- Sharma, P.; Chung, W.T.; Akoush, B.; Ihme, M. A Review of Physics-Informed Machine Learning in Fluid Mechanics. Energies 2023, 16, 2343. [Google Scholar] [CrossRef]
- Vadyala, S.; Betgeri, S.; Matthews, J.; Matthews, E. A review of physics-based machine learning in civil engineering. Results Eng. 2022, 13, 100316. [Google Scholar] [CrossRef]
- Andrés-Pérez, E.; Paulete-Perianezez, C. On the application of surrogate regression models for aerodynamic coefficient prediction. Complex Intell. Syst. 2021, 7, 1991–2021. [Google Scholar] [CrossRef]
- Ma, L.; Guo, Q.; Li, X.; Xu, S.; Zhou, J.; Ye, M.; Liu, Z. Drag correlations for flow past monodisperse arrays of spheres and porous spheres based on symbolic regression: Effects of permeability. Chem. Eng. J. 2022, 445, 136653. [Google Scholar] [CrossRef]
- Panchigar, D.; Kar, K.; Shukla, S.; Mathew, R.; Chadha, U.; Selvaraj, S. Machine learning-based CFD simulations: A review, models, open threats, and future tactics. Neural Comput. Appl. 2022, 34, 21677–21700. [Google Scholar] [CrossRef]
- Panda, J. A review of pressure strain correlation modeling for Reynolds stress models. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 234, 1528–1544. [Google Scholar] [CrossRef]
- Razdan, S.; Shah, S. Optimization of Fluid Modeling and Flow Control Processes Using Machine Learning: A Brief Review. In Advances in Mechanical Engineering and Material Science; Lecture Notes in Mechanical Engineering; Springer: Singapore, 2022; pp. 63–85. [Google Scholar] [CrossRef]
- Singh, S.; Podder, P.; Russo, M.; Henry, C.; Cinti, S. Tailored point-of-care biosensors for liquid biopsy in the field of oncology. Lab Chip 2022, 71, 44–61. [Google Scholar] [CrossRef]
- Yu, J.; Yan, C.; Guo, M. Non-intrusive reduced-order modeling for fluid problems: A brief review. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2019, 233, 5896–5912. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Y.; Wang, H.; Yang, X. Data-driven simulation in fluids animation: A survey. Virtual Real. Intell. Hardw. 2021, 3, 87–104. [Google Scholar] [CrossRef]
- Gibou, F.; Hyde, D.; Fedkiw, R. Sharp interface approaches and deep learning techniques for multiphase flows. J. Comput. Phys. 2019, 380, 442–463. [Google Scholar] [CrossRef]
- Alhaddad, A.; Aly, H.; Gad, H.; Al-Ali, A.; Sadasivuni, K.; Cabibihan, J.J.; Malik, R. Sense and Learn: Recent Advances in Wearable Sensing and Machine Learning for Blood Glucose Monitoring and Trend-Detection. Front. Bioeng. Biotechnol. 2022, 10, 876672. [Google Scholar] [CrossRef]
- Gerraty, R.; Provost, A.; Li, L.; Wagner, E.; Haas, M.; Lancashire, L. Machine learning within the Parkinson’s progression markers initiative: Review of the current state of affairs. Front. Aging Neurosci. 2023, 15, 1076657. [Google Scholar] [CrossRef]
- He, B.; Lu, Q.; Yang, Q.; Luo, J.; Wang, Z. Taylor Genetic Programming for Symbolic Regression. arXiv 2022, arXiv:2205.09751. [Google Scholar] [CrossRef]
- Mir, A.; Sarwar, A. Artificial intelligence-based techniques for analysis of body cavity fluids: A review. Artif. Intell. Rev. 2021, 54, 4019–4061. [Google Scholar] [CrossRef]
- Moradi, H.; Al-Hourani, A.; Concilia, G.; Khoshmanesh, F.; Nezami, F.; Needham, S.; Baratchi, S.; Khoshmanesh, K. Recent developments in modeling, imaging, and monitoring of cardiovascular diseases using machine learning. Biophys. Rev. 2023, 15, 19–33. [Google Scholar] [CrossRef]
- Arzani, A.; Dawson, S. Data-driven cardiovascular flow modelling: Examples and opportunities. J. R. Soc. Interface 2021, 18, 20200802. [Google Scholar] [CrossRef] [PubMed]
- del Real Mata, C.; Jeanne, O.; Jalali, M.; Lu, Y.; Mahshid, S. Nanostructured-Based Optical Readouts Interfaced with Machine Learning for Identification of Extracellular Vesicles. Adv. Healthc. Mater. 2023, 12, 2202123. [Google Scholar] [CrossRef]
- Balana, C.; Castañer, S.; Carrato, C.; Moran, T.; Lopez-Paradís, A.; Domenech, M.; Hernandez, A.; Puig, J. Preoperative Diagnosis and Molecular Characterization of Gliomas with Liquid Biopsy and Radiogenomics. Front. Neurol. 2022, 13, 865171. [Google Scholar] [CrossRef] [PubMed]
- Benton, S.; Tesche, C.; De Cecco, C.; Duguay, T.; Schoepf, U.; Bayer, R. Noninvasive Derivation of Fractional Flow Reserve From Coronary Computed Tomographic Angiography: A Review. J. Thorac. Imaging 2018, 33, 88–96. [Google Scholar] [CrossRef]
- Bhattacharjee, G.; Gohil, N.; Shukla, M.; Sharma, S.; Mani, I.; Pandya, A.; Chu, D.T.; Bui, N.; Thi, Y.V.; Khambhati, K.; et al. Exploring the potential of microfluidics for next-generation drug delivery systems. OpenNano 2023, 12, 100150. [Google Scholar] [CrossRef]
- Bratulic, S.; Gatto, F.; Nielsen, J. The Translational Status of Cancer Liquid Biopsies. Regen. Eng. Transl. Med. 2021, 7, 312–352. [Google Scholar] [CrossRef] [Green Version]
- Gottlieb, E.; Samuel, M.; Bonventre, J.; Celi, L.; Mattie, H. Machine Learning for Acute Kidney Injury Prediction in the Intensive Care Unit. Adv. Chronic Kidney Dis. 2022, 29, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Manialawy, Y.; Wheeler, M.; Cox, B. Unbiased data analytic strategies to improve biomarker discovery in precision medicine. Drug Discov. Today 2019, 24, 1735–1748. [Google Scholar] [CrossRef]
- Ko, J.; Baldassano, S.; Loh, P.L.; Kording, K.; Litt, B.; Issadore, D. Machine learning to detect signatures of disease in liquid biopsies-a user’s guide. Lab Chip 2018, 18, 395–405. [Google Scholar] [CrossRef]
- Sandys, V.; Sexton, D.; O’Seaghdha, C. Artificial intelligence and digital health for volume maintenance in hemodialysis patients. Hemodial. Int. 2022, 26, 480–495. [Google Scholar] [CrossRef]
- Serafim, M.; dos Santos Júnior, V.; Gertrudes, J.; Maltarollo, V.; Honorio, K. Machine learning techniques applied to the drug design and discovery of new antivirals: A brief look over the past decade. Expert Opin. Drug Discov. 2021, 16, 961–975. [Google Scholar] [CrossRef] [PubMed]
- Sreedharan, S.; Zekry, S.; Leipsic, J.; Brown, R. Updates on Fractional Flow Reserve Derived by CT (FFRCT). Curr. Treat. Options Cardiovasc. Med. 2020, 22, 17. [Google Scholar] [CrossRef]
- Tasoglu, S. Toilet-based continuous health monitoring using urine. Nat. Rev. Urol. 2022, 19, 219–230. [Google Scholar] [CrossRef]
- Cassola, S.; Duhovic, M.; Schmidt, T.; May, D. Machine learning for polymer composites process simulation—A review. Compos. Part B Eng. 2022, 246, 110208. [Google Scholar] [CrossRef]
- Yu, C.; Bi, X.; Fan, Y. Deep learning for fluid velocity field estimation: A review. Ocean. Eng. 2023, 271, 113693. [Google Scholar] [CrossRef]
- Jirasek, F.; Hasse, H. Machine Learning of Thermophysical Properties. Fluid Phase Equilibria 2021, 549, 113206. [Google Scholar] [CrossRef]
- Desgranges, C.; Delhommelle, J. Towards a machine learned thermodynamics: Exploration of free energy landscapes in molecular fluids, biological systems and for gas storage and separation in metal-organic frameworks. Mol. Syst. Des. Eng. 2021, 6, 52–65. [Google Scholar] [CrossRef]
- Ahmadi, M.; Kumar, R.; Assad, M.; Ngo, P. Applications of machine learning methods in modeling various types of heat pipes: A review. J. Therm. Anal. Calorim. 2021, 146, 2333–2341. [Google Scholar] [CrossRef]
- Souayeh, B.; Bhattacharyya, S.; Hdhiri, N.; Alam, M. Heat and fluid flow analysis and ann-based prediction of a novel spring corrugated tape. Sustainability 2021, 13, 3023. [Google Scholar] [CrossRef]
- Yang, B.; Zhu, X.; Wei, B.; Liu, M.; Li, Y.; Lv, Z.; Wang, F. Computer Vision and Machine Learning Methods for Heat Transfer and Fluid Flow in Complex Structural Microchannels: A Review. Energies 2023, 16, 1500. [Google Scholar] [CrossRef]
- Koutsoukos, S.; Philippi, F.; Malaret, F.; Welton, T. A review on machine learning algorithms for the ionic liquid chemical space. Chem. Sci. 2021, 12, 6820–6843. [Google Scholar] [CrossRef] [PubMed]
- Upot, N.; Fazle Rabbi, K.; Khodakarami, S.; Ho, J.; Kohler Mendizabal, J.; Miljkovic, N. Advances in micro and nanoengineered surfaces for enhancing boiling and condensation heat transfer: A review. Nanoscale Adv. 2022, 5, 1232–1270. [Google Scholar] [CrossRef]
- Sofos, F.; Stavrogiannis, C.; Exarchou-Kouveli, K.K.; Akabua, D.; Charilas, G.; Karakasidis, T.E. Current Trends in Fluid Research in the Era of Artificial Intelligence: A Review. Fluids 2022, 7, 116. [Google Scholar] [CrossRef]
- Adun, H.; Wole-Osho, I.; Okonkwo, E.; Kavaz, D.; Dagbasi, M. A critical review of specific heat capacity of hybrid nanofluids for thermal energy applications. J. Mol. Liq. 2021, 340, 116890. [Google Scholar] [CrossRef]
- Hemmati-Sarapardeh, A.; Varamesh, A.; Nait Amar, M.; Husein, M.; Dong, M. On the evaluation of thermal conductivity of nanofluids using advanced intelligent models. Int. Commun. Heat Mass Transf. 2020, 118, 104825. [Google Scholar] [CrossRef]
- Gonçalves, I.; Souza, R.; Coutinho, G.; Miranda, J.; Moita, A.; Pereira, J.; Moreira, A.; Lima, R. Thermal conductivity of nanofluids: A review on prediction models, controversies and challenges. Appl. Sci. 2021, 11, 2525. [Google Scholar] [CrossRef]
- Ma, T.; Guo, Z.; Lin, M.; Wang, Q. Recent trends on nanofluid heat transfer machine learning research applied to renewable energy. Renew. Sustain. Energy Rev. 2021, 138, 110494. [Google Scholar] [CrossRef]
- Sharma, P.; Said, Z.; Kumar, A.; Nižetić, S.; Pandey, A.; Hoang, A.; Huang, Z.; Afzal, A.; Li, C.; Le, A.; et al. Recent Advances in Machine Learning Research for Nanofluid-Based Heat Transfer in Renewable Energy System. Energy Fuels 2022, 36, 6626–6658. [Google Scholar] [CrossRef]
- Wang, H.; Chen, X. A Comprehensive Review of Predicting the Thermophysical Properties of Nanofluids Using Machine Learning Methods. Ind. Eng. Chem. Res. 2022, 61, 14711–14730. [Google Scholar] [CrossRef]
- Fani, M.; Pourafshary, P.; Mostaghimi, P.; Mosavat, N. Application of microfluidics in chemical enhanced oil recovery: A review. Fuel 2022, 315, 123225. [Google Scholar] [CrossRef]
- Galan, E.; Zhao, H.; Wang, X.; Dai, Q.; Huck, W.; Ma, S. Intelligent Microfluidics: The Convergence of Machine Learning and Microfluidics in Materials Science and Biomedicine. Matter 2020, 3, 1893–1922. [Google Scholar] [CrossRef]
- Tsai, H.F.; Podder, S.; Chen, P.Y. Microsystem Advances through Integration with Artificial Intelligence. Micromachines 2023, 14, 826. [Google Scholar] [CrossRef]
- Gao, J.; Hu, Z.; Yang, Q.; Liang, X.; Wu, H. Fluid flow and heat transfer in microchannel heat sinks: Modelling review and recent progress. Therm. Sci. Eng. Prog. 2022, 29, 113096. [Google Scholar] [CrossRef]
- Srikanth, S.; Dubey, S.; Javed, A.; Goel, S. Droplet based microfluidics integrated with machine learning. Sens. Actuators A Phys. 2021, 332, 113096. [Google Scholar] [CrossRef]
- Zhong, J.; Riordon, J.; Wu, T.; Edwards, H.; Wheeler, A.; Pardee, K.; Aspuru-Guzik, A.; Sinton, D. When robotics met fluidics. Lab Chip 2020, 20, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Zerouaoui, J.; Alaoui, A.; Ettaki, B.; Chakir, E. Assessing the Improvements Brought by Artificial Intelligence on the Prediction of Aerodynamic Coefficients. In Artificial Intelligence and Smart Environment; Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2023; Volume 635, pp. 254–263. [Google Scholar] [CrossRef]
- Kou, J.; Zhang, W. Data-driven modeling for unsteady aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 2021, 125, 100725. [Google Scholar] [CrossRef]
- Le Clainche, S.; Ferrer, E.; Gibson, S.; Cross, E.; Parente, A.; Vinuesa, R. Improving aircraft performance using machine learning: A review. Aerosp. Sci. Technol. 2023, 138, 108354. [Google Scholar] [CrossRef]
- Li, J.; Du, X.; Martins, J. Machine learning in aerodynamic shape optimization. Prog. Aerosp. Sci. 2022, 134, 100849. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, B.; Zhang, Q.; Pan, L.; Sun, S. Wind engineering for high-rise buildings: A review. Wind. Struct. Int. J. 2021, 32, 249–265. [Google Scholar] [CrossRef]
- Tahmasebi, P.; Kamrava, S.; Bai, T.; Sahimi, M. Machine learning in geo- and environmental sciences: From small to large scale. Adv. Water Resour. 2020, 142, 103619. [Google Scholar] [CrossRef]
- Nallakukkala, S.; Lal, B. Modeling of seawater desalination by gas hydrate method. In Gas Hydrate in Water Treatment: Technological, Economic, and Industrial Aspects; Wiley: Hoboken, NJ, USA, 2022; pp. 77–111. [Google Scholar] [CrossRef]
- Irschick, D.; Christiansen, F.; Hammerschlag, N.; Martin, J.; Madsen, P.; Wyneken, J.; Brooks, A.; Gleiss, A.; Fossette, S.; Siler, C.; et al. 3D visualization processes for recreating and studying organismal form. iScience 2022, 25, 104867. [Google Scholar] [CrossRef] [PubMed]
- Brookfield, A.; Hansen, A.; Sullivan, P.; Czuba, J.; Kirk, M.; Li, L.; Newcomer, M.; Wilkinson, G. Predicting algal blooms: Are we overlooking groundwater? Sci. Total Environ. 2021, 769, 144442. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yuan, Y.; Shen, H.B. Symbolic Expression Transformer: A Computer Vision Approach for Symbolic Regression. arXiv 2022, arXiv:2205.11798. [Google Scholar] [CrossRef]
- Singh, N.; Yadav, M.; Singh, V.; Padhiyar, H.; Kumar, V.; Bhatia, S.; Show, P.L. Artificial intelligence and machine learning-based monitoring and design of biological wastewater treatment systems. Bioresour. Technol. 2023, 369, 128486. [Google Scholar] [CrossRef]
- Umenweke, G.; Afolabi, I.; Epelle, E.; Okolie, J. Machine learning methods for modeling conventional and hydrothermal gasification of waste biomass: A review. Bioresour. Technol. Rep. 2022, 17, 100976. [Google Scholar] [CrossRef]
- Zaghloul, M.; Achari, G. A review of mechanistic and data-driven models of aerobic granular sludge. J. Environ. Chem. Eng. 2022, 10, 107500. [Google Scholar] [CrossRef]
- Chandra, D.; Vishal, V. A critical review on pore to continuum scale imaging techniques for enhanced shale gas recovery. Earth-Sci. Rev. 2021, 217, 103638. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Chen, X.; Li, Y.; Tang, W. A Spatially Coupled Data-Driven Approach for Lithology/Fluid Prediction. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5526–5534. [Google Scholar] [CrossRef]
- Viswanathan, H.; Ajo-Franklin, J.; Birkholzer, J.; Carey, J.; Guglielmi, Y.; Hyman, J.; Karra, S.; Pyrak-Nolte, L.; Rajaram, H.; Srinivasan, G.; et al. From Fluid Flow to Coupled Processes in Fractured Rock: Recent Advances and New Frontiers. Rev. Geophys. 2022, 60, e2021RG000744. [Google Scholar] [CrossRef]
- Bhattacharya, S. Summarized Applications of Machine Learning in Subsurface Geosciences. In Primer on Machine Learning in Subsurface Geosciences; SpringerBriefs in Petroleum Geoscience & Engineering; Springer: Cham, Switzerland, 2021; pp. 123–165. [Google Scholar] [CrossRef]
- Khan, H.; Srivastav, A.; Kumar Mishra, A.; Anh Tran, T. Machine learning methods for estimating permeability of a reservoir. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 2118–2131. [Google Scholar] [CrossRef]
- Wu, Q.; Guo, Y.; Liu, Y.; Wang, G. Review on the cavitating flow-induced vibrations. Kongqi Donglixue Xuebao/Acta Aerodyn. Sin. 2020, 38, 746–760. [Google Scholar] [CrossRef]
- Lopes, N.; Chao, Y.; Dasarla, V.; Sullivan, N.; Ricklick, M.; Boetcher, S. Comprehensive Review of Heat Transfer Correlations of Supercritical CO2in Straight Tubes Near the Critical Point: A Historical Perspective. J. Heat Transf. 2022, 144, 120801. [Google Scholar] [CrossRef]
- Mostafa, K.; Zisis, I.; Moustafa, M. Machine Learning Techniques in Structural Wind Engineering: A State-of-the-Art Review. Appl. Sci. 2022, 12, 5232. [Google Scholar] [CrossRef]
- Drikakis, D.; Dbouk, T. The Role of Computational Science in Wind and Solar Energy: A Critical Review. Energies 2022, 15, 9609. [Google Scholar] [CrossRef]
- Maksymov, I.; Huy Nguyen, B.; Suslov, S. Biomechanical Sensing Using Gas Bubbles Oscillations in Liquids and Adjacent Technologies: Theory and Practical Applications. Biosensors 2022, 12, 624. [Google Scholar] [CrossRef]
- Du, Y.H.; Wang, M.Y.; Yang, L.H.; Tong, L.L.; Guo, D.S.; Ji, X.J. Optimization and Scale-Up of Fermentation Processes Driven by Models. Bioengineering 2022, 9, 473. [Google Scholar] [CrossRef]
- Zottl, A.; Stark, H. Modeling Active Colloids: From Active Brownian Particles to Hydrodynamic and Chemical Fields. Annu. Rev. Condens. Matter Phys. 2023, 14, 109–127. [Google Scholar] [CrossRef]
- Zou, Y.; Chu, Z.; Guo, J.; Liu, S.; Ma, X.; Guo, J. Minimally invasive electrochemical continuous glucose monitoring sensors: Recent progress and perspective. Biosens. Bioelectron. 2023, 225, 115103. [Google Scholar] [CrossRef]
- Lv, H.; Zhang, S.; Sun, Q.; Chen, R.; Zhang, W. The Dynamic Models, Control Strategies and Applications for Magnetorheological Damping Systems: A Systematic Review. J. Vib. Eng. Technol. 2021, 9, 131–147. [Google Scholar] [CrossRef]
- Anush, C.; Yashwanth, K.; Shashank, S.; Venkat Reddy, M.; Kumar, A. Bottle Line Detection using Digital Image Processing with Machine Learning. J. Phys. Conf. Ser. 2021, 1998, 012033. [Google Scholar] [CrossRef]
- Akavalappil, V.; Radhakrishnan, T. Comparison of current state of control valve stiction detection and quantification techniques. Trans. Inst. Meas. Control 2022, 44, 562–579. [Google Scholar] [CrossRef]
- Vowinckel, B. Incorporating grain-scale processes in macroscopic sediment transport models: A review and perspectives for environmental and geophysical applications. Acta Mech. 2021, 232, 2023–2050. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Chang, Q.; Zhao, P.; Wang, J.; Ge, W. Numerical simulation of fluidization: Driven by challenges. Powder Technol. 2023, 414, 118092. [Google Scholar] [CrossRef]
- Asproulis, N.; Drikakis, D. Nanoscale materials modelling using neural networks. J. Comput. Theor. Nanosci. 2009, 6, 514–518. [Google Scholar] [CrossRef]
- Asproulis, N.; Drikakis, D. An artificial neural network-based multiscale method for hybrid atomistic-continuum simulations. Microfluid. Nanofluid. 2013, 15, 559–574. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Bai, J.; Al-Sabaawi, A.; Santamaría, J.; Albahri, A.; Al-dabbagh, B.; Fadhel, M.; Manoufali, M.; Zhang, J.; Al-Timemy, A.; et al. A survey on deep learning tools dealing with data scarcity: Definitions, challenges, solutions, tips, and applications. J. Big Data 2023, 10, 46. [Google Scholar] [CrossRef]
- Goh, G.D.; Sing, S.L.; Yeong, W.Y. A review on machine learning in 3D printing: Applications, potential, and challenges. Artif. Intell. Rev. 2021, 54, 63–94. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Verma, M.K.; Bhattacharya, A. Predictions of Reynolds and Nusselt numbers in turbulent convection using machine-learning models. Phys. Fluids 2022, 34, 025102. [Google Scholar] [CrossRef]
- Md, A.Q.; Kulkarni, S.; Joshua, C.J.; Vaichole, T.; Mohan, S.; Iwendi, C. Enhanced Preprocessing Approach Using Ensemble Machine Learning Algorithms for Detecting Liver Disease. Biomedicines 2023, 11, 581. [Google Scholar] [CrossRef]
- Mahdaviara, M.; Sharifi, M.; Bakhshian, S.; Shokri, N. Prediction of spontaneous imbibition in porous media using deep and ensemble learning techniques. Fuel 2022, 329, 125349. [Google Scholar] [CrossRef]
- Rahil, M.; Anoop, B.N.; Girish, G.N.; Kothari, A.R.; Koolagudi, S.G.; Rajan, J. A Deep Ensemble Learning-Based CNN Architecture for Multiclass Retinal Fluid Segmentation in OCT Images. IEEE Access 2023, 11, 17241–17251. [Google Scholar] [CrossRef]
- Cai, S.; Mao, Z.; Wang, Z.; Yin, M.; Karniadakis, G.E. Physics-informed neural networks (PINNs) for fluid mechanics: A review. Acta Mech. Sin. 2021, 37, 1727–1738. [Google Scholar] [CrossRef]
- Raissi, M.; Karniadakis, G.E. Hidden physics models: Machine learning of nonlinear partial differential equations. J. Comput. Phys. 2018, 357, 125–141. [Google Scholar] [CrossRef] [Green Version]
- Raissi, M.; Wang, Z.; Triantafyllou, M.S.; Karniadakis, G.E. Deep learning of vortex-induced vibrations. J. Fluid Mech. 2019, 861, 119–137. [Google Scholar] [CrossRef] [Green Version]
- Agostini, L. Exploration and prediction of fluid dynamical systems using auto-encoder technology. Phys. Fluids 2020, 32, 067103. [Google Scholar] [CrossRef]
- Thornber, B.; Mosedale, A.; Drikakis, D. On the implicit large eddy simulations of homogeneous decaying turbulence. J. Comput. Phys. 2007, 226, 1902–1929. [Google Scholar] [CrossRef]
- Jiménez, J. Near-wall turbulence. Phys. Fluids 2013, 25, 101302. [Google Scholar] [CrossRef] [Green Version]
- Drikakis, D. Advances in turbulent flow computations using high-resolution methods. Prog. Aerosp. Sci. 2003, 39, 405–424. [Google Scholar] [CrossRef]
- Kobayashi, H.; Matsumoto, E.; Fukushima, N.; Tanahashi, M.; Miyauchi, T. Statistical properties of the local structure of homogeneous isotropic turbulence and turbulent channel flows. J. Turbul. 2011, 12, N12. [Google Scholar] [CrossRef]
- Duraisamy, K.; Iaccarino, G.; Xiao, H. Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 2019, 51, 357–377. [Google Scholar] [CrossRef] [Green Version]
- Giralt, F.; Arenas, A.; Ferre-Gine, J.; Rallo, R.; Kopp, G. The simulation and interpretation of free turbulence with a cognitive neural system. Phys. Fluids 2000, 12, 1826–1835. [Google Scholar] [CrossRef] [Green Version]
- Milano, M.; Koumoutsakos, P. Neural network modeling for near wall turbulent flow. J. Comput. Phys. 2002, 182, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Chang, F.J.; Yang, H.C.; Lu, J.Y.; Hong, J.H. Neural network modelling for mean velocity and turbulence intensities of steep channel flows. Hydrol. Process. Int. J. 2008, 22, 265–274. [Google Scholar] [CrossRef]
- McConkey, R.; Yee, E.; Lien, F.S. A curated dataset for data-driven turbulence modelling. Sci. Data 2021, 8, 255. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, F.; Mazari, A.J.; Cinnella, P.; Gallinari, P. AirfRANS: High Fidelity Computational Fluid Dynamics Dataset for Approximating Reynolds-Averaged Navier-Stokes Solutions. arXiv 2023, arXiv:2212.07564. [Google Scholar]
- Ribeiro, M.D.; Rehman, A.; Ahmed, S.; Dengel, A. DeepCFD: Efficient Steady-State Laminar Flow Approximation with Deep Convolutional Neural Networks. arXiv 2021, arXiv:2004.08826. [Google Scholar]
- Xiao, H.; Wu, J.L.; Wang, J.X.; Sun, R.; Roy, C. Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier–Stokes simulations: A data-driven, physics-informed Bayesian approach. J. Comput. Phys. 2016, 324, 115–136. [Google Scholar] [CrossRef] [Green Version]
- Tracey, B.D.; Duraisamy, K.; Alonso, J.J. A machine learning strategy to assist turbulence model development. In Proceedings of the 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 5–9 January 2015; p. 1287. [Google Scholar]
- Ling, J.; Kurzawski, A.; Templeton, J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 2016, 807, 155–166. [Google Scholar] [CrossRef]
- Kutz, J.N. Deep learning in fluid dynamics. J. Fluid Mech. 2017, 814, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Cheung, S.H.; Oliver, T.A.; Prudencio, E.E.; Prudhomme, S.; Moser, R.D. Bayesian uncertainty analysis with applications to turbulence modeling. Reliab. Eng. Syst. Saf. 2011, 96, 1137–1149. [Google Scholar] [CrossRef]
- Edeling, W.; Cinnella, P.; Dwight, R.P.; Bijl, H. Bayesian estimates of parameter variability in the k–ε turbulence model. J. Comput. Phys. 2014, 258, 73–94. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.J.; Duraisamy, K. Machine learning methods for data-driven turbulence modeling. In Proceedings of the 22nd AIAA Computational Fluid Dynamics Conference, Dallas, TX, USA, 22–26 June 2015; p. 2460. [Google Scholar]
- Duraisamy, K.; Zhang, Z.J.; Singh, A.P. New approaches in turbulence and transition modeling using data-driven techniques. In Proceedings of the 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 5–9 January 2015; p. 1284. [Google Scholar]
- Parish, E.J.; Duraisamy, K. A paradigm for data-driven predictive modeling using field inversion and machine learning. J. Comput. Phys. 2016, 305, 758–774. [Google Scholar] [CrossRef] [Green Version]
- Geneva, N.; Zabaras, N. Quantifying model form uncertainty in Reynolds-averaged turbulence models with Bayesian deep neural networks. J. Comput. Phys. 2019, 383, 125–147. [Google Scholar] [CrossRef] [Green Version]
- Sarghini, F.; De Felice, G.; Santini, S. Neural networks based subgrid scale modeling in large eddy simulations. Comput. Fluids 2003, 32, 97–108. [Google Scholar] [CrossRef]
- Moreau, A.; Teytaud, O.; Bertoglio, J.P. Optimal estimation for large-eddy simulation of turbulence and application to the analysis of subgrid models. Phys. Fluids 2006, 18, 105101. [Google Scholar] [CrossRef] [Green Version]
- Beck, A.D.; Flad, D.G.; Munz, C.D. Deep neural networks for data-driven turbulence models. arXiv 2018, arXiv:1806.04482. [Google Scholar]
- Maulik, R.; San, O.; Rasheed, A.; Vedula, P. Subgrid modelling for two-dimensional turbulence using neural networks. J. Fluid Mech. 2019, 858, 122–144. [Google Scholar] [CrossRef] [Green Version]
- Bao, T.; Chen, S.; Johnson, T.T.; Givi, P.; Sammak, S.; Jia, X. Physics guided neural networks for spatio-temporal super-resolution of turbulent flows. In Proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence, PMLR, Eindhoven, The Netherlands, 1–5 August 2022; pp. 118–128, ISSN 2640-3498. [Google Scholar]
- Fukami, K.; Fukagata, K.; Taira, K. Super-resolution reconstruction of turbulent flows with machine learning. J. Fluid Mech. 2019, 870, 106–120. [Google Scholar] [CrossRef] [Green Version]
- Fukami, K.; Hasegawa, K.; Nakamura, T.; Morimoto, M.; Fukagata, K. Model Order Reduction with Neural Networks: Application to Laminar and Turbulent Flows. Comput. Sci. 2021, 2, 467. [Google Scholar] [CrossRef]
- Fukami, K.; Fukagata, K.; Taira, K. Super-resolution analysis via machine learning: A survey for fluid flows. Theor. Comput. Fluid Dyn. 2023. [Google Scholar] [CrossRef]
- Khan, M.I.H.; Sablani, S.S.; Nayak, R.; Gu, Y. Machine learning-based modeling in food processing applications: State of the art. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1409–1438. [Google Scholar] [CrossRef] [PubMed]
- Marcato, A.; Boccardo, G.; Marchisio, D. From Computational Fluid Dynamics to Structure Interpretation via Neural Networks: An Application to Flow and Transport in Porous Media. Ind. Eng. Chem. Res. 2022, 61, 8530–8541. [Google Scholar] [CrossRef]
- Dinesh Kumar, M.; Ameer Ahammad, N.; Raju, C.; Yook, S.J.; Shah, N.A.; Tag, S.M. Response surface methodology optimization of dynamical solutions of Lie group analysis for nonlinear radiated magnetized unsteady wedge: Machine learning approach (gradient descent). Alex. Eng. J. 2023, 74, 29–50. [Google Scholar] [CrossRef]
- Priyadharshini, P.; Archana, M.V.; Ahammad, N.A.; Raju, C.; Yook, S.J.; Shah, N.A. Gradient descent machine learning regression for MHD flow: Metallurgy process. Int. Commun. Heat Mass Transf. 2022, 138, 106307. [Google Scholar] [CrossRef]
- Deng, Z.; He, C.; Liu, Y.; Kim, K.C. Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework. Phys. Fluids 2019, 31, 125111. [Google Scholar] [CrossRef]
- Yousif, M.Z.; Yu, L.; Lim, H.C. Super-resolution reconstruction of turbulent flow fields at various Reynolds numbers based on generative adversarial networks. Phys. Fluids 2022, 34, 015130. [Google Scholar] [CrossRef]
- Brenner, M.P.; Eldredge, J.D.; Freund, J.B. Perspective on machine learning for advancing fluid mechanics. Phys. Rev. Fluids 2019, 4, 100501. [Google Scholar] [CrossRef]
- Dubey, V.; Sharma, A.K.; Pimenov, D.Y. Prediction of Surface Roughness Using Machine Learning Approach in MQL Turning of AISI 304 Steel by Varying Nanoparticle Size in the Cutting Fluid. Lubricants 2022, 10, 81. [Google Scholar] [CrossRef]
- Cuomo, S.; Di Cola, V.S.; Giampaolo, F.; Rozza, G.; Raissi, M.; Piccialli, F. Scientific Machine Learning Through Physics—Informed Neural Networks: Where we are and What’s Next. J. Sci. Comput. 2022, 92, 88. [Google Scholar] [CrossRef]
- Schran, C.; Thiemann, F.L.; Rowe, P.; Muller, E.A.; Marsalek, O.; Michaelides, A. Machine learning potentials for complex aqueous systems made simple. Proc. Natl. Acad. Sci. USA 2021, 118, e2110077118. [Google Scholar] [CrossRef]
- Alam, T.M.; Allers, J.P.; Leverant, C.J.; Harvey, J.A. Symbolic regression development of empirical equations for diffusion in Lennard-Jones fluids. J. Chem. Phys. 2022, 157, 014503. [Google Scholar] [CrossRef] [PubMed]
- L’Heureux, A.; Grolinger, K.; Elyamany, H.F.; Capretz, M.A.M. Machine Learning with Big Data: Challenges and Approaches. IEEE Access 2017, 5, 7776–7797. [Google Scholar] [CrossRef]
- Vinuesa, R.; Brunton, S.L. The Potential of Machine Learning to Enhance Computational Fluid Dynamics. arXiv 2021, arXiv:2110.02085. [Google Scholar]
- Poulinakis, K.; Drikakis, D.; Kokkinakis, I.W.; Spottswood, S.M. Machine-Learning Methods on Noisy and Sparse Data. Mathematics 2023, 11, 236. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drikakis, D.; Sofos, F. Can Artificial Intelligence Accelerate Fluid Mechanics Research? Fluids 2023, 8, 212. https://doi.org/10.3390/fluids8070212
Drikakis D, Sofos F. Can Artificial Intelligence Accelerate Fluid Mechanics Research? Fluids. 2023; 8(7):212. https://doi.org/10.3390/fluids8070212
Chicago/Turabian StyleDrikakis, Dimitris, and Filippos Sofos. 2023. "Can Artificial Intelligence Accelerate Fluid Mechanics Research?" Fluids 8, no. 7: 212. https://doi.org/10.3390/fluids8070212
APA StyleDrikakis, D., & Sofos, F. (2023). Can Artificial Intelligence Accelerate Fluid Mechanics Research? Fluids, 8(7), 212. https://doi.org/10.3390/fluids8070212