# A New Mathematical Framework for Describing Thin-Reaction-Zone Regime of Turbulent Reacting Flows at Low Damköhler Number

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Statement of the Problem

## 3. Local, Instantaneous, Mean, and Conditioned Transport Equations

## 4. Transport Equations for PDF of Reaction Progress Variable

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Abbreviations

AEA | Activation energy asymptotic |

BML | Bray-Moss-Libby |

CFD | Computational fluid dynamics |

DNS | Direct Numerical Simulation |

Probability Density Function |

## References

- Peters, N. Turbulent Combustion; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Poinsot, T.; Veynante, D. Theoretical and Numerical Combustion, 2nd ed.; Edwards: Philadelphia, PA, USA, 2005. [Google Scholar]
- Lipatnikov, A.N. Fundamentals of Premixed Turbulent Combustion; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Lipatnikov, A.N.; Chomiak, J. Turbulent flame speed and thickness: Phenomenology, evaluation, and application in multi-dimensional simulations. Prog. Energy Combust. Sci.
**2002**, 28, 1–74. [Google Scholar] [CrossRef] - Veynante, D.; Vervisch, L. Turbulent combustion modeling. Prog. Energy Combust. Sci.
**2002**, 28, 193–266. [Google Scholar] [CrossRef] - Bilger, R.W.; Pope, S.B.; Bray, K.N.C.; Driscoll, J.F. Paradigms in turbulent combustion research. Proc. Combust. Inst.
**2005**, 30, 21–42. [Google Scholar] [CrossRef] - Driscoll, J.F. Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci.
**2008**, 34, 91–134. [Google Scholar] [CrossRef] - Lipatnikov, A.N.; Chomiak, J. Effects of premixed flames on turbulence and turbulent scalar transport. Prog. Energy Combust. Sci.
**2010**, 36, 1–102. [Google Scholar] [CrossRef] - Bray, K.N.C.; Moss, J.B. A unified statistical model for the premixed turbulent flame. Acta Astronaut.
**1977**, 4, 291–319. [Google Scholar] [CrossRef] - Libby, P.A.; Bray, K.N.C. Variable density effects in premixed turbulent flames. AIAA J.
**1977**, 15, 1186–1193. [Google Scholar] [CrossRef] - Bray, K.N.C. The interaction between turbulence and combustion. Proc. Combust. Inst.
**1979**, 17, 223–233. [Google Scholar] [CrossRef] - Bray, K.N.C. Turbulent flows with premixed reactants. In Turbulent Reacting Flows; Libby, P.A., Williams, F.A., Eds.; Springer: Berlin, Germany, 1980; pp. 115–183. [Google Scholar]
- Libby, P.A.; Bray, K.N.C. Countergradient diffusion in premixed turbulent flames. AIAA J.
**1981**, 19, 205–213. [Google Scholar] [CrossRef] - Bray, K.N.C.; Libby, P.A.; Moss, J.B. Unified modeling approach for premixed turbulent combustion—Part I: General formulation. Combust. Flame
**1985**, 61, 87–102. [Google Scholar] [CrossRef] - Bray, K.N.C.; Libby, P.A. Recent developments in the BML model of premixed turbulent combustion. In Turbulent Reacting Flows; Libby, P.A., Williams, F.A., Eds.; Academic Press: London, UK, 1994; pp. 115–151. [Google Scholar]
- Bray, K.N.C. Turbulent transport in flames. Proc. R. Soc. Lond. A
**1995**, 451, 231–256. [Google Scholar] - Bray, K.N.C. The challenge of turbulent combustion. Proc. Combust. Inst.
**1996**, 26, 1–26. [Google Scholar] [CrossRef] - Prudnikov, A.G. Burning of homogeneous fuel-air mixtures in a turbulent flow. In Physical Principles of the Working Process in Combustion Chambers of Jet Engines; Raushenbakh, B.V., Ed.; Mashinostroenie: Moscow, Russia, 1964; pp. 255–347, (In Russian, Translated to English by Clearing House for Federal Scientific & Technical Information, Springfield, 1967). [Google Scholar]
- Sabelnikov, V.A.; Yu, R.; Lipatnikov, A.N. Thin reaction zones in constant-density turbulent flows at low Damköhler numbers: Theory and simulations. Phys. Fluids
**2019**, 31, 055104. [Google Scholar] [CrossRef] [Green Version] - Driscoll, J.F.; Chen, J.H.; Skiba, A.W.; Carter, C.D.; Hawkes, E.R.; Wang, H. Premixed flames subjected to extreme turbulence: Some questions and recent answers. Prog. Energy Combust. Sci.
**2020**, 76, 100802. [Google Scholar] [CrossRef] - Zel’dovich, Y.B.; Frank-Kamenetskii, D.A. A theory of thermal flame propagation. Acta Physicochim. Urss
**1938**, 9, 341–346. [Google Scholar] - Zel’dovich, Y.B.; Barenblatt, G.I.; Librovich, V.B.; Makhviladze, G.M. The Mathematical Theory of Combustion and Explosions; Consultants Burea: New York, NY, USA, 1985. [Google Scholar]
- Kuznetsov, V.R.; Sabelnikov, V.A. Turbulence and Combustion; Hemisphere Publ. Corp.: New York, NY, USA, 1990. [Google Scholar]
- Sabelnikov, V.A.; Yu, R.; Lipatnikov, A.N. Thin reaction zones in highly turbulent medium. Int. Heat Mass Transf.
**2019**, 128, 1201–1205. [Google Scholar] [CrossRef] [Green Version] - Ronney, P.D.; Haslam, B.D.; Rhys, N.O. Front propagation rates in randomly stirred media. Phys. Rev. Lett.
**1995**, 74, 3804–3807. [Google Scholar] [CrossRef] - Shy, S.S.; Liu, C.C.; Lin, J.Y.; Chen, L.L.; Lipatnikov, A.N.; Yang, S.I. Correlations of high-pressure lean methane and syngas turbulent burning velocities: Effects of turbulent Reynolds, Damköhler, and Karlovitz numbers. Proc. Combust. Inst.
**2015**, 35, 1509–1516. [Google Scholar] [CrossRef] - Koudella, C.R.; Neufeld, Z. Reaction front propagation in a turbulent flow. Phys. Rev. E
**2004**, 70, 026307. [Google Scholar] [CrossRef] [Green Version] - Aspden, A.J.; Bell, J.B.; Woosley, S.E. Distributed flames in type Ia supernovae. Astrophys. J.
**2010**, 710, 1654–1663. [Google Scholar] [CrossRef] - Aspden, A.J.; Day, M.J.; Bell, J.B. Towards the distributed burning regime in turbulent premixed flames. J. Fluid Mech.
**2019**, 871, 1–21. [Google Scholar] [CrossRef] [Green Version] - Barenblatt, G.I.; Zeldovich, Y.B.; Istratov, A.G. On heat and diffusion effects in stability of laminar flames. Zh. Prikl. Mekh. Tekh. Fiz.
**1962**, 4, 21–26. [Google Scholar] - Klimov, A.M. Laminar flame in a turbulent flow. Zh. Prikl. Mekh. Tekh. Fiz.
**1963**, 4, 49–58. [Google Scholar] - Gupta, S.C. The Classical Stefan Problem—Basic Concepts, Modelling and Analysis; Elsevier Science: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Mayo, J.R.; Kerstein, A.R. Fronts in randomly advected and heterogeneous media and nonuniversality of Burgers turbulence: Theory and numerics. Phys. Rev. E
**2008**, 78, 056307. [Google Scholar] [CrossRef] [Green Version] - Yu, R.; Lipatnikov, A.N. Direct numerical simulation study of statistically stationary propagation of a reaction wave in homogeneous turbulence. Phys. Rev. E
**2017**, 95, 063101. [Google Scholar] [CrossRef] [Green Version] - Yu, R.; Lipatnikov, A.N. DNS study of the bending effect due to smoothing mechanism. Fluids
**2019**, 4, 31. [Google Scholar] [CrossRef] [Green Version] - Yu, R.; Bai, X.-S.; Lipatnikov, A.N. A direct numerical simulation study of interface propagation in homogeneous turbulence. J. Fluid Mech.
**2015**, 772, 127–164. [Google Scholar] [CrossRef] - Libby, P.A. On the prediction of intermittent turbulent flows. J. Fluid Mech.
**1975**, 68, 273–295. [Google Scholar] [CrossRef] - Libby, P.A. Prediction of the intermittent turbulent wake of a heated cylinder. Phys. Fluids
**1976**, 19, 494–501. [Google Scholar] - Dopazo, C. On conditioned averages for intermittent turbulent flows. J. Fluid Mech.
**1977**, 81, 433–438. [Google Scholar] [CrossRef] - Dopazo, C.; O’Brien, E.E. Intermittency in free turbulent shear flows. In Turbulent Shear Flows I; Durst, F., Launder, B.E., Schmidt, F.W., Whitelaw, J.H., Eds.; Springer: Berlin, Germany, 1979; pp. 6–23. [Google Scholar]
- Delhaye, J.M.; Achard, J.L. On the averaging operators introduced in two-phase flow modelling. In Proceedings of the OECD/NEA Specialist Meeting on Transient Two-Phase Flow, Toronto, ON, Canada, 3–4 August 1976. [Google Scholar]
- Gel’fand, I.M.; Shilov, G.E. Generalized Functions: Properties and Operations; Academic Press: Cambridge, MA, USA, 1977; Volume 1. [Google Scholar]
- Kataoka, I. Local instant formulation of two-phase flow. Int. J. Multiphase Flow
**1986**, 12, 745–758. [Google Scholar] [CrossRef] - Williams, F.A. Turbulent combustion. In The Mathematics of Combustion; Buckmaster, J.D., Ed.; SIAM: Philadelphia, PA, USA, 1985; pp. 97–128. [Google Scholar]
- Chen, J.H.; Lumley, J.L.; Gouldin, F.C. Modeling of wrinkled laminar flames with intermittency and conditional statistics. Proc. Combust. Inst.
**1986**, 21, 1483–1491. [Google Scholar] [CrossRef] - Weller, H.G. The Development of a New Flame Area Combustion Model Using Conditional Averaging; Termo-Fluids Section Report TF/9307; Mechanical Engineering Department, Imperial College of Science, Technology and Medicine: London, UK, 1993. [Google Scholar]
- Lee, E.; Huh, K.Y. Zone conditional modeling of premixed turbulent flames at a high Damköhler number. Combust. Flame
**2004**, 138, 211–224. [Google Scholar] [CrossRef] - Lipatnikov, A.N. Conditionally averaged balance equations for modeling premixed turbulent combustion in flamelet regime. Combust. Flame
**2008**, 152, 529–547. [Google Scholar] [CrossRef] - Kuznetsov, V.R. Probability of the concentration of a passive impurity in turbulent flows with transverse shear. Fluid Dyn.
**1972**, 7, 776–781. [Google Scholar] [CrossRef] - Kuznetsov, V.R. On the probability distribution of the difference of velocities at two distinct points of a homogeneous, isotropic turbulent flow. PMM
**1967**, 31, 1069–1072. [Google Scholar] [CrossRef] - O’Brien, E.E.; Dopazo, C. Behavior of conditioned variables in free turbulent shear flows. In Structure and Mechanisms of Turbulence II, Lecture Notes in Physics; Fiedler, H., Ed.; Springer: Berlin/Heidelberg, Germany, 1979; Volume 76, pp. 124–137. [Google Scholar]
- Klimenko, A.Y.; Bilger, R.W. Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci.
**1999**, 25, 595–687. [Google Scholar] [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sabelnikov, V.A.; Lipatnikov, A.N.
A New Mathematical Framework for Describing Thin-Reaction-Zone Regime of Turbulent Reacting Flows at Low Damköhler Number. *Fluids* **2020**, *5*, 109.
https://doi.org/10.3390/fluids5030109

**AMA Style**

Sabelnikov VA, Lipatnikov AN.
A New Mathematical Framework for Describing Thin-Reaction-Zone Regime of Turbulent Reacting Flows at Low Damköhler Number. *Fluids*. 2020; 5(3):109.
https://doi.org/10.3390/fluids5030109

**Chicago/Turabian Style**

Sabelnikov, Vladimir A., and Andrei N. Lipatnikov.
2020. "A New Mathematical Framework for Describing Thin-Reaction-Zone Regime of Turbulent Reacting Flows at Low Damköhler Number" *Fluids* 5, no. 3: 109.
https://doi.org/10.3390/fluids5030109