Energy and Information Fluxes at Upper Ocean Density Fronts
Abstract
:1. Introduction
2. Computational Model
3. Energy Transfer, Hydrodynamics, and Information Processes
3.1. Energy Transfer and Hydrodynamics Processes
3.2. Information-Related Processes
4. Simulation
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LES | Large Eddy Simulation |
CFD | Computational Fluid Dynamics |
SIMPLE | Semi-Implicit Method for Pressure-Linked Equations |
KSG | Kraskov–Stögbauer–Grassberger |
KL | Kozachenko–Leonenko |
References
- Sullivan, P.P.; McWilliams, J.C. Frontogenesis and frontal arrest of a dense filament in the oceanic surface boundary layer. J. Fluid Mech. 2018, 837, 341–380. [Google Scholar] [CrossRef]
- Nikurashin, M.; Vallis, G.K.; Adcroft, A. Routes to energy dissipation for geostrophic flows in the Southern Ocean. Nat. Geosci. 2012, 6, 48–51. [Google Scholar] [CrossRef]
- Shcherbina, A.Y.; D’Asaro, E.A.; Lee, C.M.; Klymak, J.M.; Molemaker, M.J.; McWilliams, J.C. Statistics of Vertical, Divergence, and Strain in a Developed Submesoscale Turbulence Field. Geophys. Res. Lett. 2013, 40, 4706–4711. [Google Scholar] [CrossRef]
- Capet, X.; McWilliams, J.C.; Molemaker, M.J.; Shchepetkin, A.F. Mesoscale to Submesoscale Transition in the California Current System. Part III: Energy Balance and Flux. J. Phys. Oceanogr. 2008, 38, 2256–2269. [Google Scholar] [CrossRef] [Green Version]
- McWilliams, J.C. Fluid Dynamics at the Margin of Rotational Control. Environ. Fluid Mech. 2008, 8, 441–449. [Google Scholar] [CrossRef]
- Thomas, L.N.; Tandon, A.; Mahadevan, A. Submesoscale Processes and Dynamics. In Ocean Modeling in an Eddy Regime; American Geophysical Union: Washington, DC, USA, 2008; pp. 17–38. [Google Scholar]
- Mahadevan, A.; Tandon, A.; Ferrari, R. Rapid changes in Mixed Layer Stratification Driven by Submesoscale Instabilities and Winds. J. Geophys. Res. 2010, 115, C03017. [Google Scholar] [CrossRef]
- Capet, X.; McWilliams, J.C.; Molemaker, M.J.; Shchepetkin, A.F. Mesoscale to Submesoscale Transition in the California Current System. Part II: Frontal Processes. J. Phys. Oceanogr. 2008, 38, 44–64. [Google Scholar] [CrossRef] [Green Version]
- Marino, R.; Pouquet, A.; Rosenberg, D. Resolving the Paradox of Oceanic Large-Scale Balance and Small-Scale Mixing. Phys. Rev. Lett. 2015, 114, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, P.; McWilliams, J.; Molemaker, J. Routes to Dissipation in the Ocean: The 2D/3D Turbulence Conundrum. In Marine Turbulence: Theories, Observations and Models; Cambridge University Press: Cambridge, UK, 2005; pp. 1–23. [Google Scholar]
- Lévy, M.; Ferrari, R.; Franks, J.; Martin, A.P.; Riviere, P. Bringing Physics to Life at the Submesoscale. Geophys. Res. Lett. 2012, 39, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Hoskins, B.J.; Bretherton, F. Amospheric Frontogenesis Models: Mathematical Formulation and Solution. J. Atmos. Sci. 1972, 29, 11–37. [Google Scholar] [CrossRef]
- Hoskins, B.J. The Mathematical Theory of Frontogenesis. Annu. Rev. Fluid Mech. 1982, 14, 131–151. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Rainville, L.; Harcourt, R.; Thomas, L. Enhanced Turbulence and Energy Dissipation at Ocean Fronts. Science 2011, 332, 318–322. [Google Scholar]
- Nagai, T.; Tandon, A.; Yamazaki, H.; Doubell, M.J. Evidence of Enhanced Turbulent Dissipation in the Frontogenetic Kuroshio Front Thermocline. Geophys. Res. Lett. 2009, 36, 1–6. [Google Scholar] [CrossRef]
- Cerbus, R.; Goldburg, W. Information content of turbulence. Phys. Rev. E 2013, 88, 053012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granero-Belinchón, C.; Roux, S.G.; Garnier, N.B. Kullback-Leibler divergence measure of intermittency: Application to turbulence. Phys. Rev. E 2018, 97, 013107. [Google Scholar] [CrossRef] [Green Version]
- Granero-Belinchon, C.; Roux, S.G.; Garnier, N.B. Scaling of information in turbulence. EPL Europhys. Lett. 2016, 115, 58003. [Google Scholar] [CrossRef] [Green Version]
- Lozano-Durán, A.; Arranz, G. Information-theoretic formulation of dynamical systems: Causality, modeling, and control. Phys. Rev. Res. 2022, 4, 023195. [Google Scholar] [CrossRef]
- Wang, W.; Chu, X.; Lozano-Durán, A.; Helmig, R.; Weigand, B. Information transfer between turbulent boundary layers and porous media. J. Fluid Mech. 2021, 920. [Google Scholar] [CrossRef]
- Cornejo, P.; Sepúlveda, H. Computational Fluid Dynamics Modelling of a Midlatitude Small scale Upper ocean front. J. Appl. Fluid Mech. 2015, 9, 1851–1863. [Google Scholar] [CrossRef]
- Smagorinsky, J. General Circulation Experiments with the Primitive Equations. I. The Basic Experiment. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Scotti, A.; Meneveau, C.; Lilly, D.K. Generalized Smagorinsky Model for Anisotropic Grids. Phys. Fluids A Fluid Dyn. 1993, 5, 2306–2308. [Google Scholar] [CrossRef]
- Stone, P. On the Geostrophic Baroclinic Stability. J. Phys. Oceanogr. 1966, 23, 390–400. [Google Scholar] [CrossRef]
- Stone, P. A Simplified Radiative-dynamical Model for the Static Stability of Rotating Atmospheres. J. Atmos. Sci. 1972, 29, 405–418. [Google Scholar] [CrossRef]
- McWilliams, J.C. A Uniformly Valid Model Spanning the Regimes of Geostrophic and Isotropic, Stratified Turbulence: Balanced Turbulence. J. Atmos. Sci. 1985, 42, 1773–1774. [Google Scholar] [CrossRef]
- Skyllingstad, E.D.; Samelson, R.M. Baroclinic Frontal Instabilities and Turbulent Mixing in the Surface Boundary Layer. Part I: Unforced Simulations. J. Phys. Oceanogr. 2012, 42, 1701–1716. [Google Scholar] [CrossRef]
- Kozachenko, L.F.; Leonenko, N.N. Sample estimate of the entropy of a random vector. Probl. Peredachi Informatsii 1987, 23, 9–16. [Google Scholar]
- Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E 2004, 69, 066138. [Google Scholar] [CrossRef] [Green Version]
- Charney, J.G. Geostrophic Turbulence. J. Atmos. Sci. 1971, 28, 1087–1095. [Google Scholar] [CrossRef]
- Blumen, W. Uniform Potential Vorticity Flow: Part I. Theory of Wave Interactions and Two-Dimensional Turbulence. J. Atmos. Sci. 1978, 35, 774–783. [Google Scholar] [CrossRef]
- Capet, X.; Klein, P.; Hua, B.L.; Lapeyre, G.; Mcwilliams, J.C. Surface Kinetic Energy Transfer in Surface Quasi-geostrophic Flows. J. Fluid Mech. 2008, 604, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Boyd, J.P. The Energy Spectrum of Fronts: Time Evolution of Shocks in Burgers’ Equation. J. Atmos. Sci. 1992, 49, 128–139. [Google Scholar] [CrossRef]
- Higgins, C.; Parlange, M.B.; Meneveau, C. Energy issipation in Large-Eddy Simulation: Dependence on Flow Structure and Effects of Eigenvector Alignments. In Atmospheric Turbulence and Mesoscale Meteorology; Cambridge University Press: Cambridge, UK, 2004; pp. 51–70. [Google Scholar]
- Holloway, G. Eddies, waves, circulation, and mixing: Statistical geofluid mechanics. Annu. Rev. Fluid Mech. 1986, 18, 91–147. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cornejo, P.; Bahamonde, A. Energy and Information Fluxes at Upper Ocean Density Fronts. Fluids 2023, 8, 17. https://doi.org/10.3390/fluids8010017
Cornejo P, Bahamonde A. Energy and Information Fluxes at Upper Ocean Density Fronts. Fluids. 2023; 8(1):17. https://doi.org/10.3390/fluids8010017
Chicago/Turabian StyleCornejo, Pablo, and Adolfo Bahamonde. 2023. "Energy and Information Fluxes at Upper Ocean Density Fronts" Fluids 8, no. 1: 17. https://doi.org/10.3390/fluids8010017
APA StyleCornejo, P., & Bahamonde, A. (2023). Energy and Information Fluxes at Upper Ocean Density Fronts. Fluids, 8(1), 17. https://doi.org/10.3390/fluids8010017