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Abstract: We consider the Bathnagar–Gross–Krook (BGK) model, an approximation of the Boltzmann
equation, describing the time evolution of a single momoatomic rarefied gas and satisfying the
same two main properties (conservation properties and entropy inequality). However, in practical
applications, one often has to deal with two additional physical issues. First, a gas often does not
consist of only one species, but it consists of a mixture of different species. Second, the particles can
store energy not only in translational degrees of freedom but also in internal degrees of freedom
such as rotations or vibrations (polyatomic molecules). Therefore, here, we will present recent BGK
models for gas mixtures for mono- and polyatomic particles and the existing mathematical theory for
these models.

Keywords: multi-fluid mixture; kinetic model; BGK approximation; degrees of freedom in internal
energy; existence of solutions; large-time behaviour

1. Introduction

In this paper, we concern ourselves with a kinetic description of gas mixtures. In the
case of mono atomic molecules and two species, this is usually done with the Boltzmann
equation for the distribution functions f1 = f1(x, v, t), f2 = f2(x, v, t), see for example [1,2].
Here, x ∈ Rd and v ∈ Rd are the phase space variables, position and velocity of the particles,
and t ≥ 0 denotes the time. The Boltzmann equation for gas mixtures is of the form

∂t f1 + v · ∇x f1 = Q11( f1, f1) + Q12( f1, f2),

∂t f2 + v · ∇x f2 = Q22( f2, f2) + Q21( f2, f1)

where the collision operators Q11( f1, f1) and Q22( f2, f2) satisfy

∫
Qkk( fk, fk)

 1
mkv

mk|v|2

dv = 0 (1)

for k = 1, 2, and Q12( f1, f2) and Q21( f2, f1) satisfy∫
Q12( f1, f2)dv = 0,

∫
Q21( f2, f1)dv = 0,∫

(m1vQ12( f1, f2) + m2vQ21( f2, f1))dv = 0,∫
(m1|v|2Q12( f1, f2) + m2|v|2Q21( f2, f1))dv = 0.

(2)

The properties (1) ensure conservation of the number of particles, momentum and
energy in interactions of one species with itself. The properties (2) ensure conservation of
the number of particles, total momentum and total energy in interactions of one species
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with the other species. For the proof, see for example [3]. In addition, the collision operator
satisfies the inequalities [4]. ∫

Qkk( fk, fk) ln fkdv ≤ 0, k = 1, 2 (3)∫
Q12( f1, f2) ln f1dv +

∫
Q21( f2, f1) ln f2dv ≤ 0 (4)

In the first inequality, (3) we have equality if and only if fk is equal to a Maxwell
distribution given by

Mk =
nk√

2π Tk
mk

d exp

−|v− uk|2

2 Tk
mk

, k = 1, 2. (5)

Note that in this paper we shall write Tk instead of kBTk, where kB is Boltzmann’s
constant. Here, for any f1, f2 : Λ ⊂ Rd ×Rd ×R+

0 → R with (1 + |v|2) f1, (1 + |v|2) f2 ∈
L1(R3), f1, f2 ≥ 0, we relate the distribution functions to macroscopic quantities by mean-
values of fk,

∫
fk(v)

 1
v

mk|v− uk|2

dv =:

 nk
nkuk

dnkTk

, k = 1, 2, (6)

where nk is the number density, uk the mean velocity and Tk the mean temperature of
species k (k = 1, 2). Additionally to a Maxwell distribution in the second inequality (4),
we have equality if and only if u1 = u2 and T1 = T2 [4]. In the following, we refer to
these inequalities including the characterization of equality as entropy inequalities of the
H-Theorem.

If we are close to equilibrium [5,6], the complicated interaction terms of the Boltzmann
equation can be simplified by a BGK approximation. This consists of a collision frequency νijnj
multiplied by the deviation of the distribution functions from a local Maxwell distribution.

∂t f1 + v · ∇x f1 = ν11n1(M1 − f1) + ν12n2(M12 − f1),

∂t f2 + v · ∇x f2 = ν22n2(M2 − f2) + ν21n1(M21 − f2),
(7)

The collision frequencies per density νkj are assumed to be dependent only on x and
t and not on the microscopic velocity v. For references also taking into account also a
dependency on the microscopic velocity, v see [7] for the one species case and [8] for the
gas mixture case. Here, Mk is given by (5) and M12, M21 are given by

M12 =
n1√

2π T12
m1

d exp(−|v− u12|2

2 T12
m1

),

M21 =
n2√

2π T21
m2

d exp(−|v− u21|2

2 T21
m2

),
(8)

for suitable u12, u21, T12, T21 such that the conservation properties (2) are satisfied. In the
literature, there is another type of approximation of the form

∂t fk + v · ∇x fk = νk(M(k) − fk), νk =
2

∑
j=1

νkjnk (9)

with only one relaxation term taking into account both type of interactions, inter- and
intra-species interactions, with one Maxwell distribution
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M(k)(x, v, t) =
nk√

2π T(k)

mk

d exp(−|v− u(k)|2

2 T(k)

mk

), (10)

for suitable n(k), u(k), T(k) such that the conservation properties (2) are satisfied. BGK mod-
els give rise to efficient numerical computation, and are asymptotic-preserving. This means
that they remain efficient even approaching the hydrodynamic regime [9–14]. However,
the BGK approximation has one drawback. This is its inability to reproduce the correct
Boltzmann hydrodynamic regime in the asymptotic continuum limit. Therefore, a modified
version called the ES-BGK approximation was suggested by Holway for one species [15].
Then the H-Theorem of this model was shown in [16] and the existence and uniqueness
of mild solutions in [17]. Alternatively, the Shakov model [18] and a BGK model with
velocity-dependent collision frequency [7] was suggested, to achieve the correct Prandtl
number. For the BGK model with velocity-dependent collision frequency, it is shown
that a power law for the collision frequency can also lead to the proper Prandtl number.
This BGK model with velocity-dependent collision frequency should be also constructed
in a way such that it satisfies the conservation properties. So that this works one has
to replace the Maxwell distribution by a different function, for details see [7]. For this
model, an H-Theorem can also be proven. The existence of these modified functions is
proven in [8]. However, since BGK models can be the basis used to build extended models
as ES-BGK models, Shakov models and BGK models with velocity-dependent collision
frequency, we will mainly review BGK models for gas mixtures in this paper.

In this paper, we are interested in extensions of a BGK model to gas mixtures, since in
applications one often has to deal with mixtures instead of a single gas. Moreover, evolution
of a polyatomic gas is very important in applications; for instance, air consists of a gas
mixture of polyatomic molecules. However, most kinetic models modelling air deal with
the case of a mono-atomic gas consisting of only one species.

The outline of the paper is as follows: In Section 2, we will present typical ansatzes for
modelling gas mixtures with the BGK model and a review on recent results concerning the
existence of solutions and large-time behaviour. In Section 3 we will give a summary of the
existing BGK models for gas mixtures of polyatomic molecules and a review on existing
theoretical results.

2. BGK Models for Gas Mixtures

In the following, we will present existing BGK models for gas mixtures. Then, we
will give an overview of existing theoretical results (existence of solutions, large-time
behaviour).

2.1. Overview on Existing BGK Models for Gas Mixtures in the Literature

Here we will focus on gas mixtures modelled via a BGK approach. In the literature
one can find two types of BGK model for gas mixtures. Just as the Boltzmann equation for
gas mixtures has a sum of collision terms on the right-hand side, one type of BKG model
also contains a sum of BGK-type relaxation terms on the right-hand side (7). Examples
are the models of Asinari [19], Cercignani [2], Garzo, Santos, Brey [20], Greene [21], Gross
and Krook [22], Hamel [23], Sofena [24], and recent models by Bobylev, Bisi, Groppi, Spiga,
Potapenko [25]; Haack, Hauck, Murillo [26] and by Klingenberg, Pirner, Puppo [27]. The
other types of models contain only one collision term on the right-hand side (9). Examples
for this are Andries, Aoki and Perthame [28], and the models in [29,30].A comparison
of these models concerning their hydrodynamic limit can be found in [6] There are also
many results concerning the hydrodynamic limit via the Chapman Enskog expansion, see
for example [13,14,26,28,29] and extensions to ES-BGK models, Shakov models and BGK
models with velocity-dependent collision frequency [8,30–33].
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2.1.1. BGK Models for Gas Mixtures with One Collision Term

BGK models for gas mixtures with one interaction term [28–30] on the right-hand side
have the form (9). Now, the interspecies velocities u(k) and temperatures T(k) in (10) have
to be determined such that the conservation of total momentum and total energy

2

∑
k

∫
νk(M(k) − fk)

(
v
|v|2
)

dv = 0

as in (2) is satisfied. This gives d+ 1 constraints for the 2(d+ 1) quantities u(k), T(k), k = 1, 2.
Therefore there is additional freedom to choose these quantities. Examples in the literature
are given in [28–30]. In the first case [28] the quantities u(k) and T(k) are chosen such that
the exchange terms of momentum and energy

∫
νk(M(k) − fk)

(
v
|v|2
)

dv

coincide with the exchange terms of momentum and energy of the Boltzmann equation for
Maxwell molecules. For the details, see [28]. This leads to the choice

u(k) = uk +
2

∑
j=1

2
χkj

νk

mj

mk + mj
nj(uj − uk)

T(k) = Tk −
mk
d
|u(k) − uk|2

+
2

∑
j=1

2
mkmj

mk + mj

χkj

νkj
nj

2
mk + mj

(Tj − Tk +
mj

d
|uj − uk|2)

(11)

where χ12, χ21 are parameters which are related to the differential cross section. For the
detailed expressions, see [28].

The model also satisfies the conservation properties (2) and the H-theorem (4). In the
H-theorem, one has equality if and only if the distribution functions are Maxwell distri-
butions with the same mean velocity and temperature. The model of Andries, Aoki and
Perthame have another property (see proposition 3.2 in [28]). It is called the indifferentia-
bility principle. This means the following. When the masses mk, k = 1, 2 and the collision
frequencies νkj, k, j = 1, 2 are the same for each species, the total distribution function
f = f1 + f2 satisfies a single species BGK equation.

A derivation of the Navier–Stokes system in the compressible regime and the corre-
sponding transport coefficients can be found in Section 4 of [28].

Another model in the literature with shape (9) is the model in [30]. Here u(k), T(k) are
chosen such that all interspecies velocities u(k) and temperatures T(k) are equal

u(k) = ū, T(k) = T̄

for all k = 1, 2, where ū and T̄ are determined such that the conservation properties as in
(2) are satisfied. This leads to the choice

ū =
∑2

s=1 νsmsnsus

∑2
s=1 νsmsns

, T̄ =
∑2

s=1 νsns(ms(|us|2 − |ū|2) + dTs)

d ∑2
s=1 νsns

In [34], it is proven that the positivity of the temperature T̄ is guaranteed and the
H-Theorem holds for the space-homogeneous case. The hydrodynamic limit and corre-
sponding transport coefficients of these models can be found in Section 5 in [6].

Another model with shape (9) is the model in [29]. Here the aim was to derive the BGK
model for gas mixtures from an entropy minimization principle ensuring that the model
satisfies the exact Fick and Newtons laws in the hydrodynamical limit to the Navier–Stokes
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equations. This leads to a choice of different values for u(k) and equal values T(k) = T∗

for all k = 1, 2 for the temperatures. For the detailed expressions, see [29]. The transport
equations of the hydrodynamic regime for this model can be found in Section 5 of [29].

2.1.2. BGK Models for Gas Mixtures with Two Collision Terms

Now, we review BGK models for gas mixtures with two collision terms. In the case of a
gas mixture, if we assume that we only have binary interactions, there are two possibilities.
The particles of one species can interact with themselves or with particles of the other
species. One can take this into account by writing two interaction terms in Equation (7).
This means that the right-hand side of the equations now consists of a sum of two relaxation
operators. This structure is also described in [1,2]. This leads to two different types of
equilibrium distribution. Due to an interaction of a species k with itself, we expect a
relaxation to an equilibrium distribution Mk. In addition due to the interaction of a species
with the other species, we expect a relaxation towards a different mixture equilibrium
distribution Mkj.

The quantities νkknk are the one-species collision frequencies, while the collision frequen-
cies νkjnj are related to interspecies interactions. To be flexible in choosing the relationship
between the interspecies collision frequencies, we assume the following relationship.

ν12 = εν21, 0 < ε ≤ 1. (12)

The restriction on ε is without loss of generality. If ε > 1, we can exchange the
notation 1 and 2 and choose 1

ε instead.
Let us provide an example. We consider a plasma with electrons and ions. Let us first

denote the electrons with the index e and ions with the index i. Then a common relationship
found in the literature [35] is νie = me

mi
νei or equivalent νei =

mi
me

νie. Now, if we want to
use the notation 1 and 2, we have two possibilities. The first one is to choose notation 1
for electrons and notation 2 for ions. In this case, the mass ratio of the two particles is
m2
m1

>> 1, and we have ν12 = m2
m1

ν21. Therefore, we have ε = m2
m1

> 1. The other possibility
is to choose notation 1 for ions and notation 2 for electrons. In this case, the mass ratio of
the two kinds of particles is m2

m1
<< 1, and we have ν12 = m2

m1
ν21; therefore, ε = m2

m1
< 1. So,

in this case, we would use the second choice for the notation. The condition (12) will enter
in the proof of the H-Theorem.

Additionally, we assume that all collision frequencies are strictly positive. The Maxwell
distribution Mk in (8) has the same density, mean velocity and temperature as fk. With
this choice, it can be guaranteed that we preserve conservation of the number of particles,
momentum and energy in interactions of a species with itself (see Section 2.2 in [27]). The
remaining parameters u12, u21, T12, T21 will now be determined using conservation of total
momentum and total energy. Due to the choice of the densities, one can prove conservation
of the number of particles, see Theorem 2.1 in [27]. We further assume that u12 is a linear
combination of u1 and u2

u12 = δu1 + (1− δ)u2, δ ∈ R, (13)

then we have conservation of total momentum provided that

u21 = u2 −
m1

m2
ε(1− δ)(u2 − u1), (14)

see Theorem 2.2 in [27]. If we further assume that T12 is of the following form

T12 = αT1 + (1− α)T2 + γ|u1 − u2|2, 0 ≤ α ≤ 1, γ ≥ 0, (15)

then we have conservation of total energy provided that
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T21 =

[
1
d

εm1(1− δ)

(
m1

m2
ε(δ− 1) + δ + 1

)
− εγ

]
|u1 − u2|2

+ε(1− α)T1 + (1− ε(1− α))T2,
(16)

see Theorem 2.3 in [27]. In order to ensure the positivity of all temperatures, we need to
restrict δ and γ to

0 ≤ γ ≤ m1

d
(1− δ)

[
(1 +

m1

m2
ε)δ + 1− m1

m2
ε

]
, (17)

and
m1
m2

ε− 1

1 + m1
m2

ε
≤ δ ≤ 1, (18)

see Theorem 2.5 in [27]. For this model, one can prove an H-theorem as in (4) with
equality if and only if fk, k = 1, 2 are Maxwell distributions with equal mean velocity and
temperature, see [27].

This model contains a lot of proposed models in the literature as special cases. Exam-
ples are the models of Asinari [19], Cercignani [2], Garzo, Santos, Brey [20], Greene [21],
Gross and Krook [22], Hamel [23], Sofena [24], and recent models by Bobylev, Bisi, Groppi,
Spiga, Potapenko [25]; Haack, Hauck, Murillo [26].

The second last model ([25]) presents an additional motivation in terms of how it can
be derived formally from the Boltzmann equation. The last one [26] presents a Chapman–
Enskog expansion with transport coefficients in Section 5, a comparison with other BGK
models for gas mixtures in Section 6 and a numerical implementation in Section 7.

2.2. Theoretical Results of BGK Models for Gas Mixtures

In this section, we present theoretical results for the models presented in Section 2.1.
We start by reviewing some existing theoretical results for the one-species BGK model.
Concerning the existence of solutions, the first result was proven by Perthame in [36]. It is a
result on global weak solutions for general initial data. This result was inspired by Diperna
and Lion from a result on the Boltzmann equation [37]. In [16], the authors consider mild
solutions and also obtain uniqueness in the periodic bounded domain. There are also
results of stationary solutions on a one-dimensional finite interval with inflow boundary
conditions in [38]. In a regime near a global Maxwell distribution, the global existence
in the whole space R3 was established in [39]. Concerning convergence to equilibrium,
Desvillettes proved strong convergence to equilibrium considering the thermalizing effect
of the wall for reverse and specular reflection boundary conditions in a periodic box [40].
In [41], the fluid limit of the BGK model is considered.

In the following, we will present theoretical results for BGK models for gas mixtures.

2.2.1. Existence of Solutions

First, we will present an existing result of mild solutions under the following assump-
tions for both type of models.

1. We assume periodic boundary conditions in x. Equivalently, we can construct solu-
tions satisfying

fk(t, x1, ..., xd, v1, ..., vd) = fk(t, x1, ..., xi−1, xi + ai, xi+1, ...xd, v1, ...vd)

for all i = 1, ..., d and a suitable {ai} ∈ Rd with positive components, for k = 1, 2.
2. We require that the initial values f 0

k , i = 1, 2 satisfy assumption 1.
3. We are on the bounded domain in space Λ = {x ∈ RN |xi ∈ (0, ai)}.
4. Suppose that f 0

k satisfies f 0
k ≥ 0, (1 + |v|2) f 0

k ∈ L1(Λ×Rd) with∫
f 0
k dxdv = 1, k = 1, 2.
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5. Suppose Nq( f 0
k ) := sup f 0

k (x, v)(1 + |v|q) = 1
2 A0 < ∞ for some q > d + 2.

6. Suppose γk(x, t) :=
∫

f 0
k (x− vt, v)dv ≥ C0 > 0 for all t ∈ R.

7. Assume that the collision frequencies are written as

νjk(x, t)nk(x, t) = ν̃jk
nk(x, t)

nj(x, t) + nk(x, t)
, j, k = 1, 2, (19)

with constants ν̃jk > 0.

With these assumptions, we can show the following Theorem, including the existence
of mild solutions in the following sense.

Definition 1. We denote ( f1, f2) with (1 + |v|2) fk ∈ L1(RN), f1, f2 ≥ 0 a mild solution to (7)
under the conditions of the collision frequencies (19) if f1, f2 satisfy

fk(x, v, t) = e−αk(x,v,t) f 0
k (x− tv, v)

+ e−αk(x,v,t)
∫ t

0
[ν̃kk

nk(x + (s− t)v, s)
nk(x + (s− t)v, s) + nj(x + (s− t)v, s)

Mk(x + (s− t)v, v, s)

+ ν̃kj
nj(x + (s− t)v, s)

nk(x + (s− t)v, s) + nj(x + (s− t)v, s)
Mkj(x + (s− t)v, v, s)]eαk(x+(s−t)v,v,s)ds,

(20)

where αk is given by

αk(x, v, t) =
∫ t

0
[ν̃kk

nk(x + (s− t)v, s)
nk(x + (s− t)v, s) + nj(x + (s− t)v, s)

+ν̃kj
nj(x + (s− t)v, s)

nk(x + (s− t)v, s) + nj(x + (s− t)v, s)
]ds,

(21)

for k, j = 1, 2, k 6= j.

The proof can be found in [42].The main idea consists of proving Lipschitz continuity
of the Maxwell distribution Mkj and bounds on the macroscopic quantities needed for this.

Theorem 1. Under assumptions 1.–7., there exists a unique non-negative mild solution ( f1, f2) ∈
C(R+; L1((1 + |v|2)dvdx) of the initial value problem (7) with (6), (13), (14), (15) and (16), and
to the initial value problem to (9) with (11) . Moreover, for all t > 0 the following bounds hold:

|uk(t)|, |ukj(t)| ≤ A(t) < ∞, nk(t) ≥ C0e−t > 0, Tk(t), Tkj(t) ≥ B(t) > 0,

for k, j = 1, 2, k 6= j and some constants A(t), B(t).

2.2.2. Large-Time Behaviour

In this section, we will give an overview over existing results on the large-time
behaviour for BGK models for gas mixtures. We denote with H( f ) =

∫
f ln f dv the

entropy of a function f and with H( f |g) =
∫

f ln f
g dv the relative entropy of f and g. Then,

one can prove the following theorems. The proofs are given in [14].

Theorem 2. In the space-homogeneous case for model (7) with (6), (13), (14), (15) and (16) we
have the following decay rate of distribution functions f1 and f2

|| fk −Mk||L1(dv) ≤ 4e−
1
2 Ct[H( f 0

1 |M0
1) + H( f 0

2 |M0
2)]

1
2 , k = 1, 2

where C is a constant given by

C = min{ν11n1 + ν12n2, ..., ν21n1 + ν22n2},

and the index 0 denotes the value at time t = 0.
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The main task is proving the inequality

ν12n2H(M12) + ν21n2H(M21) ≤ ν12n2H(M1) + ν21n1H(M2)

Therefore, this theorem can also be proven in a similar way for the model (9) with (11),
since a corresponding inequality for the model (9) with (11) of the form

ν1H(M(1)) + ν2H(M(2)) ≤ ν1H(M1) + ν2H(M2)

is proven in [28]. The next two theorems can also be easily extended to the model (9)
with (11) because it satisfies the same macroscopic behaviour as the model (7) with
the choice.

δ = −2
m2

m1 + m2

χ12

ν12
+ 1,

α = −4
m1m2

(m1 + m2)2
χ12

ν12
+ 1,

γ =
4
3

m1m2
2

(m1 + m2)2
χ12

ν12
n1n2(1−

χ12

ν12
).

Theorem 3. Suppose that ν12 is constant in time. In the space-homogeneous case of model (7) with
(6), (13), (14), (15) and (16), we have the following decay rate of the velocities

|u1(t)− u2(t)|2 = e−2ν12(1−δ)
(

n2+
m1
m2

n1

)
t|u1(0)− u2(0)|2.

Theorem 4. Suppose ν12 is constant in time. In the space-homogeneous case of model (7) with (6),
(13), (14), (15) and (16), we have the following decay rate of the temperatures

T1(t)− T2(t) = e−C1t
[

T1(0)− T2(0) +
C2

C1 − C3
(e(C1−C3)t − 1)|u1(0)− u2(0)|2

]
,

where the constants are defined by

C1 = (1− α)ν12(n2 + n1),

C2 = ν12

(
n2

(
(1− δ)2 +

γ

m1

)
− n1

(
1− δ2 − γ

m1

))
,

C3 = 2ν12(1− δ)

(
n2 +

m1

m2
n1

)
.

The proofs can be found in [14]. There are also results in the space-inhomogeneous
case for the linearized collision operator of the model (7) with (6), (13), (14), (15) and (16)
for two species, see [43]. For this, we consider a solution ( f1, f2) to (7) which is close to the
equilibrium ( f ∞

1 , f ∞
2 ) with

fk(x, v, t) = f ∞
k (v) + hk(x, v, t), f ∞

k (v) =
n∞,k

(2π/mk)d/2 exp
(
− |v|

2

2/mk

)
(22)
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Then, we have

nk(x, t) = n∞,k + σk(x, t) with σk(x, t) =
∫

hk(x, v, t)dv

(nkuk)(x, t) =
∫

v fk(x, v, t)dv = µk(x, t) with µk(x, t) =
∫

vhk(x, v, t)dv

Pk(x, t) =
mk
d

∫
|v− uk|2 fk(x, v, t)dv = n∞,k +

1
d

[
τk(x, t)− mk|µk(x, t)|2

n∞,k + σk(x, t)

]
with τk(x, t) = mk

∫
|v|2hk(x, v, t)dv.

(23)

Now we perform Taylor expansion of the terms M1, M2, M12, M21 with respect to
σ1, σ2, µ1, µ2, τ1 and τ2 around zero and only take first order terms. Moreover, one neglects
quadratic terms of the form σkσl , σkµl and σkτl . Then one obtains the linearized system

∂th1 + v · ∇xh1

= ν11n∞,1

(
f ∞
1 (v)[(

1 + d/2
n∞,1

− m1|v|2
2n∞,1

)σ1(x, t) +
m1

n∞,1
v · µ1(x, t) +

1
n∞,1

(−1
2
+

m1|v|2
2d

)τ1(x, t)]− h1

)
+ ν12n∞,2( f ∞

1 [
1

n∞,1
(1 +

α

2
(d−m1|v|2))σ1 +

1
2

1
n∞,2

(1− α)(d−m1|v|2)σ2

+
1

n∞,1
δm1v · µ1 +

1
n∞,2

(1− δ)m1v · µ2 +
1
2

1
n∞,1

α(
1
d

m1|v|2 − 1)τ1 +
1
2

1
n∞,2

(1− α)(
1
d

m1|v|2 − 1)τ2]− h1),

∂th2 + v · ∇xh2

= ν22n∞,2

(
f ∞
2 (v)[(

1 + d/2
n∞,2

− m2|v|2
2n∞,2

)σ2(x, t) +
m2

n∞,2
v · µ2(x, t) +

1
n∞,2

(−1
2
+

m2|v|2
2d

)τ2(x, t)]− h2

)
+ ν21n∞,1( f ∞

2 [
1
2

1
n∞,1

ε(1− α)(d−m2|v|2)σ1 +
1

n∞,2
(1 +

1− ε(1− α)

2
(d−m2|v|2))σ2

+
1

n∞,1
ε(1− δ)m1v · µ1 +

1
n∞,2

(1− m1

m2
ε(1− δ))m2v · µ2 +

1
2

1
n∞,1

ε(1− α)(
1
d

m2|v|2 − 1)τ1

+
1
2

1
n∞,2

(1− ε(1− α))(
1
d

m2|v|2 − 1)τ2]− h2).

(24)

and the following hypocoercivity result.

Theorem 5. Incorporate x into the d-dimensional torus of side length L. For each side length
L > 0 and dimension d = 1, there exists an entropy functional e( f1, f2) satisfying

cd(L) e( f1, f2) ≤ || f1− f ∞
1 ||2

L2
(
(

f ∞
1 (v)
n∞,1

)−1dvdx
)+ || f2− f ∞

2 ||2
L2
(
(

f ∞
2 (v)
n∞,2

)−1dvdx
) ≤ Cd(L) e( f1, f2)

with some positive constants cd, Cd that depend on L.
Moreover, assume that

ν11n∞,1 + ν12n∞,2 = 1 and ν22n∞,2 + ν21n∞,1 = 1,

then any solution (h1(t), h2(t)) to (24) in dimension d = 1 with e(h1(0), h2(0)) < ∞, normalized
according to ∫

σ1(x, 0)dx =
∫

σ2(x, 0)dx = 0,∫
(m1µ1(x, 0) + m2µ2(x, 0))dx = 0,

∫
(τ1(x, 0) + τ2(x, 0))dx = 0,

(25)

then satisfies
e(h1(t), h2(t)) ≤ e−C̃te(h1(0), h2(0)),
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where C̃ is given by

C̃ = 2 min{ν12n∞,2(1− δ), ν12n∞,2(1− α), ν11n∞,1 + ν12n∞,2, ν12n∞,1
m1

m2
(1− δ), ν12n∞,1(1− α), ν22n∞,2 + ν12n∞,1, 2µ}.

Here, µd(L) is a one species decay rate developed in Theorem 1.1 in [44].

3. BGK Models for Gas Mixtures of Polyatomic Molecules

In this section, we review recent models for gas mixtures of polyatomic molecules.
This means that we take into account that the particles can also store energy in degrees of
freedom in internal energy such as rotations and vibrations. We start with an overview on
the one-species models to introduce typical modelling aspects in this context.

First, we introduce a dependency on the degrees of freedom in internal energy. In the
literature, this is done in different ways:

• Discrete dependency on the degrees of freedom in internal energy:

Let us consider a system with l > 0 internal energy states El . Then, we introduce l
distribution functions f (1)l = f (1)l (x, v, t, El), one distribution function for each internal
energy state El . This is for example considered in [45].

• A continuous scalar dependency on the degrees of freedom in internal energy:

In this description we take into account degrees of freedom in internal energy by introduc-
ing an internal energy parameter I which takes into account all degrees of freedom with a
continuous scalar variable. Then, we introduce a distribution function f (2) = f (2)(x, v, t, I).
This is done for example in [46].

• A discrete and continuous dependency of the degrees of freedom in internal energy:

In this description, the rotations and vibrations of a diatomic gas are described in different
ways. Here we define the distribution function f (3) = f (3)(x, v, t, I, i) where I ∈ R+

0
describes the internal energy in a continuous way, whereas i denotes the ith vibrational
energy level of the corresponding vibrational energy iRhν

kB
(h is the Planck constant, R

the fundamental gas constant, while ν is the fundamental vibrational frequency of the
molecule). This is performed for example in [47].

• A vector-valued continuous dependency of the degrees of freedom in internal energy:

Finally, we consider a distribution function f (4) = f (4)(x, v, t, η) where η ∈ Rl is a vector-
valued continuous variable for the internal degrees of freedom, one component for each
degree of freedom. Then, |η|2 has the meaning of microscopic energy in the internal degrees
of freedom. In particular, one can also describe rotations and vibrations in a separate way.
This is introduced in [48].

In this article, we focus on the treatment of the additional continuous variable. For
this we consider a distribution function f (x, v, t, E) where E represents the dependency on
the internal degrees of freedom and can be either a scalar I or a vector η. So f can be either
f (2), f (3) for a fixed i or f (4). Then we define the macroscopic quantities as

∫
f (v, E)


1
v
E

m|v− u|2
me(E)

dvdE =:


n

nu
nĒ
dTtr

lnTint

, (26)

where we have e(I) = I2/l in the scalar case and e(η) = |η − η̄|2 in the vector-valued
case. In many cases, Ē is assumed to be zero, but we keep it here to be as general as
possible. Here, we note that, in contrast to the monoatomic case (6), we have an additional
temperature related to the degrees of freedom in internal energy Tint. From the physical
principle equipartition of internal energy, one expects that, in equilibrium, these two
temperatures are the same. To achieve this, there are different strategies in modelling:
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• Relaxation to an equilibrium distribution with equal temperature:

We define the equilibrium temperature as

Tequ =
d

d + l
Ttr +

l
d + l

Tint

Then, we consider the equilibrium distribution

Mequ =
n Λl√

2π
Tequ
m

d
(Tequ)l/2

e
−m|v−u|2

2Tequ −
e(E)
Tequ . (27)

with Λl being a constant ensuring that the integral of Mequ with respect to v and E is equal
to n and the BGK model

∂t f + v · ∇x f = νn(Mequ − f )

If we multiply this equation with respect to e(E), we obtain the macroscopic equation
in the space-homogeneous case.

∂tTint =
νm
l
(Tequ − Tint) =

νm
l

d
d + l

(Ttr − Tint)

so Tint relaxes towards Ttr with a rate dependent on the collision frequency ν.

• Relaxation of the temperature due to a convex combination of temperatures in the
Maxwell distribution:

We define Trel = θTequ + (1− θ)Tint, with 0 < θ ≤ 1. Then, we consider the following
Maxwell distribution

G̃[ f ] =
n Λl√
2π T

m

d
1

√
Trel

l exp

(
−1

2
m|v− u|2

T
− I

l
2

Trel

)
,

with the temperature T = (1− θ)Ttr + θTequ. Λl is a constant ensuring that the integral of
G̃[ f ] with respect to v and I is equal to the density n. Then the model is given by

∂t f + v · ∇x f = Aν(G̃[ f ]− f )

with the collision frequency Aν. If we choose f (2) as the distribution function, this corre-
sponds to the model in [46]. For this model one can show conservation of the number of
particles, momentum and total energy. Moreover, one can prove an entropy inequality.
Here, the equilibrium is characterized by a Maxwell distribution with equal temperatures
Tequ = Ttr = Tint; for details see Section 3 in [46]. One can also show that there exists a
unique mild solution to this model. This is proven in [49].

With the convex combination in θ one takes into account that Ttr and Tint relax to
the common value Tequ. In the space-homogeneous case, one can compute the following
macroscopic equations.

∂tTtr = Aν(Ttr(1− θ) + θTequ − Ttr) = Aνθ(Tequ − Ttr),

∂tTint = Aνθ(Tequ − Tint).
(28)

These macroscopic equations describe a relaxation of Ttr and Tint towards Tequ with a
speed depending on the additional parameter θ. We see that the model captures the regime
where this relaxation of the temperatures is slower than the relaxation of the distribution
function to a Maxwell distribution since θ satisfies θ ≤ 1, so it reduces the speed of
relaxation from Aν to Aνθ. This model satisfies the following assymptotic behaviour
proven in [50] in the space-homogeneous case.
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Theorem 6. Let 0 < θ ≤ 1. The distribution function for the spatially homogeneous case converges
to equilibrium with the following rate:

|| f (t)−Mequ||L1(dvdI) ≤ e−
θ
2 Aνt

√
2H( f0|Mequ),

with the relative entropy H( f |g) =
∫ ∫

f ln f
g dvdI for two functions f and g, and the Maxwell

distribution Mequ given by (27).

In this case, there also exists an extension to an ES-BGK model in [51].

• Relaxation of the temperatures with an additional kinetic equation:

This concept was introduced in [48] for the distribution function f (4). Here, we
describe the time evolution in the following way

∂t f + v · ∇x f = νn(M[ f ]− f ) (29)

with the Maxwell distribution

M(x, v, E , t) =
n√

2π Λ
m

d
1√

2π Θ
m

l exp(−|v− u|2

2 Λ
m
− e(E)

2 Θ
m

), (30)

where νn is the collision frequency. Here, there appear two additional artificial temperatures
Λ and Θ. In order to describe the time evolution of these two temperatures, we couple this
kinetic equation with an algebraic equation for conservation of internal energy

d
2

nΛ =
d
2

nTtr +
l
2

nTint −
l
2

nΘ, (31)

and a relaxation equation ensuring that the two temperatures Λ and Θ relax to the same
value in equilibrium

∂t M + v · ∇x M =
νn
Zr

d + l
d

(Mequ −M)

Θ(0) = Θ0
(32)

where Zr is a given parameter corresponding to the different rates of decay of translational
and rotational/vibrational degrees of freedom. Here, M is given by

M(x, v, E , t) =
n√

2π Λ
m

d
1√

2π Θ
m

l exp

(
−|v− u|2

2 Λ
m
− e(E)

2 Θ
m

)
, (33)

Note that we have

Tequ =
dΛ + lΘ

d + l
=

dTtr + lTint
d + l

. (34)

The second equality follows from (31). The Equation (32) is used to involve the
temperature Θ. If we multiply (32) by e(E), integrate with respect to v and E and use (34),
we obtain

∂t(nΘ) +∇x · (nΘu) =
νn
Zr

n(Λ−Θ) (35)

a relaxation to a common value with a speed Zr not restricted to a slower speed as in (28).
Therefore, the relaxation of the two temperatures to a common value can be slower or
faster than the relaxation of the distribution function to the Maxwell distribution. This
depends on the choice of Zr. The initial data of Λ are determined using (31). We see that in
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this model the term νn
Zr

d+l
d (Mequ −M) plays the role of producing the relaxation of the two

temperatures Λ and Θ to the same value. So in this model the effect of the relaxation to
equal temperatures is produced by coupling the BGK equation with an additional kinetic
equation. If we choose f (4) as distribution function, this corresponds to the model in [48].
For this model one can prove conservation of the number of particles, momentum and total
energy, and also an entropy inequality. Additionally, the equilibrium can be characterized
by a Maxwell distribution with equal temperatures Tequ = Ttr = Tint, for details see [48,52].
The existence of a unique mild solution can be proven similar to the existence in the
momatomic case [16].

This model satisfies the following asymptotic behaviour in the space-homogeneous
case proven in [52] for f = f (4).

Theorem 7. Assume that ( f (4), M) is a solution of (29) coupled with (32) and (31). Then, in the
space homogeneous case, we have the following convergence rate of the distribution functions f :

|| f (4) −Mequ||L1(dvdη) ≤ 4e−
1
4 C̃t
(

H( f (4)0 |M
0
equ) + 2 max{1, z}H(M0|M0

equ)
) 1

2 .

where C̃ is given by

C̃ = min

{
νn(4),

νn(4)

Zr

d + l
d

}
,

and the index 0 denotes the value at t = 0.

• Relaxation of the temperatures with an additional relaxation term:

This concept was introduced in [53]. Here, we add an additional relaxation term into
the right-hand side

∂t f + v · ∇x f =
1
τ
(m2 − f ) +

1
Zντ

(Mequ −m2)

where τ is the relaxation time of f towards a Maxwell distribution with the temperatures
Ttr and Tint given by

m2 =
n√

2π Ttr
m

d
1√

2π Tint
m

l exp(−|v− u|2

2 Ttr
m

− e(E)
2 Tint

m

),

and τZν with Zν > 1 being the relaxation time of this Maxwell distribution to the equi-
librium distribution Mequ with equal temperatures given by (33). So the relaxation to
equilibrium is divided into two parts; first, a relaxation towards an intermediate equi-
librium distribution where the temperatures Ttr and Tint are separate, then to the final
equilibrium with common temperatures.

3.1. Summary of Existing BGK Models for Gas Mixtures of Polyatomic Molecules in the Literature

Now, for the gas mixture case, we will present different models [52–54] combining
different ansatzes from the one-species polyatomic case and the mixture modelling.

3.1.1. A BGK Model for Mixtures of Polyatomic Gases with One Relaxation Term

The BGK model we consider in this section was introduced by Bisi, Monaco and
Soares in [54], see also an extension to chemical reactions in [55]. We introduce here two
distribution functions with scalar continuous dependency on the degrees of freedom of
internal energy f1(x, v, t, I) and f2(x, v, t, I). Then, the time evolution of these distribution
functions is described by two kinetic equations with one relaxation term on the right-hand
side to the equilibrium distribution with common temperatures
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∂t fk + v · ∇x fk = νk(Mk − fk), k = 1, 2

with the Maxwell distributions

Mk(v, I) =
ñk

qk(T̃)

(
mk

2πT̃

) d
2

exp
(
− 1

T̃
(

mk
2
|v− ũ|2 + I)

)
, k = 1, 2

with the partition function q(T̃) =
∫ ∞

0 φk(I) exp(− I
T )dI. Then, the parameters ñk, ũ and T̃

will be determined to have conservation of mass, total momentum and total energy. For
the computation and the detailed expression see [54]. For this model, an entropy inequality
can also be proven in the space-homogeneous case, see [54]. Transport coefficients in the
hydrodynamical limit of this model can be found in Section 5 of [54].

3.1.2. A BGK Model for Mixtures of Polyatomic Gases with Two Relaxation Terms

In this section, we present the model developed in [52]. This model has a vector-
valued dependency on the internal energy. For this we introduce two numbers related to
the degrees of freedom in internal energy. One is the total number of different rotational
and vibrational degrees of freedom M and the other is lk, the number of internal degrees
of freedom of species k, k = 1, 2. Moreover, η ∈ RM is the variable for the internal energy
degrees of freedom, whereas ηlk ∈ RM coincides with η in the components corresponding
to the internal degrees of freedom of species k and is zero in all the other components.
In this way, it is possible that the two species can have a different number of degrees
of freedom in internal energy. Then, we have distribution functions f1(x, v, t, ηl1) and
f2(x, v, t, ηl2). Their time evolution is described by

∂t f1 + v · ∇x f1 = ν11n1(M1 − f1) + ν12n2(M12 − f1),

∂t f2 + v · ∇x f2 = ν22n2(M2 − f2) + ν21n1(M21 − f2),
(36)

with the Maxwell distributions

Mk(x, v, ηlk , t) =
nk√

2π Λk
mk

d
1√

2π Θk
mk

lk
exp(−|v− uk|2

2 Λk
mk

−
|ηlk − η̄lk |

2

2 Θk
mk

),

Mkj(x, v, ηlk , t) =
nkj√

2π
Λkj
mk

d
1√

2π
Θkj
mk

lk
exp(−

|v− ukj|2

2
Λkj
mk

−
|ηlk − η̄lk ,kj|2

2
Θkj
mk

),
(37)

for j, k = 1, 2, j 6= k with the conditions

ν12 = εν21, 0 <
l1

l1 + l2
ε ≤ 1. (38)

The equation is coupled with conservation of internal energy (31) for each species,
and an additional relaxation equation

∂t Mk + v · ∇x Mk =
νkknk

Zk
r

d + lk
d

(Mequ,k −Mk) + νkjnj(M̃kj −Mk),

Θk(0) = Θ0
k

(39)

for j, k = 1, 2, j 6= k. Mequ,k is given by (33) for each species. The additional M̃kj is defined by

M̃kj =
nk√

2π
Tkj
mk

d+lk
exp

(
−

mk|v− ukj|2

2Tkj
−

mk|ηlk − η̄lk ,kj|2

2Tkj

)
, k = 1, 2. (40)
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where Tkj is given by

Tkj :=
dΛkj + lkΘkj

d + lk
. (41)

For a certain choice of Λkj and Θkj, one can prove conservation of mass, total momen-
tum and total energy. For details, see [52]. The existence of solutions for this model can be
proven in the same way as it is proven in [27] for the monoatomic case. In [52] they also
prove an entropy inequality and the following decay to equilibrium.

Theorem 8. Assume that ( f1, f2, M1, M2) is a solution of (36) coupled with (39) and (31). Then,
in the space homogeneous case, we have the following convergence rate of the distribution functions
f1 and f2:

|| fk − M̃k||L1(dvdηlk
) ≤ 4e−

1
4 C̃t

(
2

∑
k=1

(
Hk( f 0

k |M̃
0
k ) + 2 max{1, z1, z2}Hk(M0

k |M̃
0
k )
)) 1

2

.

where C̃ is given by

C̃ = min
{

ν11n1 + ν12n2, ν22n2 + ν21n1,
ν11n1

z1
+ ν12n2,

ν22n2

z2
+ ν21n1

}
,

and the index 0 denotes the value at time t = 0.

There are also numerical results for this model in [56].

3.2. BGK Model for Mixtures of Polyatomic Gases with Intermediate Relaxation Terms

The model in [53] extends the idea of additional relaxation terms with intermediate
equilibrium distributions from the one-species case to gas mixtures. The model is of
the form

∂t fk + v · ∂x fk =
1
τ
(ms1 − fs) +

1
Zrτ

(ms2 −ms1) +
1

Zντ
(M̃k −ms2), k = 1, 2

with Zr, Zν > 1 and intermediate equilibrium distributions ms1 and ms2 . The detailed
expressions of the intermediate equilibrium distributions can be found in [53] with a proof
of the conservation properties. With standard methods one can also prove an entropy
inequality. Transport coefficients of the hydrodynamic regime of this model can be found
in Section 4 of [53].

4. Conclusions

This paper reviews various existing BGK models for gas mixtures of mono and
polyatomic molecules from the literature. In the case of monoatomic particles, two types of
models are presented.

One contains only one relaxation term on the right-hand side, taking into account
all types of interactions in one relaxation term. The other type of model separates the
inter- and intra-species interactions by writing a sum of relaxation terms on the right-
hand side. For both types of models, a review on theoretical results concerning existence
of solutions and convergence to equilibrium are given. The results on convergence to
equilibrium consider both the space-homogeneous case for the full non-linear model and
the space-inhomogeneous case for a linearized model.

In the polyatomic case, first different ansatzes for modelling the degrees of freedom
in internal energy for one species are considered: discrete or continuous and scalar- or
vector-valued.

Next, different ansatzes for modelling the relaxation of the temperature related to
translational degrees of freedom and the temperature related to internal degrees of freedom
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to the same value for one species are presented. Here, also theoretical results on the
convergence to equilibrium are presented.

Finally, three existing BGK models in the literature concerning gas mixtures of poly-
atomic molecules using the different ansatzes of polyatomic and gas mixture modelling are
presented with existing theoretical results on the convergence to equilibrium.

However, BGK-type models often lack correct parameters in the continuum limit such
as the Prandtl number. Therefore these models can be used as a basis for more extended
models like ES-BGK models or velocity-dependent collision frequency. As a future work,
the Chapman–Enskog expansion of the missing models can be computed and then the
transport coefficients of all these models can be compared and eventually extended to
match all parameters in the macroscopic equations. Here, the free parameters in the BGK
model for monoatomic molecules with a sum of interaction terms might be useful.
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