Mathematical Modeling and Pilot Test Validation of Nanoparticles Injection in Heavy Hydrocarbon Reservoirs
Abstract
:1. Introduction
2. Mathematical Model
2.1. Basic Assumptions
- Negligible reservoir temperature variation in the nanofluid injection stage.
- Compositional changes, as a result of the injected nanofluid, are not relevant to the overall process performance.
- The carrier fluid (diesel and a nanoparticle dispersant) is miscible with oil at reservoir conditions, and the mixing between residual oil and diesel is instantaneous.
- Nanoparticles can be transferred between liquid phases, according to their hydrophilic/hydrophobic behavior.
- The nanoparticle attachment can be described using the double-site model from Zhang [34].
2.2. Governing Equations
2.3. Constitutive Equations
2.4. Numerical Solution
Algorithm 1: Single well reservoir modeling |
3. Results and Analysis
3.1. Experimental Validation
3.2. Reservoir Scale Results
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Alboudwarej, H. Highlighting heavy oil. Oilfield Rev. 2006, Summer 2016, 34–53. [Google Scholar]
- Guo, H.; Dong, J.; Wang, Z.; Liu, H.; Ma, R.; Kong, D.; Wang, F.; Xin, X.; Li, Y.; She, H. 2018 EOR Survey in China-part 1. In Proceedings of the SPE Improved Oil Recovery Conference, Tulsa, OH, USA, 14–18 April 2018. [Google Scholar]
- Negin, C.; Ali, S.; Xie, Q. Application of nanotechnology for enhancing oil recovery—A review. Petroleum 2016, 2, 324–333. [Google Scholar] [CrossRef]
- Peng, B.; Tang, J.; Luo, J.; Wang, P.; Ding, B.; Tam, K.C. Applications of nanotechnology in oil and gas industry: Progress and perspective. Can. J. Chem. Eng. 2018, 96, 91–100. [Google Scholar] [CrossRef]
- Ko, S.; Hun, C. Use of nanoparticles for oil production applications. J. Pet. Sci. Eng. 2019, 172, 97–114. [Google Scholar] [CrossRef]
- Zabala, R.D.; Acuna, H.M.; Cortes, F.; Patino, J.E.; Cespedes, C.; Mora, E.; Guarin, L. Application and evaluation of a nanofluid containing nanoparticles for asphaltenes inhibition in well CPSXL4. In Proceedings of the OTC Brasil, Rio de Janeiro, Brazil, 29–31 October 2013. [Google Scholar] [CrossRef]
- Franco, C.; Zabala, R.; Cortés, F. Nanotechnology applied to the enhancement of oil and gas productivity and recovery of Colombian fields. J. Pet. Sci. Eng. 2017, 157, 39–55. [Google Scholar] [CrossRef]
- Zabala, R.; Franco, C.A.; Cortés, F.B. Application of nanofluids for improving oil mobility in heavy oil and extra-heavy oil: A field test. In Proceedings of the SPE Improved Oil Recovery Conference, Tulsa, OH, USA, 11–13 April 2016. [Google Scholar]
- Sun, X.; Zhang, Y.; Chen, G.; Gai, Z. Application of nanoparticles in enhanced oil recovery: A critical review of recent progress. Energies 2017, 10, 345. [Google Scholar] [CrossRef] [Green Version]
- Afolabi, R.O. Enhanced oil recovery for emergent energy demand: Challenges and prospects for a nanotechnology paradigm shift. Int. Nano Lett. 2018, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Agi, A.; Junin, R.; Gbadamosi, A. Mechanism governing nanoparticle flow behaviour in porous media: Insight for enhanced oil recovery applications. Int. Nano Lett. 2018, 8, 49–77. [Google Scholar] [CrossRef] [Green Version]
- Taborda, E.A.; Franco, C.A.; Ruiz, M.A.; Alvarado, V.; Cortés, F.B. Experimental and theoretical study of viscosity reduction in heavy crude oils by addition of nanoparticles. Energy Fuels 2017, 31, 1329–1338. [Google Scholar] [CrossRef]
- Taborda, E.A.; Franco, C.A.; Lopera, S.; Alvarado, V.; Cortés, F.B. Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions. Fuel 2016, 184, 222–232. [Google Scholar] [CrossRef]
- Wang, H.; Taborda, E.A.; Alvarado, V.; Cortés, F.B. Influence of silica nanoparticles on heavy oil microrheology via time-domain NMR T2 and diffusion probes. Fuel 2019, 241, 962–972. [Google Scholar] [CrossRef]
- Patel, H.; Shah, S.; Ahmed, R.; Ucan, S. Effects of nanoparticles and temperature on heavy oil viscosity. J. Pet. Sci. Eng. 2018, 167, 819–828. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, Z.; Zhao, C.; Nie, Z.; Zhong, H.; Zhao, X.; Liu, S.; Xing, X. Characterization of bitumen and a novel multiple synergistic method for reducing bitumen viscosity with nanoparticles and surfactants. RSC Adv. 2020, 10, 10471–10481. [Google Scholar] [CrossRef]
- Montes, D.; Orozco, W.; Taborda, E.A.; Franco, C.A.; Cortés, F.B. Development of nanofluids for durability in viscosity reduction of extra-heavy oils. Energies 2019, 12, 1068. [Google Scholar] [CrossRef] [Green Version]
- Maghzi, A.; Mohammadi, S.; Ghazanfari, M.H.; Kharrat, R.; Masihi, M. Monitoring wettability alteration by silica nanoparticles during water flooding to heavy oils in five-spot systems: A pore-level investigation. Exp. Therm. Fluid Sci. 2012, 40, 168–176. [Google Scholar] [CrossRef]
- Giraldo, J.; Benjumea, P.; Lopera, S.; Cortés, F.B.; Ruiz, M.A. Wettability alteration of sandstone cores by alumina-based nanofluids. Energy Fuels 2013, 27, 3659–3665. [Google Scholar] [CrossRef]
- Li, S.; Torsaeter, O. The impact of nanoparticles adsorption and transport on wettability alteration of intermediate wet berea sandstone. In Proceedings of the SPE Middle East Unconventional Resources Conference and Exhibition, Muscat, Oman, 26–28 January 2015. [Google Scholar]
- Dahkaee, K.P.; Sadeghi, M.T.; Fakhroueian, Z.; Esmaeilzadeh, P. Effect of NiO/SiO2 nanofluids on the ultra interfacial tension reduction between heavy oil and aqueous solution and their use for wettability alteration of carbonate rocks. J. Pet. Sci. Eng. 2019, 176, 11–26. [Google Scholar] [CrossRef]
- Mohajeri, M.; Hemmati, M.; Shekarabi, A.S. An experimental study on using a nanosurfactant in an EOR process of heavy oil in a fractured micromodel. J. Pet. Sci. Eng. 2015, 126, 162–173. [Google Scholar] [CrossRef]
- Afekare, D.; Garno, J.C.; Rao, D. Insights into Nanoscale Wettability Effects of Low Salinity and Nanofluid Enhanced Oil Recovery Techniques. Energies 2020, 13, 4443. [Google Scholar] [CrossRef]
- Afekare, D.; Garno, J.; Rao, D. Enhancing oil recovery using silica nanoparticles: Nanoscale wettability alteration effects and implications for shale oil recovery. J. Pet. Sci. Eng. 2021, 203, 108897. [Google Scholar] [CrossRef]
- El-Amin, M.F.; Saad, A.M.; Sun, S. Modeling and simulation of nanoparticle transport in a two-phase flow in porous media. In Proceedings of the SPE International Oilfield Nanotechnology Conference and Exhibition, Noordwijk, The Netherlands, 12–14 June 2012. [Google Scholar]
- El-Amin, M.F.; Kou, J.; Sun, S.; Salama, A. An iterative implicit scheme for nanoparticles transport with two-phase flow in porous media. Procedia Comput. Sci. 2016, 80, 1344–1353. [Google Scholar] [CrossRef] [Green Version]
- El-Amin, M.F.; Saad, A.M.; Sun, S.; Salama, A. Numerical simulation of magnetic nanoparticles injection into two–phase flow in a porous medium. Procedia Comput. Sci. 2017, 108, 2260–2264. [Google Scholar] [CrossRef] [Green Version]
- El-Amin, M.F.; Saad, A.M.; Salama, A.; Sun, S. Modeling and Analysis of Magnetic Nanoparticles Injection in Water-Oil Two-Phase Flow in Porous Media under Magnetic Field Effect. Geofluids 2017, 2017, 3602593. [Google Scholar] [CrossRef] [Green Version]
- Mozo, I. Desarrollo de un Modelo Matemático de la Estimulación de Pozos Productores de Crudo Pesado con Nanofluidos Reductores de Viscosidad. Master’s Thesis, Universidad Nacional de Colombia, Medellín, Colombia, 2017. [Google Scholar]
- Mozo, I.; Mejía, J.M.; Cortés, F.; Zabala, R. A robust mathematical model for heavy-oil well stimulations using nanofluids: Modelling, simulation and validation at lab and reservoir scales. In Proceedings of the 16th European Conference on the Mathematics of Oil Recovery—EAGE, Barcelona, Spain, 3–6 September 2018. [Google Scholar]
- Valencia, J.D.; Mejía, J.M.; Zabala, R. Single well modeling and field validation of heavy-oil well stimulations using nanofluids. In Proceedings of the IOR 2019–20th European Symposium on Improved Oil Recovery, Pau, France, 8–11 April 2019. [Google Scholar]
- Saad, Y.; Schultz, M.H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 1986, 7, 856–869. [Google Scholar] [CrossRef] [Green Version]
- Echavarría, S.; Velásquez, S.; Bueno, N.; Valencia, J.D.; Solano, H.; Mejía, J.M. Semi-implicit finite volume procedure for compositional subsurface flow simulation in highly anisotropic porous media. Int. J. Numer. Methods Eng. Fluids 2021, 6, 341. [Google Scholar] [CrossRef]
- Zhang, T. Modeling of Nanoparticle Transport in Porous Media. Ph.D. Thesis, University of Texas at Austin, Austin, TX, USA, 2012. [Google Scholar]
- Wang, Y. Implementation of a Two Pseudo-Component Approach for Variable Bubble Point Problems in Gprs. Master’s Thesis, Stanford University, Stanford, CA, USA, 2007. [Google Scholar]
- Collins, D.A.; Nghiem, L.X.; Li, Y.K.; Grabonstotter, J.E. An efficient approach to adaptive-implicit compositional simulation with an equation of state. SPE Reserv. Eng. 1992, 7, 259–264. [Google Scholar] [CrossRef]
- Cao, H. Development of Techniques for General Purpose Simulators. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2002. [Google Scholar]
- Civan, F. Reservoir Formation Damage, 3rd ed; Gulf Professional Publishing: Houston, TX, USA, 2015; ISBN 9780128018989. [Google Scholar]
- Civan, F.; Knapp, R.M.; Ohen, H.A. Alteration of permeability by fine particle processes. J. Pet. Sci. Eng. 1989, 3, 65–79. [Google Scholar] [CrossRef]
- El-Amin, M.; Salama, A.; Sun, S. Numerical and dimensional analysis of nanoparticles transport with two-phase flow in porous media. J. Pet. Sci. Eng. 2015, 128, 53–64. [Google Scholar] [CrossRef]
- Hu, X.; Huang, S. Physical Properties of Reservoir Rocks; Springer: Berlin/Heidelberg, Germany, 2017; pp. 7–164. [Google Scholar]
- Hartshorn, K.G. Evaluation and management of vertically drained reservoirs: Castilla and Chichimene fields, Llanos Basin, Colombia. In Proceedings of the American Association of Petroleum Geologists (AAPG) International Conferences and Exhibition, Caracas, Venezuela, 8–11 September 1996. [Google Scholar]
Phases | ||||||
Components | Oleic (o) | Volatile (g) | Aqueous (w) | NPs Dispersed in Oleic Phase (n-o) | NPs Dispersed in Aqueous Phase (n-w) | Attached Nps on Solid Matrix (n-s) |
Oil | x | |||||
Gas | x | x | ||||
Water | x | |||||
Carrier fluid (diesel and dispersant) | x | |||||
Nanoparticles | x | x | x |
Parameter | Value |
---|---|
Length [cm] | 7 |
Diameter [cm] | 3.75 |
Permeability [mD] | 622 |
Porosity [-] | 0.21 |
Pore press. [bar] | 206.8 |
Temp. [K] | 372 |
Oil API | 8 |
Initial pressure [bar] | 206.8 |
Initial oil saturation [-] | 0.77 |
Inj. rate [cc/min] | 0.6 |
4.00 × 10−4 | |
1.00 × 10−4 | |
4.00 × 10−5 | |
1.06 × 10−5 | |
2.02 × 10−4 | |
Sphericity [-] | 0.9 |
Nanoparticle diameter [nm] | 22 |
Parameter | Value |
---|---|
Well radius [cm] | 20.7 |
Average porosity [-] | 0.1081 |
Average permeability [mD] | 953 |
Reservoir pressure [bar] | 89.6 |
Initial water saturation [-] | 0.20 |
Carrier fluid | Diesel |
Nanoparticle concentration [ppm] | 2000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valencia, J.D.; Mejía, J.M.; Icardi, M.; Zabala, R. Mathematical Modeling and Pilot Test Validation of Nanoparticles Injection in Heavy Hydrocarbon Reservoirs. Fluids 2022, 7, 135. https://doi.org/10.3390/fluids7040135
Valencia JD, Mejía JM, Icardi M, Zabala R. Mathematical Modeling and Pilot Test Validation of Nanoparticles Injection in Heavy Hydrocarbon Reservoirs. Fluids. 2022; 7(4):135. https://doi.org/10.3390/fluids7040135
Chicago/Turabian StyleValencia, Juan D., Juan M. Mejía, Matteo Icardi, and Richard Zabala. 2022. "Mathematical Modeling and Pilot Test Validation of Nanoparticles Injection in Heavy Hydrocarbon Reservoirs" Fluids 7, no. 4: 135. https://doi.org/10.3390/fluids7040135
APA StyleValencia, J. D., Mejía, J. M., Icardi, M., & Zabala, R. (2022). Mathematical Modeling and Pilot Test Validation of Nanoparticles Injection in Heavy Hydrocarbon Reservoirs. Fluids, 7(4), 135. https://doi.org/10.3390/fluids7040135