A Cartesian Method with Second-Order Pressure Resolution for Incompressible Flows with Large Density Ratios
Abstract
:1. Introduction
2. Governing Equations
2.1. Flow Equations
2.2. Interface Description
3. Navier–Stokes Monofluid Solver and Numerical Method for Interface Evolution
3.1. Flow Computation
- Prediction: evaluate convective and diffusive fluxes and compute ,
- Interface evolution: convect the level-set with velocity and re-initialize if necessary,
- Construction and resolution of the linear system for the pressure,
- Correction step: update velocity with pressure gradient.
3.2. Numerical Method for the Level-Set Evolution
- •
- Use a transport equation to update .
- •
- From time to time, reinitialize with the signed distance function.
4. Navier–Stokes Solver near the Interface
4.1. Notations
4.2. Modeling Choices for the Discontinuities across the Interface
- Prediction step: viscous terms.
- Correction step: divergence of the predicted velocity, elliptic operator, and gradient of the pressure.
4.3. Gradient and Divergence for Correction Step
5. Numerical Resolution of Elliptic Problems with Immersed Interfaces
5.1. Discrete Elliptic Operator
5.2. Discrete Flux Transmission Conditions
6. Numerical Results and Validations
6.1. Equilibria Preservation for a Bubble: The Parasitic Oscillations
6.1.1. Comparison with the Ghost Fluid and the CSF Methods
6.1.2. Comparison with a Volume of Fluid Method
6.2. Collapse of a Water Column: The Dam Break Problem
6.3. Rising of Air Bubble in Water
6.3.1. Comparison with the Ghost Fluid Method
6.3.2. Comparison with SPH and the Level-Set Method
6.4. Two Air Bubbles in Water
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cisternino, M.; Weynans, L. A parallel second order Cartesian method for elliptic interface problems. Commun. Comput. Phys. 2012, 12, 1562–1587. [Google Scholar] [CrossRef]
- Raessi, M.; Pitsch, H. Consistent mass and momentum transport for simulating incompressible interfacial flows with large density ratios using the level set method. Comput. Fluids 2012, 63, 70–81. [Google Scholar] [CrossRef]
- Brackbill, J.U.; Kothe, D.B.; Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys. 1992, 100, 335–354. [Google Scholar] [CrossRef]
- Sussman, M.; Smereka, P.; Osher, S. A level-set approach for computing solutions to incompressible two-phase flows. J. Comput. Phys. 1994, 114, 146–159. [Google Scholar] [CrossRef]
- Galusinski, C.; Vigneaux, P. On stability condition for bifluid flows with surface tension: Application to microfluidics. J. Comput. Phys. 2008, 227, 6140–6164. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.; Fedkiw, R.P.; Liu, X.D. A Boundary Condition Capturing Method for Multiphase Incompressible Flow. J. Sci. Comput. 2000, 15, 323–360. [Google Scholar] [CrossRef]
- Liu, X.D.; Fedkiw, R.P.; Kang, M. A boundary capturing method for Poisson’s equation on irregular domains. J. Comput. Phys. 2000, 160, 151–178. [Google Scholar] [CrossRef] [Green Version]
- Couderc, F. Développement d’un code de calcul pour la simulation d’écoulements de fluides non miscibles: Application à la désintégration assistée d’un jet liquide par un courant gazeux. Ph.D. Thesis, ENSAE, Toulouse, France, 2007. [Google Scholar]
- Tanguy, S.; Menard, T.; Berlemont, A. A Level Set Method for vaporizing two-phase flows. J. Comput. Phys. 2007, 221, 837–853. [Google Scholar] [CrossRef]
- Rudman, M. A volume-tracking method for computing incompressible multifluid flows with large density variations. Int. J. Numer. Meth. Fluids 1998, 28, 357–378. [Google Scholar] [CrossRef]
- Sussman, M.; Puckett, E.G. A coupled level set and volume of fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 2000, 162, 301–337. [Google Scholar] [CrossRef] [Green Version]
- Sussman, M.; Smith, K.M.; Hussaini, M.Y.; Ohta, M.; Zhi-Wei, R. A sharp interface method for incompressible two-phase flows. J. Comput. Phys. 2007, 221, 469–505. [Google Scholar] [CrossRef]
- Hu, X.; Khoo, B.C.; Adams, N.A.; Huang, F.L. A conservative interface method for compressible flows. J. Comput. Phys. 2006, 219, 553–578. [Google Scholar] [CrossRef]
- Nangia, N.; Griffith, B.E.; Patankar, N.A.; Bhalla, A.P.S. A robust incompressible Navier-Stokes solver for high density ratio multiphase flows. J. Comput. Phys. 2019, 390, 548–594. [Google Scholar] [CrossRef] [Green Version]
- Nangia, N.; Patankar, N.A.; Bhalla, A.P.S. A DLM immersed boundary method based wave-structure interaction solver for high density ratio multiphase flows. J. Comput. Phys. 2019, 398, 108804. [Google Scholar] [CrossRef] [Green Version]
- Osher, S.; Sethian, J.A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamiltonâ Jacobi formulations. J. Comput. Phys. 1988, 79, 12–49. [Google Scholar] [CrossRef] [Green Version]
- Sethian, J.A. Level Set Methods and Fast Marching Methods; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Sethian, J.A. Evolution, Implementation, and Application of Level Set and Fast Marching Methods for Advancing Fronts. J. Comput. Phys. 2001, 169, 503–555. [Google Scholar] [CrossRef] [Green Version]
- Osher, S.; Fedkiw, R. Level Set Methods and Dynamic Implicit Surfaces; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Adalsteinsson, D.; Sethian, J.A. The Fast Construction of Extension Velocities in Level Set Methods. J. Comput. Phys. 1999, 148, 2–22. [Google Scholar] [CrossRef]
- Rhie, C.; Chow, W. Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 1983, 21, 1525–1532. [Google Scholar] [CrossRef]
- Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F.; Vargas, A.; von Loebbecke, A. A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 2008, 227, 4825–4852. [Google Scholar] [CrossRef] [Green Version]
- Chorin, A. Numerical solution of the Navier-Stokes equations. Math. Comp. 1968, 22, 745–762. [Google Scholar] [CrossRef]
- Temam, R. Sur l’approximation de la solution des equations de Navier-Stokes par la méthode des pas fractionnaires II. Archiv. Rat. Mech. Anal. 1969, 32, 377–385. [Google Scholar] [CrossRef]
- Sethian, J. A fast marching level set method for monotonically advancing fronts. Appl. Math. 1996, 93, 1591–1595. [Google Scholar] [CrossRef] [Green Version]
- Rouy, E.; Tourin, A. A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 1992, 29, 867–884. [Google Scholar] [CrossRef]
- Tsai, Y.H.R.; Cheng, L.T.; Osher, S.; Zhao, H.K. Fast sweeping algorithms for a class of Hamilton-Jacobi equations. SIAM J. Numer. Anal. 2003, 41, 673–694. [Google Scholar] [CrossRef]
- Jiang, G.S.; Shu, C.W. Efficient Implementation of Weighted ENO Schemes. J. Comput. Phys 1995, 126, 202–228. [Google Scholar] [CrossRef] [Green Version]
- Russo, G.; Smereka, P. A remark on computing distance functions. J. Comput. Phys. 2000, 163, 51–67. [Google Scholar] [CrossRef] [Green Version]
- duChene, A.; Min, C.; Gibou, F. Second-order accurate computation of curvatures in a level set framework using novel high-order reinitialization schemes. J. Sci. Comput. 2008, 35, 114–131. [Google Scholar] [CrossRef]
- Luddens, F.; Bergmann, M.; Weynans, L. Enablers for high-order level set methods in fluid mechanics. Int. J. Numer. Meth. Fluids 2015, 79, 654–675. [Google Scholar] [CrossRef] [Green Version]
- Desjardins, O.; Pitsch, H. A spectrally refined interface approach for simulating multiphase flows. J. Comput. Phys. 2009, 228, 1658–1677. [Google Scholar] [CrossRef]
- Herrmann, M. The influence of density ratio on the primary atomization of a turbulent jet in crossflow. Proc. Combust. Inst. 2011, 33, 2079–2088. [Google Scholar] [CrossRef]
- Chenadec, V.L.; Pitsch, H. A monotonicity preserving conservative sharp interface flow solver for high density ratio two-phase flows. J. Comput. Phys. 2013, 249, 185–203. [Google Scholar] [CrossRef]
- Martin, J.C.; Moyce, W.J. An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philos. Trans. R. Soc. London, Ser. A 1952, 244, 312–324. [Google Scholar]
- Grenier, N.; Antuono, M.; Colagrossi, A.; Touze, D.L.; Alessandrini, B. An Hamiltonian interface SPH formulation for multi-fluid and free-surface flows. J. Comput. Phys. 2009, 228, 8380–8393. [Google Scholar] [CrossRef]
- Khedkar, K.; Nangia, N.; Thirumalaisamy, R.; Bhalla, A.P.S. The inertial sea wave energy converter (ISWEC) technology: Device-physics, multiphase modeling and simulations. Ocean Eng. 2021, 229, 108879. [Google Scholar] [CrossRef]
- Bhalla, A.P.S.; Nangia, N.; Dafnakis, P.; Bracco, G.; Mattiazzo, G. Simulating water-entry/exit problems using Eulerian–Lagrangian and fully-Eulerian fictitious domain methods within the open-source IBAMR library. Appl. Ocean Res. 2020, 94, 101932. [Google Scholar] [CrossRef]
Ghost Fluid Method | CSF | New Method | ||||
---|---|---|---|---|---|---|
N | Error | Error | Error | Error | Error | Error |
16 | 8.08 | 1.88 | 3.55 | 1.94 | 5.21 | 7.31 |
32 | 3.42 | 7.50 | 3.12 | 1.18 | 9.26 | 1.42 |
64 | 5.13 | 7.97 | 2.12 | 5.44 | 1.36 | 1.47 |
128 | 2.79 | 4.74 | 6.44 | 1.38 | 2.22 | 1.92 |
Error for [12] | Error for Our Method | |
---|---|---|
2.5/16 | 7.3 | 7.48 |
2.5/32 | 4.5 | 4.7 |
2.5/64 | 5.5 | 1.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergmann, M.; Weynans, L. A Cartesian Method with Second-Order Pressure Resolution for Incompressible Flows with Large Density Ratios. Fluids 2021, 6, 402. https://doi.org/10.3390/fluids6110402
Bergmann M, Weynans L. A Cartesian Method with Second-Order Pressure Resolution for Incompressible Flows with Large Density Ratios. Fluids. 2021; 6(11):402. https://doi.org/10.3390/fluids6110402
Chicago/Turabian StyleBergmann, Michel, and Lisl Weynans. 2021. "A Cartesian Method with Second-Order Pressure Resolution for Incompressible Flows with Large Density Ratios" Fluids 6, no. 11: 402. https://doi.org/10.3390/fluids6110402
APA StyleBergmann, M., & Weynans, L. (2021). A Cartesian Method with Second-Order Pressure Resolution for Incompressible Flows with Large Density Ratios. Fluids, 6(11), 402. https://doi.org/10.3390/fluids6110402