Mechanical Forces Impacting Cleavage of Von Willebrand Factor in Laminar and Turbulent Blood Flow
Abstract
:1. Introduction
2. Method
3. Laminar Flow
4. Turbulent Flow
5. Result and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
 Savage, B.; Saldívar, E.; Ruggeri, Z.M. Initiation of Platelet Adhesion by Arrest onto Fibrinogen or Translocation on von Willebrand Factor. Cell 1996, 84, 289–297. [Google Scholar] [CrossRef] [Green Version]
 Sadler, J.E. New Concepts in von Willebrand Disease. Annu. Rev. Med. 2005, 56, 173–191. [Google Scholar] [CrossRef]
 Savage, B.; AlmusJacobs, F.; Ruggeri, Z.M. Specific Synergy of Multiple Substrate–Receptor Interactions in Platelet Thrombus Formation under Flow. Cell 1998, 94, 657–666. [Google Scholar] [CrossRef] [Green Version]
 Stockschlaeder, M.; Schneppenheim, R.; Budde, U. Update on von Willebrand Factor Multimers: Focus on HighMolecularWeight Multimers and Their Role in Hemostasis. Blood Coagul. Fibrinolysis 2014, 25, 206–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 Bharati, K.P.; Prashanth, U.R. Von Willebrand Disease: An Overview. Indian J. Pharm. Sci. 2011, 73, 7–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 Sadler, J.E. Biochemistry and Genetics of von Willebrand Factor. Ann. Rev. Biochem 1998, 67, 395–424. [Google Scholar] [CrossRef] [PubMed]
 Springer, T.A. Von Willebrand Factor, Jedi Knight of the Bloodstream. Blood J. Am. Soc. Hematol. 2014, 124, 1412–1425. [Google Scholar] [CrossRef] [Green Version]
 Zheng, X.L. ADAMTS13 and von Willebrand Factor in Thrombotic Thrombocytopenic Purpura. Annu. Rev. Med. 2015, 66, 211–225. [Google Scholar] [CrossRef] [Green Version]
 Geisen, U.; Brehm, K.; Trummer, G.; BerchtoldHerz, M.; Heilmann, C.; Beyersdorf, F.; Schelling, J.; Schlagenhauf, A.; Zieger, B. Platelet Secretion Defects and Acquired von Willebrand Syndrome in Patients with Ventricular Assist Devices. J. Am. Heart Assoc. 2018, 7, e006519. [Google Scholar] [CrossRef]
 Vincentelli, A.; Susen, S.; Le Tourneau, T.; Six, I.; Fabre, O.; Juthier, F.; Bauters, A.; Decoene, C.; Goudemand, J.; Prat, A. Acquired von Willebrand Syndrome in Aortic Stenosis. N. Engl. J. Med. 2003, 349, 343–349. [Google Scholar] [CrossRef] [Green Version]
 Schneider, S.W.; Nuschele, S.; Wixforth, A.; Gorzelanny, C.; AlexanderKatz, A.; Netz, R.R.; Schneider, M.F. ShearInduced Unfolding Triggers Adhesion of von Willebrand Factor Fibers. Proc. Natl. Acad. Sci. USA 2007, 104, 7899–7903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 Sing, C.E.; AlexanderKatz, A. Elongational Flow Induces the Unfolding of von Willebrand Factor at Physiological Flow Rates. Biophys. J. 2010, 98, L35–L37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 Doyle, P.S.; Shaqfeh, E.S. Dynamic Simulation of FreelyDraining, Flexible BeadRod Chains: Startup of Extensional and Shear Flow. J. NonNewton. Fluid Mech. 1998, 76, 43–78. [Google Scholar] [CrossRef]
 AlexanderKatz, A.; Netz, R.R. Dynamics and Instabilities of Collapsed Polymers in Shear Flow. Macromolecules 2008, 41, 3363–3374. [Google Scholar] [CrossRef]
 Sunthar, P.; Nguyen, D.A.; Dubbelboer, R.; Prakash, J.R.; Sridhar, T. Measurement and Prediction of the Elongational Stress Growth in a Dilute Solution of DNA Molecules. Macromolecules 2005, 38, 10200–10209. [Google Scholar] [CrossRef]
 Neelov, I.M.; Adolf, D.B.; Lyulin, A.V.; Davies, G.R. Brownian Dynamics Simulation of Linear Polymers under Elongational Flow: Bead–Rod Model with Hydrodynamic Interactions. J. Chem. Phys. 2002, 117, 4030–4041. [Google Scholar] [CrossRef] [Green Version]
 Venkataramani, V.; Sureshkumar, R.; Khomami, B. CoarseGrained Modeling of Macromolecular Solutions Using a ConfigurationBased Approach. J. Rheol. 2008, 52, 1143–1177. [Google Scholar] [CrossRef]
 Harrison, G.M.; Remmelgas, J.; Leal, L.G. The Dynamics of Ultradilute Polymer Solutions in Transient Flow: Comparison of DumbbellBased Theory and Experiment. J. Rheol. 1998, 42, 1039–1058. [Google Scholar] [CrossRef]
 AlexanderKatz, A.; Schneider, M.F.; Schneider, S.W.; Wixforth, A.; Netz, R.R. ShearFlowInduced Unfolding of Polymeric Globules. Phys. Rev. Lett. 2006, 97, 138101. [Google Scholar] [CrossRef]
 Bortot, M.; Ashworth, K.; Sharifi, A.; Walker, F.; Crawford, N.C.; Neeves, K.B.; Bark, D., Jr.; Di Paola, J. Turbulent Flow Promotes Cleavage of VWF (von Willebrand Factor) by ADAMTS13 (a Disintegrin and Metalloproteinase with a Thrombospondin Type1 Motif, Member 13). Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1831–1842. [Google Scholar] [CrossRef] [Green Version]
 Bortot, M.; Sharifi, A.; Ashworth, K.; Walker, F.; Cox, A.; Ruegg, K.; Clendenen, N.; Neeves, K.B.; Bark, D.; Di Paola, J. Pathologic Shear and Elongation Rates Do Not Cause Cleavage of Von Willebrand Factor by ADAMTS13 in a Purified System. Cell. Mol. Bioeng. 2020, 13, 379–390. [Google Scholar] [CrossRef] [PubMed]
 McNaught, A.D.; Wilkinson, A. Compendium of Chemical Terminology; Blackwell Science Oxford: Oxford, UK, 1997; Volume 1669. [Google Scholar]
 Koltzenburg, S.; Maskos, M.; Nuyken, O. Polymere: Synthese, Eigenschaften Und Anwendungen; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
 Frenkel, J. Orientation and Rupture of Linear Macromolecules in Dilute Solutions under the Influence of Viscous Flow. Acta Phys. URSS 1944, 19, 51–76. [Google Scholar]
 Vanapalli, S.A.; Ceccio, S.L.; Solomon, M.J. Universal Scaling for Polymer Chain Scission in Turbulence. Proc. Natl. Acad. Sci. USA 2006, 103, 16660–16665. [Google Scholar] [CrossRef] [Green Version]
 Horn, A.F.; Merrill, E.W. Midpoint Scission of Macromolecules in Dilute Solution in Turbulent Flow. Nature 1984, 312, 140–141. [Google Scholar] [CrossRef]
 Keller, A.; Odell, J.A. The Extensibility of Macromolecules in Solution; A New Focus for Macromolecular Science. Colloid Polym. Sci. 1985, 263, 181–201. [Google Scholar] [CrossRef]
 Nguyen, T.Q.; Kausch, H.H. Chain Scission in Transient Extensional Flow Kinetics and Molecular Weight Dependence. J. NonNewton. Fluid Mech. 1988, 30, 125–140. [Google Scholar] [CrossRef]
 Universal Scaling for Polymer Chain Scission in Turbulence, PNAS. Available online: https://www.pnas.org/content/103/45/16660.short (accessed on 23 November 2020).
 Perkins, T.T.; Smith, D.E.; Chu, S. Single Polymer Dynamics in an Elongational Flow. Science 1997, 276, 2016–2021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 Drag Reduction Fundamentals—Virk—1975—AIChE Journal. Wiley Online Library. Available online: https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690210402?casa_token=URnE3nKXNBkAAAAA:eSiXageoolThvJFFEA_cy_JrnJKekdnKjiS6SXX7suJtIQSOXvfToQllup_O2WTbgwLrI5AdMcY (accessed on 23 November 2020).
 Gold, P.I.; Amar, P.K.; Swaidan, B.E. Friction Reduction Degradation in Dilute Poly(Ethylene Oxide) Solutions. J. Appl. Polym. Sci. 1973, 17, 333–350. [Google Scholar] [CrossRef]
 Hershey, H.C.; Zakin, J.L. A Molecular Approach to Predicting the Onset of Drag Reduction in the Turbulent Flow of Dilute Polymer Solutions. Chem. Eng. Sci. 1967, 22, 1847–1857. [Google Scholar] [CrossRef]
 Virk, P.S.; Merrill, E.W. The Onset of Dilute Polymer Solution Phenomena. In Viscous Drag Reduction; Wells, C.S., Ed.; Springer: Boston, MA, USA, 1969; pp. 107–130. [Google Scholar]
 Odell, J.A.; Keller, A. FlowInduced Chain Fracture of Isolated Linear Macromolecules in Solution. J. Polym. Sci. Part B Polym. Phys. 1986, 24, 1889–1916. [Google Scholar] [CrossRef]
 Steppich, D.M.; Angerer, J.I.; Sritharan, K.; Schneider, S.W.; Thalhammer, S.; Wixforth, A.; AlexanderKatz, A.; Schneider, M.F. Relaxation of Ultralarge VWF Bundles in a Microfluidic–AFM Hybrid Reactor. Biochem. Biophys. Res. Commun. 2008, 369, 507–512. [Google Scholar] [CrossRef] [PubMed]
 Fu, H.; Jiang, Y.; Yang, D.; Scheiflinger, F.; Wong, W.P.; Springer, T.A. FlowInduced Elongation of von Willebrand Factor Precedes TensionDependent Activation. Nat. Commun. 2017, 8, 324. [Google Scholar] [CrossRef] [PubMed]
 Fowler, W.E.; Fretto, L.J.; Hamilton, K.K.; Erickson, H.P.; McKee, P.A. Substructure of Human von Willebrand Factor. J. Clin. Investig. 1985, 76, 1491–1500. [Google Scholar] [CrossRef] [PubMed]
 Singh, I.; Shankaran, H.; Beauharnois, M.E.; Xiao, Z.; Alexandridis, P.; Neelamegham, S. Solution Structure of Human von Willebrand Factor Studied Using Small Angle Neutron Scattering. J. Biol. Chem. 2006, 281, 38266–38275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 Slayter, H.; Loscalzo, J.; Bockenstedt, P.; Handin, R.I. Native Conformation of Human von Willebrand Protein. Analysis by Electron Microscopy and QuasiElastic Light Scattering. J. Biol. Chem. 1985, 260, 8559–8563. [Google Scholar] [CrossRef]
 Pope, S.B. Turbulent Flows. Meas. Sci. Technol. 2001, 12, 2020. [Google Scholar] [CrossRef]
 Lippok, S.; Radtke, M.; Obser, T.; Kleemeier, L.; Schneppenheim, R.; Budde, U.; Netz, R.R.; Rädler, J.O. ShearInduced Unfolding and Enzymatic Cleavage of FullLength VWF Multimers. Biophys. J. 2016, 110, 545–554. [Google Scholar] [CrossRef] [Green Version]
 Jhun, C.S.; Reibson, J.D.; Cysyk, J.P. Effective Ventricular Unloading by Left Ventricular Assist Device Varies with Stage of Heart Failure: Cardiac Simulator Study. Asaio J. 2011, 57, 407–413. [Google Scholar] [CrossRef]
 Morabito, M.; Dong, C.; Wei, W.; Cheng, X.; Zhang, X.F.; Oztekin, A.; Webb, E. Internal Tensile Force and A2 Domain Unfolding of von Willebrand Factor Multimers in Shear Flow. Biophys. J. 2018, 115, 1860–1871. [Google Scholar] [CrossRef] [Green Version]
 Wu, T.; Lin, J.; Cruz, M.A.; Dong, J.; Zhu, C. ForceInduced Cleavage of Single VWFA1A2A3 Tridomains by ADAMTS13. Blood 2010, 115, 370–378. [Google Scholar] [CrossRef] [Green Version]
 Ying, J.; Ling, Y.; Westfield, L.A.; Sadler, J.E.; Shao, J.Y. Unfolding the A2 Domain of Von Willebrand Factor with the Optical Trap. Biophys. J. 2010, 98, 1685–1693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 Zhang, X.; Halvorsen, K.; Zhang, C.Z.; Wong, W.P.; Springer, T.A. Mechanoenzymatic Cleavage of the Ultralarge Vascular Protein von Willebrand Factor. Science 2009, 324, 1330–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 Li, Z.; Lin, J.; Sulchek, T.; Cruz, M.A.; Wu, J.; Dong, J.; Zhu, C. DomainSpecific Mechanical Modulation of VWF–ADAMTS13 Interaction. MBoC 2019, 30, 1920–1929. [Google Scholar] [CrossRef] [PubMed]
 Morshed, K.N.; Bark, D., Jr.; Forleo, M.; Dasi, L.P. Theory to Predict Shear Stress on Cells in Turbulent Blood Flow. PLoS ONE 2014, 9, e105357. [Google Scholar] [CrossRef]
 Schroeder, C.M. Single Polymer Dynamics for Molecular Rheology. J. Rheol. 2018, 62, 371–403. [Google Scholar] [CrossRef] [Green Version]
Case  Flow Regime 
$$\mathit{\gamma},\mathit{\chi}(1/s)$$

$$\mathit{\eta}(\mu m)$$

$${\mathit{t}}_{\mathit{e}}\left(s\right)$$
 Extended  Unfolded  Cleaved  Ref. 

1  Laminar  200–3000  N/A  0.2–0.5  NM  NM  No  [20,21] 
2  Laminar  4000–5000  N/A  NM  Yes  Yes  No  [42] 
3  Laminar  10,000  N/A  1200–8400  NM  NM  Yes  [42] 
4  Laminar  5000–10,000  N/A  0.1–0.3  Yes  Yes  NM  [11] 
5  Laminar  200–130,000  N/A  0.001–0.1  NM  NM  No  [21] 
6  Turbulent  2000–6000  10–40  0.0002–0.001  NM  NM  Yes  [20] 
7  Turbulent  5000–10,000  20–35  0.0001–0.001  NM  NM  Yes  [21] 
8  Turbulent  300,000  NM  10  NM  NM  Yes  [43] 
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. 
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharifi, A.; Bark, D. Mechanical Forces Impacting Cleavage of Von Willebrand Factor in Laminar and Turbulent Blood Flow. Fluids 2021, 6, 67. https://doi.org/10.3390/fluids6020067
Sharifi A, Bark D. Mechanical Forces Impacting Cleavage of Von Willebrand Factor in Laminar and Turbulent Blood Flow. Fluids. 2021; 6(2):67. https://doi.org/10.3390/fluids6020067
Chicago/Turabian StyleSharifi, Alireza, and David Bark. 2021. "Mechanical Forces Impacting Cleavage of Von Willebrand Factor in Laminar and Turbulent Blood Flow" Fluids 6, no. 2: 67. https://doi.org/10.3390/fluids6020067