A Review on BGK Models for Gas Mixtures of Mono and Polyatomic Molecules
Abstract
:1. Introduction
2. BGK Models for Gas Mixtures
2.1. Overview on Existing BGK Models for Gas Mixtures in the Literature
2.1.1. BGK Models for Gas Mixtures with One Collision Term
2.1.2. BGK Models for Gas Mixtures with Two Collision Terms
2.2. Theoretical Results of BGK Models for Gas Mixtures
2.2.1. Existence of Solutions
- 1.
- We assume periodic boundary conditions in x. Equivalently, we can construct solutions satisfying
- 2.
- We require that the initial values satisfy assumption 1.
- 3.
- We are on the bounded domain in space .
- 4.
- Suppose that satisfies , with.
- 5.
- Suppose for some .
- 6.
- Suppose for all
- 7.
- Assume that the collision frequencies are written as
2.2.2. Large-Time Behaviour
3. BGK Models for Gas Mixtures of Polyatomic Molecules
- Discrete dependency on the degrees of freedom in internal energy:
- A continuous scalar dependency on the degrees of freedom in internal energy:
- A discrete and continuous dependency of the degrees of freedom in internal energy:
- A vector-valued continuous dependency of the degrees of freedom in internal energy:
- Relaxation to an equilibrium distribution with equal temperature:
- Relaxation of the temperature due to a convex combination of temperatures in the Maxwell distribution:
- Relaxation of the temperatures with an additional kinetic equation:
- Relaxation of the temperatures with an additional relaxation term:
3.1. Summary of Existing BGK Models for Gas Mixtures of Polyatomic Molecules in the Literature
3.1.1. A BGK Model for Mixtures of Polyatomic Gases with One Relaxation Term
3.1.2. A BGK Model for Mixtures of Polyatomic Gases with Two Relaxation Terms
3.2. BGK Model for Mixtures of Polyatomic Gases with Intermediate Relaxation Terms
4. Conclusions
Funding
Conflicts of Interest
References
- Cercignani, C. Rarefied Gas Dynamics, from Basic Concepts to Actual Calculations; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Cercignani, C. The Boltzmann Equation and Its Applications; Springer: Berlin/Heidelberg, Germany, 1975. [Google Scholar]
- Goldmann, E.; Sirovich, L. Equations for Gas Mixtures. Phys. Fluids 1967, 10, 1928–1940. [Google Scholar] [CrossRef]
- Aoki, K.; Bardos, C.; Takata, S. Knudsen Layer for Gas Mixtures. J. Stat. Phys. 2003, 112, 629–655. [Google Scholar] [CrossRef]
- Pirner, M. Kinetic Modelling of Gas Mixtures; Würzburg University Press: Würzburg, Germany, 2018. [Google Scholar]
- Boscarino, S.; Cho, S.Y.; Groppi, M.; Russo, G. BGK models for inert mixtures: Comparison and applications. arXiv 2021, arXiv:2102.12757. [Google Scholar]
- Struchtrup, H. The BGK-model with velocity-dependent collision frequency. Contin. Mech. Thermodyn. 1997, 9, 23–31. [Google Scholar] [CrossRef]
- Haack, J.; Hauck, C.; Klingenberg, C.; Pirner, M.; Warnecke, S. A consistent BGK model with velocity-dependent collision frequency for gas mixtures. J. Stat. Phys. 2021, 184, 31. [Google Scholar] [CrossRef]
- Pieraccini, S.; Puppo, G. Implicit-explicit schemes for BGK kinetic equations. J. Sci. Comput. 2007, 32, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Filbet, F.; Jin, S. A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 2010, 20, 7625–7648. [Google Scholar] [CrossRef] [Green Version]
- Dimarco, G.; Pareschi, L. Numerical methods for kinetic equations. Acta Numer. 2014, 23, 369–520. [Google Scholar] [CrossRef] [Green Version]
- Bennoune, M.; Lemou, M.; Mieussens, L. Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics. J. Comput. Phys. 2008, 227, 3781–3803. [Google Scholar] [CrossRef]
- Bernard, F.; Iollo, A.; Puppo, G. Accurate asymptotic preserving boundary conditions for kinetic equations on Cartesian grids. J. Sci. Comput. 2015, 65, 735–766. [Google Scholar] [CrossRef] [Green Version]
- Crestetto, A.; Klingenberg, C.; Pirner, M. Kinetic/fluid micro-macro numerical scheme for a two component gas mixture. SIAM Multiscale Model. Simul. 2020, 18, 970–998. [Google Scholar] [CrossRef]
- Holway, L.H. New statistical models for kinetic theory: Methods of construction. Phys. Fluids 1966, 9, 1658–1673. [Google Scholar] [CrossRef]
- Perthame, B.; Pulvirenti, M. Weighted L∞ Bounds and Uniqueness for the Boltzmann BGK Model. Arch. Ration. Mech. Anal. 1993, 125, 289–295. [Google Scholar] [CrossRef]
- Yun, S.-B. Classical solutions for the ellipsoidal BGK model with fixed collision frequency. J. Differ. Equ. 2015, 259, 6009–6037. [Google Scholar] [CrossRef]
- Shakhov, E.M. Generalization of the Krook kinetic relaxation equation. Fluid Dyn. 1968, 3, 95–96. [Google Scholar] [CrossRef]
- Asinari, P. Asymptotic analysis of multiple-relaxation-time lattice Boltzmann schemes for mixture modeling. Comput. Math. Appl. 2008, 55, 1392–1407. [Google Scholar] [CrossRef] [Green Version]
- Garzó, V.; Santos, A.; Brey, J.J. A kinetic model for a multicomponent gas. Phyics Fluids A 1989, 1, 380–383. [Google Scholar] [CrossRef]
- Greene, J. Improved Bhatnagar-Gross-Krook model of electron-ion collisions. Phys. Fluids 1973, 16, 2022–2023. [Google Scholar] [CrossRef]
- Gross, E.P.; Krook, M. Model for collision processes in gases: Small-amplitude oscillations of charged two-component systems. Phys. Rev. 1956, 102, 593. [Google Scholar] [CrossRef]
- Hamel, B. Kinetic model for binary gas mixtures. Phys. Fluids 2004, 8, 418–425. [Google Scholar] [CrossRef]
- Sofonea, V.; Sekerka, R. BGK models for diffusion in isothermal binary fluid systems. Physica 2001, 3, 494–520. [Google Scholar] [CrossRef]
- Bobylev, A.V.; Bisi, M.; Groppi, M.; Spiga, G.; Potapenko, I.F. A general consistent BGK model for gas mixtures. Kinet. Relat. Model. 2018, 11, 1377. [Google Scholar] [CrossRef] [Green Version]
- Haack, J.R.; Hauck, C.D.; Murillo, M.S. A conservative, entropic multispecies BGK model. J. Stat. Phys. 2017, 168, 826–856. [Google Scholar] [CrossRef]
- Klingenberg, C.; Pirner, M.; Puppo, G. A consistent kinetic model for a two-component mixture with an application to plasma. Kinet. Relat. Model. 2017, 10, 445–465. [Google Scholar] [CrossRef] [Green Version]
- Andries, P.; Aoki, K.; Perthame, B. A consistent BGK-type model for gas mixtures. J. Stat. Phys. 2002, 106, 993–1018. [Google Scholar] [CrossRef]
- Brull, S.; Pavan, V.; Schneider, J. Derivation of a BGK model for mixtures. Eur. J. Mech. B/Fluids 2012, 33, 74–86. [Google Scholar] [CrossRef]
- Groppi, M.; Monica, S.; Spiga, G. A kinetic ellipsoidal BGK model for a binary gas mixture. EPL J. 2011, 96, 64002. [Google Scholar] [CrossRef]
- Brull, S. An ellipsoidal statistical model for gas mixtures. Commun. Math. Sci. 2015, 8, 1–13. [Google Scholar] [CrossRef]
- Todorova, B.; Steijl, R. Derivation and numerical comparison of Shakov and Ellipsoidal Statistical kinetic models for a monoatomic gas mixture. Eur. J. Mech.-B/Fluids 2019, 76, 390–402. [Google Scholar] [CrossRef] [Green Version]
- Klingenberg, C.; Pirner, M.; Puppo, G. Kinetic ES-BGK models for a multicomponent gas mixture. In Proceedings in Mathematics and Statistics of the International Conference on Hyperbolic Problems: Theory, Numeric and Applications; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Groppi, M.; Russo, G.; Stracquadanio, G. Semi-Lagrangian Approximation of BGK Models for Inert and Reactive Gas Mixtures. In Meeting on Particle Systems and PDE’s; Springer: Cham, Switzerland, 2018; pp. 53–80. [Google Scholar]
- Bellan, P.M. Fundamentals of Plasma Physics; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Perthame, B. Global existence to the BGK model of Boltzmann equation. J. Differ. Equ. 1989, 82, 191–205. [Google Scholar] [CrossRef] [Green Version]
- DiPerna, R.J.; Lions, P.-L. On the Cauchy problem for Boltzmann equations: Global existence and weak stability. Ann. Math. 1989, 130, 321–366. [Google Scholar] [CrossRef]
- Ukai, S. Stationary solutions of the BGK model equation on a finite interval with large boundary data. Transp. Theory Statist. Phys. 1992, 21, 487–500. [Google Scholar] [CrossRef]
- Yun, S.-B. Cauchy problem for the Boltzmann-BGK model near a global Maxwellian. J. Math. Phys. 2010, 51, 123514. [Google Scholar] [CrossRef] [Green Version]
- Desvillettes, L. Convergence to equilibrium in large time for Boltzmann and B.G.K. equations. Arch. Ration. Mech. Anal. 1990, 110, 73–91. [Google Scholar] [CrossRef]
- Saint-Raymond, L. From the BGK model to the Navier-Stokes equations. Ann. Sci. École Norm. Sup. 2003, 36, 271–317. [Google Scholar] [CrossRef] [Green Version]
- Klingenberg, C.; Pirner, M. Existence, Uniqueness and Positivity of solutions for BGK models for mixtures. J. Differ. Equs. 2018, 264, 207–227. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Pirner, M. Hypocoercivity for a BGK model for gas mixtures. J. Differ. Equ. 2019, 267, 119–149. [Google Scholar] [CrossRef] [Green Version]
- Achleitner, F.; Arnold, A.; Carlen, E. On multi-dimensional hypocoercive BGK models. Kinet. Relat. Models 2018, 11, 953–1009. [Google Scholar] [CrossRef] [Green Version]
- Morse, T.F. Kinetic Model for Gases with Internal Degrees of Freedom. Phys. Fluids 1964, 7, 159–169. [Google Scholar] [CrossRef]
- Andries, P.; Perthame, B. The ES-BGK model equation with correct Prandtl number. AIP Conf. Proc. 2001, 30, 30–36. [Google Scholar]
- Mathiaud, J.; Mieussens, L. BGK and Fokker-Planck models of the Boltzmann equation for gases with discrete levels of vibrational energy. J. Stat. Phys. 2020, 494, 1076–1095. [Google Scholar] [CrossRef] [Green Version]
- Bernard, F.; Iollo, A.; Puppo, G. BGK Polyatomic Model for Rarefied Flow. J. Sci. Comput. 2019, 78, 1893–1916. [Google Scholar] [CrossRef] [Green Version]
- Park, S.J.; Yun, S.-B. Cauchy problem for the ellipsoidal BGK model for polyatomic particles. J. Differ. Equ. 2019, 266, 7678–7708. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Yun, S. Entropy production estimates for the polyatomic ellipsoidal BGK model. Appl. Math. Lett. 2016, 58, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Brull, S.; Schneider, J. On the ellipsoidal statistical model for polyatomic gases. Contin. Mech. Thermodyn. 2009, 20, 489–508. [Google Scholar] [CrossRef] [Green Version]
- Pirner, M. A BGK model for gas mixtures of polyatomic molecules allowing for slow and fast relaxation of the temperatures. J. Stat. Phys. 2018, 173, 1660–1687. [Google Scholar] [CrossRef] [Green Version]
- Todorova, B.; White, C.; Steijl, R. Modeling of nitrogen and oxygen gas mixture with a novel diatomic kinetic model. AIP Adv. 2020, 10, 095218. [Google Scholar] [CrossRef]
- Bisi, M.; Monaco, R.; Soares, A.J. A BGK model for reactive mixtures of polyatomic gases with continuous internal energy. J. Phys. A Math. Theor. 2018, 51, 125501. [Google Scholar] [CrossRef] [Green Version]
- Bisi, M.; Cáceres, M. A BGK relaxation model for polyatomic gas mixtures. Commun. Math. Sci. 2016, 14, 297–325. [Google Scholar] [CrossRef]
- Tantos, C.; Varoutis, S.; Day, C. Heat transfer in binary polyatomic gas mixtures over the whole range of the gas rarefaction based on kinetic deterministic modeling. Phys. Fluids 2021, 33, 022004. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pirner, M. A Review on BGK Models for Gas Mixtures of Mono and Polyatomic Molecules. Fluids 2021, 6, 393. https://doi.org/10.3390/fluids6110393
Pirner M. A Review on BGK Models for Gas Mixtures of Mono and Polyatomic Molecules. Fluids. 2021; 6(11):393. https://doi.org/10.3390/fluids6110393
Chicago/Turabian StylePirner, Marlies. 2021. "A Review on BGK Models for Gas Mixtures of Mono and Polyatomic Molecules" Fluids 6, no. 11: 393. https://doi.org/10.3390/fluids6110393
APA StylePirner, M. (2021). A Review on BGK Models for Gas Mixtures of Mono and Polyatomic Molecules. Fluids, 6(11), 393. https://doi.org/10.3390/fluids6110393