# Direct Numerical Simulation of a Warm Cloud Top Model Interface: Impact of the Transient Mixing on Different Droplet Population

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Numerical Methodology and Simulation Setup

#### 2.1. Evolutive Equations for the Fluid Flow

#### 2.2. Lagrangian Equations for the Cloud Droplets

#### 2.3. Numerical Method of the DNS

#### 2.4. Simulation Setup

**R25**,

**R18**and

**R6**; whereas, the carrier airflow initial conditions remained the same for all these simulations. A sketch of the simulation domain is shown in Figure 1a. Gravitational force (as presented in Figure 1a) acts on both the fluid flow (in form of buoyancy forces B in Equation (2)) and on the momentum of the cloud droplets in Equation (8). In this cloud top simulation setup, gravity therefore acts in downwards direction, causing heavier droplets to settle down towards the bottom boundary of the cloudy volume.

#### 2.4.1. Initial Setup for the Fluid Flow

#### 2.4.2. Initial Setup for the Cloud Droplets

## 3. Results of Transient Evolution

#### 3.1. Time Evolution of the Fluid Flow

#### 3.2. Time Evolution of the Cloud Droplet Population

**a**), (

**c**), (

**e**) of Figure 10) after 3 initial eddy ($t/{\tau}_{0}=3$) turnover time is presented. These droplets were transported to the subsaturated clear air region due to detrainment from the near interface region of the cloudy part of the domain. Due to subsaturation, only the droplets from simulations with initial 25 and 18 $\mathsf{\mu}$m droplet populations are observed to survive the entire simulation. The impact of gravitational settlement is observed to be very pronounced for the larger droplet population, leading to a short residence time in the subsaturated area (two out of the three droplets were back to the cloudy supersaturated region of the domain almost immediately, see Figure 10a). Whereas, the other remaining droplet was trapped in some eddy to follow lateral movement inside the clear air region. In Figure 10b, these droplets are observed not to follow the fluid velocity exactly but rather show negative ${v}_{3}$ indicating stronger influences of gravitational forces on these droplets. The sample droplets from the simulation with initial 18 $\mathsf{\mu}$m droplet population shows comparatively less influence under gravitational forces and remains entrapped in the eddies inside the clear air region of the domain (Figure 10c), which produces a continuous size reduction due to local subsaturation (Figure 10d). Whereas, local subsaturation played most important impact on the samples of the droplets from the simulation with initial 6 $\mathsf{\mu}$m droplet population. After being detrained to the subsaturated clear air region, these droplets cloud not return back to the saturated cloudy part of the domain due to decay in TKE inside the domain (Figure 10e) and eventually evaporated completely in the middle of the simulation duration (Figure 10f).

## 4. Discussions and Concluding Remarks

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Pruppacher, H.R.; Klett, J.D. Microphysics of Clouds and Precipitation, 2nd ed.; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Devenish, B.J.; Bartello, P.; Brenguier, J.L.; Collins, L.R.; Grabowski, W.W.; IJzermans, R.H.A.; Malinowski, S.P.; Reeks, M.W.; Vassilicos, J.C.; Wang, L.P.; et al. Droplet growth in warm turbulent clouds. Q. J. R. Meteorol. Soc.
**2012**, 138, 1401–1429. [Google Scholar] [CrossRef] - Shaw, R.A. Particle-turbulence interactions in atmospheric clouds. Ann. Rev. Fluid Mech.
**2003**, 35, 183–227. [Google Scholar] [CrossRef] - Grabowski, W.W.; Wang, L.P. Growth of Cloud Droplets in a Turbulent Environment. Ann. Rev. Fluid Mech.
**2013**, 45, 293–324. [Google Scholar] [CrossRef][Green Version] - Bodenschatz, E.; Malinowski, S.P.; Shaw, R.A.; Stratmann, F. Can We Understand Clouds Without Turbulence? Science
**2010**, 327, 970–971. [Google Scholar] [CrossRef] [PubMed] - de Lozar, A.; Mellado, J.P. Cloud droplets in a bulk formulation and its application to buoyancy reversal instability. Q. J. R. Meteorol. Soc.
**2014**, 140, 1493–1504. [Google Scholar] [CrossRef] - Vaillancourt, P.A.; Yau, M.K.; Grabowski, W.W. Microscopic Approach to Cloud Droplet Growth by Condensation. Part I: Model Description and Results without Turbulence. J. Atmos. Sci.
**2001**, 58, 1945–1964. [Google Scholar] [CrossRef] - Vaillancourt, P.A.; Yau, M.K.; Bartello, P.; Grabowski, W.W. Microscopic Approach to Cloud Droplet Growth by Condensation. Part II: Turbulence, Clustering, and Condensational Growth. J. Atmos. Sci.
**2002**, 59, 3421–3435. [Google Scholar] [CrossRef] - Kumar, B.; Schumacher, J.; Shaw, R.A. Cloud microphysical effects of turbulent mixing and entrainment. Theor. Comput. Fluid Dyn.
**2013**, 27, 361–376. [Google Scholar] [CrossRef] - Lanotte, A.S.; Seminara, A.; Toschi, F. Cloud Droplet Growth by Condensation in Homogeneous Isotropic Turbulence. J. Atmos. Sci.
**2009**, 66, 1685–1697. [Google Scholar] [CrossRef] - Götzfried, P.; Kumar, B.; Shaw, R.A.; Schumacher, J. Droplet dynamics and fine-scale structure in a shearless turbulent mixing layer with phase changes. J. Fluid Mech.
**2017**, 814, 452–483. [Google Scholar] [CrossRef][Green Version] - Kumar, B.; Schumacher, J.; Shaw, R.A. Lagrangian Mixing Dynamics at the Cloudy–Clear Air Interface. J. Atmos. Sci.
**2014**, 71, 2564–2580. [Google Scholar] [CrossRef] - Kumar, B.; Bera, S.; Prabha, T.V.; Grabowski, W.W. Cloud-edge mixing: Direct numerical simulation and observations in Indian Monsoon clouds. J. Adv. Model. Earth Syst.
**2017**, 9, 332–353. [Google Scholar] [CrossRef][Green Version] - Andrejczuk, M.; Grabowski, W.W.; Malinowski, S.P.; Smolarkiewicz, P.K. Numerical Simulation of Cloud–Clear Air Interfacial Mixing. J. Atmos. Sci.
**2004**, 61, 1726–1739. [Google Scholar] [CrossRef] - Andrejczuk, M.; Grabowski, W.W.; Malinowski, S.P.; Smolarkiewicz, P.K. Numerical Simulation of Cloud–Clear Air Interfacial Mixing: Effects on Cloud Microphysics. J. Atmos. Sci.
**2006**, 63, 3204–3225. [Google Scholar] [CrossRef] - Andrejczuk, M.; Grabowski, W.W.; Malinowski, S.P.; Smolarkiewicz, P.K. Numerical Simulation of Cloud–Clear Air Interfacial Mixing: Homogeneous versus Inhomogeneous Mixing. J. Atmos. Sci.
**2009**, 66, 2493–2500. [Google Scholar] [CrossRef] - Gao, Z.; Liu, Y.; Li, X.; Lu, C. Investigation of Turbulent Entrainment-Mixing Processes with a New Particle-Resolved Direct Numerical Simulation Model. J. Geophys. Res. Atmos.
**2018**, 123, 2194–2214. [Google Scholar] [CrossRef] - Vaillancourt, P.A.; Yau, M.K. Review of Particle-Turbulence Interactions and Consequences for Cloud Physics. Bull. Am. Meteorol. Soc.
**2000**, 81, 285–298. [Google Scholar] [CrossRef] - Siebert, H.; Gerashchenko, S.; Gylfason, A.; Lehmann, K.; Collins, L.; Shaw, R.; Warhaft, Z. Towards understanding the role of turbulence on droplets in clouds: In situ and laboratory measurements. Atmos. Res.
**2010**, 97, 426–437. [Google Scholar] [CrossRef] - Lehmann, K.; Siebert, H.; Shaw, R.A. Homogeneous and Inhomogeneous Mixing in Cumulus Clouds: Dependence on Local Turbulence Structure. J. Atmos. Sci.
**2009**, 66, 3641–3659. [Google Scholar] [CrossRef] - Tordella, D.; Iovieno, M. Small-Scale Anisotropy in Turbulent Shearless Mixing. Phys. Rev. Lett.
**2011**, 107, 194501. [Google Scholar] [CrossRef] - Iovieno, M.; Savino, S.D.; Gallana, L.; Tordella, D. Mixing of a passive scalar across a thin shearless layer: Concentration of intermittency on the sides of the turbulent interface. J. Turbul.
**2014**, 15, 311–334. [Google Scholar] [CrossRef] - Ireland, P.J.; Collins, L.R. Direct numerical simulation of inertial particle entrainment in a shearless mixing layer. J. Fluid Mech.
**2012**, 704, 301–332. [Google Scholar] [CrossRef] - Cimarelli, A.; Cocconi, G.; Frohnapfel, B.; De Angelis, E. Spectral enstrophy budget in a shear-less flow with turbulent/non-turbulent interface. Phys. Fluids
**2015**, 27, 125106. [Google Scholar] [CrossRef][Green Version] - Gotoh, T.; Suehiro, T.; Saito, I. Continuous growth of cloud droplets in cumulus cloud. New J. Phys.
**2016**, 18, 043042. [Google Scholar] [CrossRef] - Elghobashi, S. Particle-laden turbulent flows: direct simulation and closure models. Appl. Sci. Res.
**1991**, 48, 301–314. [Google Scholar] [CrossRef] - Iovieno, M.; Cavazzoni, C.; Tordella, D. A new technique for a parallel dealiased pseudospectral Navier–Stokes code. Comput. Phys. Commun.
**2001**, 141, 365–374. [Google Scholar] [CrossRef] - Hochbruck, M.; Ostermann, A. Exponential integrators. Acta Numer.
**2010**, 19, 209–286. [Google Scholar] [CrossRef][Green Version] - van Hinsberg, M.A.T.; Boonkkamp, J.H.M.t.T.; Toschi, F.; Clercx, H.J.H. Optimal interpolation schemes for particle tracking in turbulence. Phys. Rev. E
**2013**, 87, 043307. [Google Scholar] [CrossRef][Green Version] - Sundaram, S.; Collins, L.R. Numerical Considerations in Simulating a Turbulent Suspension of Finite-Volume Particles. J. Comput. Phys.
**1996**, 124, 337–350. [Google Scholar] [CrossRef] - Carbone, M.; Iovieno, M. Application of the nonuniform fast fourier transform to the direct numerical simulation of two-way coupled particle laden flows. WIT Trans. Eng. Sci.
**2018**, 120, 237–253. [Google Scholar] [CrossRef] - Rabe, C.; Malet, J.; Feuillebois, F. Experimental investigation of water droplet binary collisions and description of outcomes with a symmetric Weber number. Phys. Fluids
**2010**, 22, 047101. [Google Scholar] [CrossRef] - Jen-La Plante, I.; Ma, Y.; Nurowska, K.; Gerber, H.; Khelif, D.; Karpinska, K.; Kopec, M.K.; Kumala, W.; Malinowski, S.P. Physics of Stratocumulus Top (POST): Turbulence characteristics. Atmos. Chem. Phys.
**2016**, 16, 9711–9725. [Google Scholar] [CrossRef] - Malinowski, S.P.; Gerber, H.; Jen-La Plante, I.; Kopec, M.K.; Kumala, W.; Nurowska, K.; Chuang, P.Y.; Khelif, D.; Haman, K.E. Physics of Stratocumulus Top (POST): Turbulent mixing across capping inversion. Atmos. Chem. Phys.
**2013**, 13, 12171–12186. [Google Scholar] [CrossRef] - Siebert, H.; Franke, H.; Lehmann, K.; Maser, R.; Saw, E.W.; Schell, D.; Shaw, R.A.; Wendisch, M. Probing Finescale Dynamics and Microphysics of Clouds with Helicopter-Borne Measurements. Bull. Am. Meteorol. Soc.
**2006**, 87, 1727–1738. [Google Scholar] [CrossRef] - Grabowski, W.W. Dynamics of cumulus entrainment. In Geophysical and Astrophysical Convection; Fox, P., Kerr, R.M., Eds.; Gordon and Breach Science Publishers: Sydney, Australia, 2000; pp. 107–127. [Google Scholar]
- Biona, C.B.; Druilhet, A.; Benech, B.; Lyra, R. Diurnal cycle of temperature and wind fluctuations within an African equatorial rain forest. Agric. For. Meteorol.
**2001**, 109, 135–141. [Google Scholar] [CrossRef] - Katul, G.G.; Geron, C.D.; Hsieh, C.I.; Vidakovic, B.; Guenther, A.B. Active Turbulence and Scalar Transport near the Forest—Atmosphere Interface. J. Appl. Meteorol.
**1998**, 37, 1533–1546. [Google Scholar] [CrossRef] - Radkevich, A.; Lovejoy, S.; Strawbridge, K.B.; Schertzer, D.; Lilley, M. Scaling turbulent atmospheric stratification. III: Space-time stratification of passive scalars from lidar data. Q. J. R. Meteorol. Soc.
**2008**, 134, 317–335. [Google Scholar] [CrossRef] - Lothon, M.; Lenschow, D.H.; Mayor, S.D. Doppler Lidar Measurements of Vertical Velocity Spectra in the Convective Planetary Boundary Layer. Bound.-Layer Meteorol.
**2009**, 132, 205–226. [Google Scholar] [CrossRef] - Siebert, H.; Shaw, R.A.; Ditas, J.; Schmeissner, T.; Malinowski, S.P.; Bodenschatz, E.; Xu, H. High-resolution measurement of cloud microphysics and turbulence at a mountaintop station. Atmos. Meas. Tech.
**2015**, 8, 3219–3228. [Google Scholar] [CrossRef][Green Version] - Tordella, D.; Iovieno, M. Numerical experiments on the intermediate asymptotics of shear-free turbulent transport and diffusion. J. Fluid Mech.
**2006**, 549, 429–441. [Google Scholar] [CrossRef][Green Version] - Siebert, H.; Shaw, R.A. Supersaturation Fluctuations during the Early Stage of Cumulus Formation. J. Atmos. Sci.
**2017**, 74, 975–988. [Google Scholar] [CrossRef] - Monin, A.S.; Yaglom, A.M. Statistical Fluid Mechanics: Mechanics of Turbulence; The MIT Press: Cambridge, MA, USA, 1981; Volume 2. [Google Scholar]
- Gallana, L.; Savino, S.; Santi, F.; Iovieno, M.; Tordella, D. Energy and water vapor transport across a simplified cloud-clear air interface. J. Phys. Conf. Ser.
**2014**, 547. [Google Scholar] [CrossRef]

**Figure 1.**Simulation setup: (

**a**) scheme of the three dimensional simulation domain and the boundary conditions; (

**b**) comparison between the TKE spectrum $E\left(k\right)$ of present simulation with the infield measurements; (

**c**) initial distribution of the rms of velocity fluctuations ${u}^{\prime}$ and TKE dissipation rate $\langle \epsilon \rangle $; and (

**d**) simulated initial profile of temperature $\langle T\rangle $ and water vapour density $\langle {\rho}_{v}\rangle $.

**Figure 2.**Transient evolution of the flow inside the clear air and cloudy region: (

**a**) decay of TKE E and dissipation rate $\epsilon $; (

**b**) Taylor micro-scale Reynolds number $R{e}_{\lambda}$; (

**c**) longitudinal and transversal integral length scales L; and (

**d**) average cloud droplet Stokes number $St$ and settling parameter ${S}_{v}$ of the different droplet populations. Plots (

**a**–

**c**) are from simulation

**R25**. Differences are small among the three simulations.

**Figure 3.**Transient evolution of flow statistics: (

**a**) TKE $\langle E\rangle $; (

**b**) kurtosis of vertical velocity fluctuations $K\left({u}_{3}^{\prime}\right)$; (

**c**) mean water vapour density $\langle {\rho}_{v}\rangle $; (

**d**) mean temperature $\langle T\rangle $; (

**e**) variance of water vapour fluctuations $\langle {\rho}_{v}^{\prime 2}\rangle $; (

**f**) variance of temperature fluctuations $\langle {T}^{\prime 2}\rangle $; (

**g**) skewness of water vapour fluctuations $S\left({\rho}_{v}^{\prime}\right)$; and (

**h**) skewness of temperature fluctuations $S\left({T}^{\prime}\right)$ evolution. All plots present horizontal plane averaged quantities as in Figure 1c,d. The presented data are from simulation

**R25**. Differences are small among the three simulations.

**Figure 4.**Transient evolution of supersaturation: (

**a**) mean of supersaturation $\langle S\rangle $; (

**b**) variance $\langle {S}^{{}^{\prime}2}\rangle $; (

**c**) skewness $S\left({\mathit{S}}^{\prime}\right)$; and (

**d**) kurtosis $K\left({\mathit{S}}^{\prime}\right)$ of supersaturation fluctuations. All plots present horizontal plane averaged quantities.

**Figure 5.**Transient evolution of one dimensional horizontal spectra: (

**a**,

**b**) transversal spectra of ${u}_{3}^{\prime}$; (

**c**,

**d**) spectra of water vapour fluctuations ${\rho}_{v}^{\prime}$; and (

**e**,

**f**) temperature fluctuations ${T}^{\prime}$ respectively at cloud core and at the interface.

**Figure 6.**Visualization: Enstrophy E field across a vertical plane (plane $({x}_{3},{x}_{1})$) is presented in superposition with the supersaturation S field in contour lines and cloud droplets around that plane (thickness of droplets containing slice is 0.0025 m) after 6 initial eddy ($t/{\tau}_{0}=6$) turnover time. Colourbar represents magnitude of the enstrophy in the flow field, red and yellow contour lines represent saturated ($S=0$) and subsaturated ($S=-0.2$) conditions respectively. The sizes of the droplets are proportional to $r/{r}_{in}$ for each population. The panels show the simulations with the droplet populations of (

**a**) 25 $\mathsf{\mu}$m; (

**b**) 18 $\mathsf{\mu}$m; and (

**c**) 6 $\mathsf{\mu}$m initial radius.

**Figure 7.**Probability density functions (PDFs): PDFs of (

**a**–

**c**) cloud droplet radius r; (

**d**–

**f**) droplet surface area growth rate $\mathrm{d}{r}^{2}/\mathrm{d}t$; and (

**g**–

**i**) vertical component of droplet velocity ${v}_{3}$ for 25 $\mathsf{\mu}$m, 18 $\mathsf{\mu}$m, and 6 $\mathsf{\mu}$m initial droplet size populations respectively.

**Figure 8.**Transient evolution in normalized number density of droplets: (

**a**) number density of total number of cloud droplets ${N}_{d}\left(t\right)$; (

**b**) number density of droplets went through condensational growth ${N}_{cond}\left(t\right)$; (

**c**) number density of droplets undergone evaporative size reduction ${N}_{evap}\left(t\right)$; and (

**d**) number density of droplets with one collision ${N}_{coll}\left(t\right)$ as observed for 25 $\mathsf{\mu}$m, 18 $\mathsf{\mu}$m and 6 $\mathsf{\mu}$m initial droplet size populations. No collisional growth is observed for 6 $\mathsf{\mu}$m initial droplet populations.

**Figure 9.**Correlation between fluid and droplet: (

**a**–

**c**) correlation between vertical component of fluid velocity fluctuations ${u}_{3}^{\prime}$ and droplet velocity fluctuations ${v}_{3}^{\prime}$; and (

**d**–

**f**) between supersaturation fluctuations ${S}^{\prime}$ and fluctuations in liquid water content $lw{c}^{\prime}$. Vertical panels from the left to right present correlation diagrams for 25 $\mathsf{\mu}$m, 18 $\mathsf{\mu}$m and 6 $\mathsf{\mu}$m initial droplet size populations respectively.

**Figure 10.**Lagrangian trajectories: A sample of few individual cloud droplet trajectories. (

**a**,

**c**,

**e**) visualization of the time evolution of droplet positions; and (

**b**,

**d**,

**f**) Lagrangian history of the vertical component of droplet velocity ${v}_{3}$, fluid velocity at that droplet position ${u}_{3}$ and their normalized droplet radius $r/{r}_{in}$ up to the end of simulation duration ($t/{\tau}_{0}=18$) or to the end of the droplet life till being completely evaporated (panels

**e**and

**f**) are presented. Colourbar for the left panels represents droplet radius growth rate $\mathrm{d}r/\mathrm{d}t$, thus indicating the droplet positions where condensation or evaporation occur. Size of the droplets are proportional to normalized droplet radius $r/{r}_{in}$.

Quantity | Symbol | Value | Unit |
---|---|---|---|

Reference temperature | ${T}_{0}$ | $283.16$ | $\mathrm{K}$ |

Reference atmospheric pressure | ${p}_{0}$ | $92.4$ | $\mathrm{kPa}$ |

Reference air density | ${\rho}_{0}$ | $1.13$ | $\mathrm{kg}\phantom{\rule{0.166667em}{0ex}}{\mathrm{m}}^{-3}$ |

Reference kinematic viscosity | $\nu $ | $1.56\times {10}^{-5}$ | ${\mathrm{m}}^{2}\phantom{\rule{0.166667em}{0ex}}{\mathrm{s}}^{-1}$ |

Gravitational acceleration | g | $9.8$ | $\mathrm{m}\phantom{\rule{0.166667em}{0ex}}{\mathrm{s}}^{-2}$ |

Thermal conductivity of the air | ${\lambda}_{T}$ | $2.5\times {10}^{-2}$ | $\mathrm{J}\phantom{\rule{0.166667em}{0ex}}{\mathrm{K}}^{-1}\phantom{\rule{0.166667em}{0ex}}{\mathrm{m}}^{-1}\phantom{\rule{0.166667em}{0ex}}{\mathrm{s}}^{-1}$ |

Thermal diffusivity of air | $\kappa $ | $2.2\times {10}^{-5}$ | ${\mathrm{m}}^{2}\phantom{\rule{0.166667em}{0ex}}{\mathrm{s}}^{-1}$ |

Diffusivity of water vapour | ${\kappa}_{v}$ | $2.54\times {10}^{-5}$ | ${\mathrm{m}}^{2}\phantom{\rule{0.166667em}{0ex}}{\mathrm{s}}^{-1}$ |

Specific heat of air at constant pressure | ${c}_{p}$ | 1005 | $\mathrm{J}\phantom{\rule{0.166667em}{0ex}}{\mathrm{kg}}^{-1}\phantom{\rule{0.166667em}{0ex}}{\mathrm{K}}^{-1}$ |

Latent heat for condensation of water vapour | L | $2.5\times {10}^{6}$ | $\mathrm{J}\phantom{\rule{0.166667em}{0ex}}{\mathrm{kg}}^{-1}$ |

Gas constant for water vapour | ${R}_{v}$ | $461.5$ | $\mathrm{J}\phantom{\rule{0.166667em}{0ex}}{\mathrm{kg}}^{-1}\phantom{\rule{0.166667em}{0ex}}{\mathrm{K}}^{-1}$ |

Gas constant for air | ${R}_{a}$ | $286.84$ | $\mathrm{J}\phantom{\rule{0.166667em}{0ex}}{\mathrm{kg}}^{-1}\phantom{\rule{0.166667em}{0ex}}{\mathrm{K}}^{-1}$ |

Density of liquid water | ${\rho}_{L}$ | 1000 | $\mathrm{kg}\phantom{\rule{0.166667em}{0ex}}{\mathrm{m}}^{-3}$ |

Reference saturated water vapour density at ${T}_{0}$ | ${\rho}_{vs}\left({T}_{0}\right)$ | $9.4\times {10}^{-3}$ | $\mathrm{kg}\phantom{\rule{0.166667em}{0ex}}{\mathrm{m}}^{-3}$ |

Constant in Equation (9) | C | $9.22\times {10}^{-11}$ | ${\mathrm{m}}^{2}\phantom{\rule{0.166667em}{0ex}}{\mathrm{s}}^{-1}$ |

Simulation grid step | $\Delta x$ | $0.001$ | m |

Simulation domain discretization | ${N}_{1}\times {N}_{2}\times {N}_{3}$ | $256\times 256\times 512$ | |

Simulation domain size | ${L}_{{x}_{1}}\times {L}_{{x}_{2}}\times {L}_{{x}_{3}}$ | $0.256\times 0.256\times 0.512$ | ${\mathrm{m}}^{3}$ |

Simulation IDs | |||
---|---|---|---|

Quantity | R25 | R18 | R6 |

Initial Droplet Radius ${r}_{in}\phantom{\rule{0.277778em}{0ex}}\left[\mathsf{\mu}\mathrm{m}\right]$ | 25 | 18 | 6 |

Total number of initial droplets | 286,240 | 286,240 | 286,240 |

Initial droplet number density ${N}_{d}\left(0\right)\phantom{\rule{0.277778em}{0ex}}\left[{\mathrm{cm}}^{-3}\right]$ | 17 | 17 | 17 |

Initial liquid water content $lwc\phantom{\rule{0.277778em}{0ex}}\left[\mathrm{gm}\phantom{\rule{0.166667em}{0ex}}{\mathrm{m}}^{-3}\right]$ | $1.12$ | $0.42$ | $0.02$ |

Initial Stokes number $St$ | $1.59$ | $0.82$ | $0.09$ |

Initial rms of velocity fluctuations ${u}^{\prime}$ in cloud $\left[\mathrm{m}\phantom{\rule{0.166667em}{0ex}}{\mathrm{s}}^{-1}\right]$ | $0.268$ | $0.268$ | $0.268$ |

Initial energy ratio ${E}_{cloud}/{E}_{air}$ | 20 | 20 | 20 |

Temperature difference between cloudy and clear air $\Delta T$ [K] | 4 | 4 | 4 |

Initial integral scale L of cloud and air [m] | $0.0235$ | $0.0235$ | $0.0235$ |

Initial Taylor micro-scale Reynolds no. $R{e}_{\lambda}$ of cloud | 90 | 90 | 90 |

Initial Taylor micro-scale Reynolds no. $R{e}_{\lambda}$ of air | 20 | 20 | 20 |

Simulation time-step $\Delta t$ [s] | $1.224\times {10}^{-4}$ | $1.224\times {10}^{-4}$ | $1.377\times {10}^{-5}$ |

Total simulation duration [s] | $2.1$ | $2.1$ | $2.1$ |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bhowmick, T.; Iovieno, M. Direct Numerical Simulation of a Warm Cloud Top Model Interface: Impact of the Transient Mixing on Different Droplet Population. *Fluids* **2019**, *4*, 144.
https://doi.org/10.3390/fluids4030144

**AMA Style**

Bhowmick T, Iovieno M. Direct Numerical Simulation of a Warm Cloud Top Model Interface: Impact of the Transient Mixing on Different Droplet Population. *Fluids*. 2019; 4(3):144.
https://doi.org/10.3390/fluids4030144

**Chicago/Turabian Style**

Bhowmick, Taraprasad, and Michele Iovieno. 2019. "Direct Numerical Simulation of a Warm Cloud Top Model Interface: Impact of the Transient Mixing on Different Droplet Population" *Fluids* 4, no. 3: 144.
https://doi.org/10.3390/fluids4030144