Wave-Energy Dissipation: Seaweeds and Marine Plants Are Ecosystem Engineers
Abstract
:1. Introduction
2. Ocean Waves
3. Seaweeds and Marine Plants
4. Ecosystem Services and Ecosystem Engineers
4.1. Salt Marshes
4.2. Seagrass Beds
4.3. Mangroves
4.4. Topographic Protection
4.5. Rocky Shores
5. Wave-Energy Dissipation by Marine Plants and Seaweeds
5.1. Period Parameter
5.2. Cauchy Number
5.3. Models
6. Theory in Practice
6.1. Salt Marshes, Seagrass Beds, and Mangroves
6.2. Rocky Shores
6.2.1. Giant Kelps
6.2.2. Benthic Seaweeds
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kinsman, B. Wind Waves; Prentice-Hall: Englewood Cliffs, NJ, USA, 1965. [Google Scholar]
- Denny, M.W. Biology and the Mechanics of the Wave-Swept Environment; Princeton University Press: Princeton, NJ, USA, 1988; pp. 45–71. [Google Scholar]
- Luhar, M.; Nepf, H.M. Flow-induced reconfiguration of buoyant and flexible aquatic vegetation. Limnol. Oceanogr. 2011, 56, 2003–2017. [Google Scholar] [CrossRef] [Green Version]
- Henderson, H.M. Motion of buoyant, flexible aquatic vegetation under waves: Simple theoretical models and parameterization of wave damping. Coast. Eng. 2019, 152, 102497. [Google Scholar] [CrossRef]
- Tinoco, R.O.; San Juan, J.E.; Mullarney, J.C. Simplification bias: Lessons from laboratory and field experiments on flow through aquatic vegetation. Earth Surf. Process. Landf. 2019, 45, 121–143. [Google Scholar] [CrossRef]
- Jones, C.G.; Lawton, J.H.; Shachak, M. Organisms as ecosystem engineers. Oikos 1994, 69, 373–386. [Google Scholar] [CrossRef]
- Pennings, S.C.; Bertness, M.D. Salt-marsh communities. In Marine Community Ecology; Bertness, M.D., Gaines, S.D., Hay, M.E., Eds.; Sinauer Associates: Sunderland, MA, USA, 2001; pp. 289–316. [Google Scholar]
- Wlliams, S.L.; Heck, K.L. Seagrass community ecology. In Marine Community Ecology; Bertness, M.D., Gaines, S.D., Hay, M.E., Eds.; Sinauer Associates: Sunderland, MA, USA, 2001; pp. 339–366. [Google Scholar]
- Van Katwijk, M.M.; Bos, A.R.; Hermus, D.C.R.; Suykerbuyk, M. Sediment modification by seagrass beds: Muddification and sandification induced by plant cover and environmental conditions. Estuar. Coast. Shelf Sci. 2010, 89, 175–181. [Google Scholar] [CrossRef]
- Reidenbach, M.A.; Thomas, E.L. Influence of the seagrss, Zostera marina, on wave attenuation and bed shear within a shallow costal bay. Front. Mar. Sci. 2018, 5, 397. [Google Scholar] [CrossRef]
- Ellison, A.M.; Farnsworth, E.J. Mangrove communities. In Marine Community Ecology; Bertness, M.D., Gaines, S.D., Hay, M.E., Eds.; Sinauer Associates: Sunderland, MA, USA, 2001; pp. 423–444. [Google Scholar]
- Galvin, C.J. Wave breaking in shallow water. In Waves on Beaches and Resulting Sediment Transport; Meyer, R.E., Ed.; Academic Press: New York, NY, USA, 1972; pp. 413–455. [Google Scholar]
- U.S. Army Corps of Engineers. Shore Protection Manual, 4th ed.; U.S Government Printing Office: Washington, DC, USA, 1984.
- Thornton, E.B.; Guza, R.T. Transformation of wave height distribution. J. Geophys. Res. 1983, 88, 5925. [Google Scholar] [CrossRef] [Green Version]
- Bird, E.C.F. Coastal Geomorphology: An Introduction; John Wiley & Sons Ltd.: Chichester, UK, 2000. [Google Scholar]
- Menge, B.A.; Branch, G. Rocky intertidal communities. In Marine Community Ecology; Bertness, M.D., Gaines, S.D., Hay, M.E., Eds.; Sinauer Associates: Sunderland, MA, USA, 2001; pp. 221–252. [Google Scholar]
- Witman, J.D.; Dayton, P.K. Rocky subtidal communities. In Marine Community Ecology; Bertness, M.D., Gaines, S.D., Hay, M.E., Eds.; Sinauer Associates: Sunderland, MA, USA, 2001; pp. 339–366. [Google Scholar]
- Schiel, D.R.; Foster, M.S. The Biology and Ecology of Giant Kelp Forests; University of California Press: Berkeley, CA, USA, 2015. [Google Scholar]
- Dayton, P.K. Competition, disturbance, and community organization: The provision and subsequent utilization of space in a rocky intertidal community. Ecol. Monogr. 1971, 41, 351–389. [Google Scholar] [CrossRef]
- Paine, R.T.; Levin, S.A. Intertidal landscapes: Disturbance and the dynamics of pattern. Ecol. Monogr. 1981, 51, 145–178. [Google Scholar] [CrossRef]
- Denny, M.W. Predicting physical disturbance: Mechanistic approaches to the study of survivorship on wave-swept shores. Ecol. Monogr. 1995, 65, 371–418. [Google Scholar] [CrossRef]
- Denny, M.W. Ecological Mechanics: Principles of Life’s Physical Interactions; Princeton University Press: Princeton, NJ, USA, 2016. [Google Scholar]
- Martone, P.T.; Denny, M.W. To break a coralline: Mechanical constraints on the size and survival of a wave-swept seaweed. J. Exp. Biol. 2008, 211, 3433–3441. [Google Scholar] [CrossRef] [Green Version]
- Vogel, S. Life in Moving Fluids, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Schlichting, H.; Gersten, K. Boundary Layer Theory, 8th ed.; Springer: New York, NY, USA, 2000. [Google Scholar]
- Boller, M.L.; Carrington, E. Interspecific comparison of hydrodynamic performance and structural properties among intertidal macroalgae. J. Exp. Biol. 2007, 210, 1874–1884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckart, J.E. The propagation of waves from deep to shallow water. Gravity Waves Natl. Bur. Stand. Circ. 1952, 521, 165–173. [Google Scholar]
- Munk, W.H. The solitary wave theory and its application to surf problems. Ann. N. Y. Acad. Sci. 1949, 51, 376–424. [Google Scholar] [CrossRef]
- Bradley, K.; Houser, C. Relative velocity of seagrass blades: Implications for wave attenuation in low-energy environments. J. Geophys. Res. Earth Surf. 2009, 114, 1–13. [Google Scholar] [CrossRef]
- Mullarney, J.C.; Henderson, S.M. Wave-forced motion of submerged single-stem vegetation. J. Geophys. Res. 2010, 115, C12061. [Google Scholar] [CrossRef]
- Luhar, M.; Nepf, H.M. From the blade scale to the reach scale: A characterization of aquatic vegetative drag. Adv. Water Resour. 2013, 51, 305–316. [Google Scholar] [CrossRef]
- Riffe, K.C.; Henderson, S.M.; Mullarney, J.C. Wave dissipation by flexible vegetation. Geophys. Res. Lett. 2011, 38, L18607. [Google Scholar] [CrossRef] [Green Version]
- Luhar, M.; Infantes, E.; Nepf, H. Seagrass blade motion under waves and its impact on wave decay. J. Geophys. Res. Oceans 2017, 122, 3736–3752. [Google Scholar] [CrossRef] [Green Version]
- Sarpkaya, T.; Isaacson, M. Wave Forces on Offshore Structures; Van Nostrand-Reinhold Co.: New York, NY, USA, 1981. [Google Scholar]
- Keulegan, G.H.; Carpenter, L.H. Forces on cylinders and plates in oscillating fluid. J. Res. Natl. Bur. Std. 1958, 60, 423–440. [Google Scholar] [CrossRef]
- Luhar, M.; Nepf, H. Wave-induced dynamics of flexible blades. J. Fluids Struture 2016, 61, 20–41. [Google Scholar] [CrossRef] [Green Version]
- Gosline, J.M. Mechanical Design of Structural Materials in Animals; Princeton University Press: Princeton, NJ, USA, 2018. [Google Scholar]
- Dalrymple, R.A.; Kirby, J.T.; Hwang, P.A. Wave diffraction due to areas of energy dissipation. J. Waterw. Port Coast. Ocean. Eng. 1984, 110, 67–79. [Google Scholar] [CrossRef]
- Kobayashi, N.; Raichle, A.W.; Asano, T. Wave attentuation by vegetation. J. Waterw. Port Coast. Ocean. Eng. 1993, 119, 30–48. [Google Scholar] [CrossRef]
- Rosman, J.H.; Monismith, S.G.; Denny, M.W.; Koseff, J.R. Currents and turbulence within a kelp forest (Macrocystis pyrifera): Insights from a dynamically scaled laboratory model. Limnol. Oceanogr. 2010, 55, 1145–1158. [Google Scholar] [CrossRef] [Green Version]
- Rosman, J.H.; Denny, M.W.; Zeller, R.B.; Monismith, S.G.; Koseff, J.R. Interaction of waves and currents with kelp forests (Macrocystis pyrifera): Insights from a dynamically scaled laboratory model. Limnol. Oceanogr. 2013, 58, 790–802. [Google Scholar] [CrossRef]
- Horstman, E.M.; Dohmen-Janssen, M.; Narra, P.; van den Berg, N.J.F.; Siemerink, M.; Balke, T.; Bouma, T.; Hulscher, S. Wave attenuation in mangrove forests: Field data obtained in Trang, Thailand. Coast. Eng. Proc. 2012, 1, 40. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, I.G. Wave boundary layers and friction factors. Coast. Eng. 1966, 1, 9. [Google Scholar] [CrossRef]
- Gon, C.J.; MacMahan, J.H.; Thornton, E.B.; Denny, M.D. Wave dissipation by bottom friction on the inner shelf of a rocky shore. J. Geophys. Res. Oceans 2020, 125. [Google Scholar] [CrossRef]
- Vo-Luong, P.; Massel, S. Energy dissipation in non-uniform mangrove forests of arbitrary depth. J. Mar. Sys. 2008, 74, 603–622. [Google Scholar] [CrossRef]
- Larsen, L.G. Multiscale flow-vegetation-sediment feedbacks in low-gradient landscapes. Geomorphology 2019, 334, 165–193. [Google Scholar] [CrossRef]
- O’Hare, M.T.; Agular, F.C.; Asaeda, T.; Bakker, E.S.; Chambers, P.A.; Clayton, J.S.; Elger, A.; Ferreira, T.M.; Gross, E.M.; Gunn, D.M.; et al. Plants in aquatic ecosystems: Current models and future directions. Hydrobiologica 2018, 812, 1–11. [Google Scholar] [CrossRef]
- Gaylord, B.; Denny, M.W.; Koehl, M.A.R. Modulation of wave forces on kelp canopies by alongshore currents. Limnol. Oceanogr. 2003, 48, 860–871. [Google Scholar] [CrossRef]
- Koehl, M.A.R. How do benthic organisms withstand moving water? Amer. Zool. 1984, 24, 57–70. [Google Scholar] [CrossRef]
- Elwany, M.H.S.; O’Reilly, W.C.; Guza, R.T.; Flick, R.E. Effects of Southern California kelp beds on waves. J. Waterw. Port Coast. Ocean Eng. 1995, 121, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Elsmore, K.E.; Nickols, K.J.; Miller, L.P.; Denny, M.W.; Gaylord, B. Wave damping by giant kelp, Macrosystis pyrifera. Estuar. Coast. Shelf. Sci. (Submitted).
- Gaylord, B.; Rosman, J.H.; Reed, D.C.; Koseff, J.R.; Fram, J.; McIntyre, S.; Arkema, K.; McDonald, M.A.; Brzezinski, J.L.; Monismith, S.G.; et al. Spatial patterns of flow and their modification within and around a giant kelp forest. Limnol. Oceanogr. 2007, 52, 1838–1852. [Google Scholar] [CrossRef]
- Martone, P.T.; Kost, L.; Boller, M. Drag reduction in wave-swept macroalgae: Alternative strategies and new predictions. Am. J. Bot. 2012, 99, 806–815. [Google Scholar] [CrossRef] [Green Version]
- Leigh, E.G.; Paine, R.T.; Quinn, J.F.; Suchanek, T.H. Wave energy and intertidal productivity. Proc. Natl. Acad. Sci. USA 1987, 84, 1314–1318. [Google Scholar] [CrossRef] [Green Version]
- Gaylord, B. Detailing agents of physical disturbance: Wave-induced velocities and accelerations on a rocky shore. J. Exp. Mar. Biol. Ecol. 1999, 239, 85–124. [Google Scholar] [CrossRef]
- Gaylord, B. Biological implications of surf-zone complexity. Limnol. Oceanogr. 2000, 45, 174–188. [Google Scholar] [CrossRef]
- Denny, M.W. Lift as a mechanism of patch generation in mussel beds. J. Exp. Mar. Biol. Ecol. 1987, 113, 231–245. [Google Scholar] [CrossRef]
- Stevens, C.L.; Hurd, C.L.; Smith, M.J. Field measurement of the dynamics of the bull kelp Durvillea antarctica (Chamiso) Heriot. J. Exp. Mar. Biol. Ecol. 2002, 269, 147–161. [Google Scholar] [CrossRef]
- Stevens, C.L.; Hurd, C.L.; Smith, M.J. An idealized model of interactions between fronds of the large seaweed Durvillea antarctica. J. Mar. Syst. 2004, 49, 145–156. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denny, M. Wave-Energy Dissipation: Seaweeds and Marine Plants Are Ecosystem Engineers. Fluids 2021, 6, 151. https://doi.org/10.3390/fluids6040151
Denny M. Wave-Energy Dissipation: Seaweeds and Marine Plants Are Ecosystem Engineers. Fluids. 2021; 6(4):151. https://doi.org/10.3390/fluids6040151
Chicago/Turabian StyleDenny, Mark. 2021. "Wave-Energy Dissipation: Seaweeds and Marine Plants Are Ecosystem Engineers" Fluids 6, no. 4: 151. https://doi.org/10.3390/fluids6040151
APA StyleDenny, M. (2021). Wave-Energy Dissipation: Seaweeds and Marine Plants Are Ecosystem Engineers. Fluids, 6(4), 151. https://doi.org/10.3390/fluids6040151