Descriptors of Flow in Computational Hemodynamics
Abstract
1. Introduction
2. Image-Based Computational Hemodynamics Studies
2.1. Computational Fluid Dynamics (CFD)
2.2. Fluid–Structure Interaction (FSI)
2.3. Post-Processing
3. Blood Flow Descriptors
3.1. Core Flow Descriptors
3.1.1. Blood Volumetric Flow Rate (Q(t))
3.1.2. Velocity Field (u)
3.1.3. Pressure Distribution (p)
3.1.4. Reynolds Number (Re)
3.1.5. Dean Number (De)
3.1.6. Turbulent Kinetic Energy (TKE)
3.1.7. Reynolds Shear Stress (RSS)
3.2. Helicity Descriptors
3.2.1. Helicity (H(t))
3.2.2. Cycle-Average Helicity (h1)
3.2.3. Helicity Intensity (h2)
3.2.4. Balance Between Counter-Rotating Helical Structures (h3)
3.2.5. Absolute Value (h4)
3.2.6. Localized Normalized Helicity (LNH)
3.3. Hemodynamic Wall Descriptors
3.3.1. Time-Averaged WSS (TAWSS)
3.3.2. Oscillatory Shear Index (OSI)
3.3.3. Relative Residence Time (RRT)
3.3.4. Aneurysm Formation Indicator (AFI)
3.3.5. Transverse WSS (transWSS)
3.3.6. Cross Flow Index (CFI)
3.3.7. The Axial WSS (WSSax)
3.3.8. WSS Gradient (WSSG)
3.3.9. WSS Angle Gradient (WSSAG)
3.3.10. Dominant Harmonic (DH)
3.3.11. Harmonic Index (HI)
3.3.12. Spectral Power Index (SPI)
3.4. WSS Topological Skeleton Descriptors
3.4.1. WSS Exposure Time (WSSET)
3.4.2. Topological Shear Variation Index (TSVI)
3.5. Residence Time Descriptors
3.5.1. Particle Residence Time (PRT)
3.5.2. Mean Exposure Time (MET)
3.5.3. Eulerian Residence Time (ERT)
3.5.4. Virtual Ink Residence Time (RTVI)
3.5.5. Point-Wise Residence Time (RTx)
3.6. Pressure-Based Descriptors
Fractional Flow Reserve (FFR)
4. Use of Descriptors in Cardiovascular Mechanics
5. Discussion
- For several hemodynamic descriptors, existing studies report conflicting findings. The transWSS was conceived because of new discoveries on EC alignment under flow that existing hemodynamic wall descriptors could not justify. In fact, the whole theory of low [106,107] and oscillatory WSS [40] was challenged by evidence underlining how the EC are exposed to a complex hemodynamic environment that cannot be described by the low/oscillatory WSS [44,108]. In a systematic review by Peiffer et al. [109], the various descriptors proposed for quantifying low and oscillatory WSS (low TAWSS, OSI) resulted in moderately weak predictors of vascular wall dysfunction in specific arteries. A prospective study of human coronary arteries [75] found that transWSS was not significantly correlated with the change in plaque over time. On the other hand, Pedrigi et al. [110] found a spatial correlation between transWSS and advanced lesions induced by a shear-modifying stent in hypercholesterolemic minipigs. Similarly, the role of WSS in plaque initiation and progression remains debated. While metrics like FFRCT are suitable for guiding mild-to-severe CAD treatment, there is less consensus on assessing de novo plaque growth and early-stage risk. A serial MRI study of carotid artery plaques found that plaques tend to progress in regions exposed to low WSS [111]. On the other hand, a serial MRI study demonstrated an association between the site of plaque ulceration and high WSS [112], a finding confirmed also by an IVUS-based study of plaques that found an association with elevated WSS [113].
- It would be a difficult task deciding which descriptor is most useful for a specific vascular disease. There are many reasons for this: vascular pathologies are diverse and have different initiation mechanisms; cardiovascular disease depends on the vascular territory, on age, on gender, and on species; and there are no guidelines based on actual literature knowledge. We can, however, rely on existing clinical computational studies. OSI, for example, was originally proposed to describe a positive correlation between plaque location and low oscillating shear stress in the carotid sinus [40], where the flow instabilities are low; therefore, its applicability is uncertain when the flow is unstable. RRT also was recommended as a robust single metric of low and oscillating shear in a cross-sectional study of 50 normal carotid bifurcations Lee et al. [114]. The group of Weinberg found that atherosclerosis at aortic branch sites in immature and mature rabbits correlates three-fold better with transverse transWSS than with other hemodynamic wall descriptors [45]. In a cross-sectional study of human (n = 10) non-stenosed right coronary arteries [115], the same group found that RRT can account for the anatomical variation in fatty streak prevalence. Regarding residence time descriptors, a critical comparison of the different methods in an AAA and a cerebral aneurysm by Reza and Arzani [116] highlighted that most RT methods have a conceptually distinct definition and therefore should be utilized depending on the specific application of interest.
- In spite of achieving such complexity in characterizing the blood flow in arteries, we must reflect on the fact that, except for FFRCT, blood descriptors are not integrated into the clinical workflows. The reasons for this are three-fold: creating an image-based computational model remains difficult and, in a clinical setting, would raise reproducibility problems; the numerical simulations have high computational costs; and the multiple CFD datasets are difficult to interpret into clinically relevant criteria.
6. Concluding Remarks
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AAA | abdominal aortic aneurysm |
AFI | Aneurysm formation indicator |
BC | Boundary conditions |
CAD | Coronary artery disease |
CFD | Computational fluid dynamics |
CFI | Cross flow index |
CGS | Centimeter–gram–second system of units |
CT | Computed tomography |
D | Blood vessel diameter |
De | Dean number |
DH | Dominant harmonic |
EC | Endothelial cells |
ERT | Eulerian residence time |
FDA | Food and Drug Administration |
FEM | Finite element method |
FFR | Fractional flow reserve |
FFRCT | Fractional flow reserve calculated from CT angiography |
FSI | Fluid–structure interaction |
FTLE | Finite-time Lyapunov exponent |
FVM | Finite volume method |
h1 | Cycle-average helicity |
h2 | Helicity intensity |
h3 | Balance between counter-rotating helical structures |
h4 | Absolute value of helicity |
HFI | Helical flow index |
HI | Harmonic index |
LCS | Lagrangian coherent structures |
LDL | Low-density lipoprotein |
LNH | Localized normalized helicity |
LV | Left ventricle |
MRI | Magnetic resonance imaging |
MET | Mean exposure time |
OSI | Oscillatory shear index |
p | Pressure |
PDE | Partial differential equations |
PRT | Particle residence time |
Q | Blood volumetric flow rate |
Radius of curvature of blood vessel | |
Re | Reynolds number |
RT | Residence time |
RTVI | Virtual ink residence time |
RTx | Point-wise residence time |
RRT | Relative residence time |
RSS | Reynolds shear stress |
SI | International System of units |
SPI | Spectral power index |
t, T | Time; period of cardiac cycle |
TAWSS | Time-averaged WSS |
TKE | Turbulent kinetic energy |
transWSS | Transverse WSS |
TSVI | Topological shear variation index |
u | Flow velocity; u denotes the velocity vector |
VRI | Vorticity components ratio |
WSS | Wall shear stress; in bold font (WSS) denotes the WSS vector |
WSSax | Wall shear stress axial |
WSSAG | Wall shear stress angle gradient |
WSSET | Wall shear stress exposure time |
WSSG | Wall shear stress gradient |
Greek | symbols |
Blood density | |
Blood viscosity (dynamic) | |
ω | Vorticity |
Number of instances that WSS angle changes more than 90 degrees | |
The Nabla operator |
References
- Giddens, D.P.; Zarins, C.K.; Glagov, S. The Role of Fluid Mechanics in the Localization and Detection of Atherosclerosis. J. Biomech. Eng. 1993, 115, 588–594. [Google Scholar] [CrossRef]
- Malek, A.M.; Alper, S.L.; Izumo, S. Hemodynamic Shear Stress and Its Role in Atherosclerosis. JAMA 1999, 282, 2035–2042. [Google Scholar] [CrossRef]
- Girerd, X.; London, G.; Boutouyrie, P.; Mourad, J.J.; Safar, M.; Laurent, S. Remodeling of the Radial Artery in Response to a Chronic Increase in Shear Stress. Hypertension 1996, 27, 799–803. [Google Scholar] [CrossRef]
- Langille, B.L.; O’Donnell, F. Reductions in Arterial Diameter Produced by Chronic Decreases in Blood Flow Are Endothelium-Dependent. Science 1986, 231, 405–407. [Google Scholar] [CrossRef]
- Kubis, N.; Checoury, A.; Tedgui, A.; Lévy, B.I. Adaptive Common Carotid Arteries Remodeling after Unilateral Internal Carotid Artery Occlusion in Adult Patients. Cardiovasc. Res. 2001, 50, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Faraci, F.M.; Heistad, D.D. Regulation of Large Cerebral Arteries and Cerebral Microsvascular Pressure. Circ. Res. 1990, 66, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Langille, B.L. Morphologic Responses of Endothelium to Shear Stress: Reorganization of the Adherens Junction. Microcirculation 2001, 8, 195–206. [Google Scholar] [CrossRef]
- Zhou, M.; Yu, Y.; Chen, R.; Liu, X.; Hu, Y.; Ma, Z.; Gao, L.; Jian, W.; Wang, L. Wall Shear Stress and Its Role in Atherosclerosis. Front. Cardiovasc. Med. 2023, 10, 1083547. [Google Scholar] [CrossRef]
- Chiu, J.-J.; Chien, S. Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives. Physiol. Rev. 2011, 91, 327–387. [Google Scholar] [CrossRef]
- Liu, X. Physiological Significance of Helical Flow in the Arterial System and Its Potential Clinical Applications. Ann. Biomed. Eng. 2014, 43, 3–15. [Google Scholar] [CrossRef]
- Morbiducci, U.; Ponzini, R.; Rizzo, G.; Cadioli, M.; Esposito, A.; Montevecchi, F.M.; Redaelli, A. Mechanistic Insight into the Physiological Relevance of Helical Blood Flow in the Human Aorta: An in Vivo Study. Biomech. Model. Mechanobiol. 2011, 10, 339–355. [Google Scholar] [CrossRef] [PubMed]
- Bluestein, D.; Niu, L.; Schoephoerster, R.T.; Dewanjee, M.K. Fluid Mechanics of Arterial Stenosis: Relationship to the Development of Mural Thrombus. Ann. Biomed. Eng. 1997, 25, 344–356. [Google Scholar] [CrossRef]
- Reininger, A.J.; Reininger, C.B.; Heinzmann, U.; Wurzinger, L.J. Residence Time in Niches of Stagnant Flow Determines Fibrin Clot Formation in an Arterial Branching Model—Detailed Flow Analysis and Experimental Results. Thromb. Haemost. 1995, 74, 916–922. [Google Scholar] [CrossRef]
- Lu, M.T.; Ferencik, M.; Roberts, R.S.; Lee, K.L.; Ivanov, A.; Adami, E.; Mark, D.B.; Jaffer, F.A.; Leipsic, J.A.; Douglas, P.S.; et al. Noninvasive FFR Derived From Coronary CT Angiography: Management and Outcomes in the PROMISE Trial. JACC Cardiovasc. Imaging 2017, 10, 1350–1358. [Google Scholar] [CrossRef]
- Steinman, D.A.; Taylor, C.A. Flow Imaging and Computing: Large Artery Hemodynamics. Ann. Biomed. Eng. 2005, 33, 1704–1709. [Google Scholar] [CrossRef]
- Morris, P.D.; Narracott, A.; Von Tengg-Kobligk, H.; Soto, D.A.S.; Hsiao, S.; Lungu, A.; Evans, P.; Bressloff, N.W.; Lawford, P.V.; Rodney Hose, D.; et al. Computational Fluid Dynamics Modelling in Cardiovascular Medicine. Heart 2016, 102, 18–28. [Google Scholar] [CrossRef]
- Taylor, C.A.; Steinman, D.A. Image-Based Modeling of Blood Flow and Vessel Wall Dynamics: Applications, Methods and Future Directions: Sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28-30, 2008 Pasadena, California. Ann. Biomed. Eng. 2010, 38, 1188–1203. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Taylor, R.L.; Nithiarasu, P. The Finite Element Method for Fluid Dynamics, 7th ed.; Butterworth-Heinemann: Oxford, UK, 2013; ISBN 978-1-85617-635-4. [Google Scholar]
- Greenshields, C.J.; Weller, H.G. Notes on Computational Fluid Dynamics: General Principles; CFD Direct Ltd.: Reading, UK, 2022; ISBN 978-1-3999-2078-0. [Google Scholar]
- Botti, L.; Paliwal, N.; Conti, P.; Antiga, L.; Meng, H. Modeling Hemodynamics in Intracranial Aneurysms: Comparing Accuracy of CFD Solvers Based on Finite Element and Finite Volume Schemes. Int. J. Numer. Methods Biomed. Eng. 2018, 34, e3111. [Google Scholar] [CrossRef]
- He, Y.; Northrup, H.; Le, H.; Cheung, A.K.; Berceli, S.A.; Shiu, Y.T. Medical Image-Based Computational Fluid Dynamics and Fluid-Structure Interaction Analysis in Vascular Diseases. Front. Bioeng. Biotechnol. 2022, 10, 855791. [Google Scholar] [CrossRef]
- Dennis, K.D.; Kallmes, D.F.; Dragomir-Daescu, D. Cerebral Aneurysm Blood Flow Simulations Are Sensitive to Basic Solver Settings. J. Biomech. 2017, 57, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Valen-Sendstad, K.; Piccinelli, M.; Steinman, D.A. High-Resolution Computational Fluid Dynamics Detects Flow Instabilities in the Carotid Siphon: Implications for Aneurysm Initiation and Rupture? J. Biomech. 2014, 47, 3210–3216. [Google Scholar] [CrossRef]
- Khan, M.O.; Valen-Sendstad, K.; Steinman, D.A. Narrowing the Expertise Gap for Predicting Intracranial Aneurysm Hemodynamics: Impact of Solver Numerics versus Mesh and Time-Step Resolution. Am. J. Neuroradiol. 2015, 36, 1310–1316. [Google Scholar] [CrossRef]
- Khan, M.O.; Chnafa, C.; Gallo, D.; Molinari, F.; Morbiducci, U.; Steinman, D.A.; Valen-Sendstad, K. On the Quantification and Visualization of Transient Periodic Instabilities in Pulsatile Flows. J. Biomech. 2017, 52, 179–182. [Google Scholar] [CrossRef]
- Shadden, S.C.; Taylor, C.A. Characterization of Coherent Structures in the Cardiovascular System. Ann. Biomed. Eng. 2008, 36, 1152–1162. [Google Scholar] [CrossRef]
- Shadden, S.C.; Arzani, A. Lagrangian Postprocessing of Computational Hemodynamics. Ann. Biomed. Eng. 2015, 43, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Tamburrino, A.; Niño, Y. The Universal Presence of the Reynolds Number. Fluids 2025, 10, 117. [Google Scholar] [CrossRef]
- Peacock, J.; Jones, T.; Tock, C.; Lutz, R. The Onset of Turbulence in Physiological Pulsatile Flow in a Straight Tube. Exp. Fluids 1998, 24, 1–9. [Google Scholar] [CrossRef]
- Andersson, M.; Ebbers, T.; Karlsson, M. Characterization and Estimation of Turbulence-Related Wall Shear Stress in Patient-Specific Pulsatile Blood Flow. J. Biomech. 2019, 85, 108–117. [Google Scholar] [CrossRef]
- Lantz, J.; Ebbers, T.; Engvall, J.; Karlsson, M. Numerical and Experimental Assessment of Turbulent Kinetic Energy in an Aortic Coarctation. J. Biomech. 2013, 46, 1851–1858. [Google Scholar] [CrossRef]
- Andersson, M.; Lantz, J.; Ebbers, T.; Karlsson, M. Multidirectional WSS Disturbances in Stenotic Turbulent Flows: A Pre- and Post-Intervention Study in an Aortic Coarctation. J. Biomech. 2017, 51, 8–16. [Google Scholar] [CrossRef]
- Caro, C.G.; Doorly, O.J.; Tarnawski, M.; Scott, K.T.; Long, Q.; Dumoulin, C.L. Non-Planar Curvature and Branching of Arteries and Non-Planar-Type Flow. Proc. R. Soc. A 1996, 452, 185–197. [Google Scholar] [CrossRef]
- Moffatt, H. Helicity In Laminar And Turbulent Flow. Annu. Rev. Fluid Mech. 1992, 24, 281–312. [Google Scholar] [CrossRef]
- Van Canneyt, K.; Morbiducci, U.; Eloot, S.; De Santis, G.; Segers, P.; Verdonck, P. A Computational Exploration of Helical Arterio-Venous Graft Designs. J. Biomech. 2013, 46, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Gallo, D.; Morbiducci, U.; de Tullio, M.D. On the Unexplored Relationship between Kinetic Energy and Helicity in Prosthetic Heart Valves Hemodynamics. Int. J. Eng. Sci. 2022, 177, 103702. [Google Scholar] [CrossRef]
- Morbiducci, U.; Gallo, D.; Massai, D.; Ponzini, R.; Deriu, M.A.; Antiga, L.; Redaelli, A.; Montevecchi, F.M. On the Importance of Blood Rheology for Bulk Flow in Hemodynamic Models of the Carotid Bifurcation. J. Biomech. 2011, 44, 2427–2438. [Google Scholar] [CrossRef] [PubMed]
- Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J.; Coleman, H.; Raad, P.E. Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. J. Fluids Eng. 2008, 130, 078001. [Google Scholar] [CrossRef]
- Arzani, A.; Shadden, S.C. Characterizations and Correlations of Wall Shear Stress in Aneurysmal Flow. J. Biomech. Eng. 2016, 138, 014503. [Google Scholar] [CrossRef]
- Ku, D.N.; Giddens, D.P.; Zarins, C.K.; Glagov, S. Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation between Plaque Location and Low and Oscillating Shear Stress. Arteriosclerosis 1985, 5, 293–302. [Google Scholar] [CrossRef]
- He, X.; Ku, D.N. Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions. J. Biomech. Eng. 1996, 118, 82. [Google Scholar] [CrossRef]
- Himburg, H.A.; Grzybowski, D.M.; Hazel, A.L.; Lamack, J.A.; Li, X.; Friedman, M.H. Spatial Comparison between Wall Shear Stress Measures and Porcine Arterial Endothelial Permeability. Am. J. Heart Circ. Physiol. 2004, 286, H1916–H1922. [Google Scholar] [CrossRef]
- Mantha, A.; Karmonik, C.; Benndorf, G.; Strother, C.; Metcalfe, R. Hemodynamics in a Cerebral Artery before and after the Formation of an Aneurysm. Am. J. Neuroradiol. 2006, 27, 1113–1118. [Google Scholar]
- Peiffer, V.; Sherwin, S.J.; Weinberg, P.D. Computation in the Rabbit Aorta of a New Metric—The Transverse Wall Shear Stress—To Quantify the Multidirectional Character of Disturbed Blood Flow. J. Biomech. 2013, 46, 2651–2658. [Google Scholar] [CrossRef]
- Mohamied, Y.; Rowland, E.M.; Bailey, E.B.; Sherwin, S.; Schwartz, M.A.; Weinberg, P.D. Change of Direction in the Biomechanics of Atherosclerosis. Ann. Biomed. Eng. 2015, 43, 16–25. [Google Scholar] [CrossRef]
- Mohamied, Y.; Sherwin, S.J.; Weinberg, P.D. Understanding the Fluid Mechanics behind Transverse Wall Shear Stress. J. Biomech. 2017, 50, 102–109. [Google Scholar] [CrossRef]
- Morbiducci, U.; Gallo, D.; Cristofanelli, S.; Ponzini, R.; Deriu, M.A.; Rizzo, G.; Steinman, D.A. A Rational Approach to Defining Principal Axes of Multidirectional Wall Shear Stress in Realistic Vascular Geometries, with Application to the Study of the Influence of Helical Flow on Wall Shear Stress Directionality in Aorta. J. Biomech. 2015, 48, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Kleinstreuer, C.; Truskey, G.A. A Focal Stress Gradient-Dependent Mass Transfer Mechanism for Atherogenesis in Branching Arteries. Med. Eng. Phys. 1996, 18, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Longest, P.W.; Kleinstreuer, C. Computational Haemodynamics Analysis and Comparison Study of Arterio-Venous Grafts. J. Med. Eng. Technol. 2000, 24, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Himburg, H.A.; Friedman, M.H. Correspondence of Low Mean Shear and High Harmonic Content in the Porcine Iliac Arteries. J. Biomech. Eng. 2006, 128, 852–856. [Google Scholar] [CrossRef]
- Himburg, H.A.; Dowd, S.E.; Friedman, M.H. Frequency-Dependent Response of the Vascular Endothelium to Pulsatile Shear Stress. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H645–H653. [Google Scholar] [CrossRef]
- Gelfand, B.D.; Epstein, F.H.; Blackman, B.R. Spatial and Spectral Heterogeneity of Time-varying Shear Stress Profiles in.Pdf. J. Magn. Reson. Imaging 2006, 24, 1386–1392. [Google Scholar] [CrossRef]
- Arzani, A.; Shadden, S.C. Wall Shear Stress Fixed Points in Cardiovascular Fluid Mechanics. J. Biomech. 2018, 73, 145–152. [Google Scholar] [CrossRef]
- Morbiducci, U.; Mazzi, V.; Domanin, M.; De Nisco, G.; Vergara, C.; Steinman, D.A.; Gallo, D. Wall Shear Stress Topological Skeleton Independently Predicts Long-Term Restenosis After Carotid Bifurcation Endarterectomy. Ann. Biomed. Eng. 2020, 48, 2936–2949. [Google Scholar] [CrossRef] [PubMed]
- Mazzi, V.; Gallo, D.; Calò, K.; Najafi, M.; Khan, M.O.; De Nisco, G.; Steinman, D.A.; Morbiducci, U. A Eulerian Method to Analyze Wall Shear Stress Fixed Points and Manifolds in Cardiovascular Flows. Biomech. Model. Mechanobiol. 2020, 19, 1403–1423. [Google Scholar] [CrossRef] [PubMed]
- Mazzi, V.; Morbiducci, U.; Calò, K.; De Nisco, G.; Rizzini, M.L.; Torta, E.; Caridi, G.C.A.; Chiastra, C.; Gallo, D. Wall Shear Stress Topological Skeleton Analysis in Cardiovascular Flows: Methods and Applications. Mathematics 2021, 9, 720. [Google Scholar] [CrossRef]
- Mazzi, V.; Gallo, D.; Calò, K.; Steinman, D.A.; Morbiducci, U. A Revised and Expanded Unified Theory Linking Wall Shear Stress and Vorticity Topologies to Enable the Interpretation of Cardiovascular Flow Disturbances. Phys. Fluids 2025, 37, 031907. [Google Scholar] [CrossRef]
- Arzani, A.; Gambaruto, A.M.; Chen, G.; Shadden, S.C. Wall Shear Stress Exposure Time: A Lagrangian Measure of near-Wall Stagnation and Concentration in Cardiovascular Flows. Biomech. Model. Mechanobiol. 2017, 16, 787–803. [Google Scholar] [CrossRef]
- Rayz, V.L.; Boussel, L.; Ge, L.; Leach, J.R.; Martin, A.J.; Lawton, M.T.; McCulloch, C.; Saloner, D. Flow Residence Time and Regions of Intraluminal Thrombus Deposition in Intracranial Aneurysms. Ann. Biomed. Eng. 2010, 38, 3058–3069. [Google Scholar] [CrossRef]
- Esmaily-Moghadam, M.; Hsia, T.Y.; Marsden, A.L. A Non-Discrete Method for Computation of Residence Time in Fluid Mechanics Simulations. Phys. Fluids 2013, 25, 110802. [Google Scholar] [CrossRef]
- Pijls, N.H.J.; Van Son, J.A.M.; Kirkeeide, R.L.; De Bruyne, B.; Gould, K.L. Experimental Basis of Determining Maximum Coronary, Myocardial, and Collateral Blood Flow by Pressure Measurements for Assessing Functional Stenosis Severity before and after Percutaneous Transluminal Coronary Angioplasty. Circulation 1993, 87, 1354–1367. [Google Scholar] [CrossRef]
- Pijls, N.H.J.; de Bruyne, B.; Peels, K.; van der Voort, P.H.; Bonnier, H.J.R.M.; Bartunek, J.; Koolen, J.J. Measurement of Fractional Flow Reserve to Assess the Functional Severity of Coronary-Artery Stenoses. N. Engl. J. Med. 1996, 334, 1703–1708. [Google Scholar] [CrossRef]
- Pijls, N.H.J.; Fearon, W.F.; Tonino, P.A.L.; Siebert, U.; Ikeno, F.; Bornschein, B.; Van’T Veer, M.; Klauss, V.; Manoharan, G.; Engstrøm, T.; et al. Fractional Flow Reserve versus Angiography for Guiding Percutaneous Coronary Intervention in Patients with Multivessel Coronary Artery Disease: 2-Year Follow-up of the FAME (Fractional Flow Reserve versus Angiography for Multivessel Evaluation) Study. J. Am. Coll. Cardiol. 2010, 56, 177–184. [Google Scholar] [CrossRef]
- Mathew, R.C.; Gottbrecht, M.; Salerno, M. Computed Tomography Fractional Flow Reserve to Guide Coronary Angiography and Intervention. Interv. Cardiol. Clin. 2018, 7, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Vignon-Clementel, I.E.; Coogan, J.S.; Figueroa, C.A.; Jansen, K.E.; Taylor, C.A. Patient-Specific Modeling of Blood Flow and Pressure in Human Coronary Arteries. Ann. Biomed. Eng. 2010, 38, 3195–3209. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.A.; Fonte, T.A.; Min, J.K. Computational Fluid Dynamics Applied to Cardiac Computed Tomography for Noninvasive Quantification of Fractional Flow Reserve: Scientific Basis. J. Am. Coll. Cardiol. 2013, 61, 2233–2241. [Google Scholar] [CrossRef]
- Mazzi, V.; De Nisco, G.; Hoogendoorn, A.; Calò, K.; Chiastra, C.; Gallo, D.; Steinman, D.A.; Wentzel, J.J.; Morbiducci, U. Early Atherosclerotic Changes in Coronary Arteries Are Associated with Endothelium Shear Stress Contraction/Expansion Variability. Ann. Biomed. Eng. 2021, 49, 2606–2621. [Google Scholar] [CrossRef]
- Charonko, J.J.; Kumar, R.; Stewart, K.; Little, W.C.; Vlachos, P.P. Vortices Formed on the Mitral Valve Tips Aid Normal Left Ventricular Filling. Ann. Biomed. Eng. 2013, 41, 1049–1061. [Google Scholar] [CrossRef]
- Töger, J.; Kanski, M.; Carlsson, M.; Kovács, S.J.; Söderlind, G.; Arheden, H.; Heiberg, E. Vortex Ring Formation in the Left Ventricle of the Heart: Analysis by 4D Flow MRI and Lagrangian Coherent Structures. Ann. Biomed. Eng. 2012, 40, 2652–2662. [Google Scholar] [CrossRef]
- Hendabadi, S.; Bermejo, J.; Benito, Y.; Yotti, R.; Fernández-Avilés, F.; Del Álamo, J.C.; Shadden, S.C. Topology of Blood Transport in the Human Left Ventricle by Novel Processing of Doppler Echocardiography. Ann. Biomed. Eng. 2013, 41, 2603–2616. [Google Scholar] [CrossRef]
- Shadden, S.C.; Astorino, M.; Gerbeau, J.F. Computational Analysis of an Aortic Valve Jet with Lagrangian Coherent Structures. Chaos 2010, 20, 017512. [Google Scholar] [CrossRef]
- Soltany Sadrabadi, M.; Hedayat, M.; Borazjani, I.; Arzani, A. Fluid-Structure Coupled Biotransport Processes in Aortic Valve Disease. J. Biomech. 2021, 117, 110239. [Google Scholar] [CrossRef]
- Ge, L.; Sotiropoulos, F. Direction and Magnitude of Blood Flow Shear Stresses on the Leaflets of Aortic Valves: Is There a Link With Valve Calcification? J. Biomech. Eng. 2010, 132, 014505. [Google Scholar] [CrossRef] [PubMed]
- Kok, A.M.; Molony, D.S.; Timmins, L.H.; Ko, Y.A.; Boersma, E.; Eshtehardi, P.; Wentzel, J.J.; Samady, H. The Influence of Multidirectional Shear Stress on Plaque Progression and Composition Changes in Human Coronary Arteries. EuroIntervention 2019, 15, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Hoogendoorn, A.; Kok, A.M.; Hartman, E.M.J.; De Nisco, G.; Casadonte, L.; Chiastra, C.; Coenen, A.; Korteland, S.A.; Van der Heiden, K.; Gijsen, F.J.H.; et al. Multidirectional Wall Shear Stress Promotes Advanced Coronary Plaque Development: Comparing Five Shear Stress metrics. Cardiovasc. Res. 2020, 116, 1136–1146. [Google Scholar] [CrossRef] [PubMed]
- De Nisco, G.; Hoogendoorn, A.; Chiastra, C.; Gallo, D.; Kok, A.M.; Morbiducci, U.; Wentzel, J.J. The Impact of Helical Flow on Coronary Atherosclerotic Plaque Development. Atherosclerosis 2020, 300, 39–46. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Farghadan, A.; McConnell, D.R.; Barker, A.J.; Wentzel, J.J.; Budoff, M.J.; Arzani, A. The Story of Wall Shear Stress in Coronary Artery Atherosclerosis: Biochemical Transport and Mechanotransduction. J. Biomech. Eng. 2021, 143, 041002. [Google Scholar] [CrossRef]
- Koo, B.K.; Erglis, A.; Doh, J.H.; Daniels, D.V.; Jegere, S.; Kim, H.S.; Dunning, A.; Defrance, T.; Lansky, A.; Leipsic, J.; et al. Diagnosis of Ischemia-Causing Coronary Stenoses by Noninvasive Fractional Flow Reserve Computed from Coronary Computed Tomographic Angiograms: Results from the Prospective Multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noni. J. Am. Coll. Cardiol. 2011, 58, 1989–1997. [Google Scholar] [CrossRef]
- Min, J.K.; Leipsic, J.; Pencina, M.J.; Berman, D.S.; Koo, B.K.; Van Mieghem, C.; Erglis, A.; Lin, F.Y.; Dunning, A.M.; Apruzzese, P.; et al. Diagnostic Accuracy of Fractional Flow Reserve from Anatomic CT Angiography. JAMA 2012, 308, 1237–1245. [Google Scholar] [CrossRef]
- Itu, L.; Rapaka, S.; Passerini, T.; Georgescu, B.; Schwemmer, C.; Schoebinger, M.; Flohr, T.; Sharma, P.; Comaniciu, D. A Machine-Learning Approach for Computation of Fractional Flow Reserve from Coronary Computed Tomography. J. Appl. Physiol. 2016, 121, 42–52. [Google Scholar] [CrossRef]
- Farhad, A.; Reza, R.; Azamossadat, H.; Ali, G.; Arash, R.; Mehrad, A.; Zahra, K. Artificial Intelligence in Estimating Fractional Flow Reserve: A Systematic Literature Review of Techniques. BMC Cardiovasc. Disord. 2023, 23, 407. [Google Scholar] [CrossRef]
- Gosling, R.C.; Morris, P.D.; Silva Soto, D.A.; Lawford, P.V.; Hose, D.R.; Gunn, J.P. Virtual Coronary Intervention: A Treatment Planning Tool Based Upon the Angiogram. JACC Cardiovasc. Imaging 2019, 12, 865–872. [Google Scholar] [CrossRef]
- Ekmejian, A.A.; Carpenter, H.J.; Ciofani, J.L.; Gray, B.H.M.I.; Allahwala, U.K.; Ward, M.; Escaned, J.; Psaltis, P.J.; Bhindi, R. Advances in the Computational Assessment of Disturbed Coronary Flow and Wall Shear Stress: A Contemporary Review. J. Am. Heart Assoc. 2024, 13, e037129. [Google Scholar] [CrossRef]
- Chung, B.; Cebral, J.R. CFD for Evaluation and Treatment Planning of Aneurysms: Review of Proposed Clinical Uses and Their Challenges. Ann. Biomed. Eng. 2015, 43, 122–138. [Google Scholar] [CrossRef]
- Levitt, M.R.; McGah, P.M.; Aliseda, A.; Mourad, P.D.; Nerva, J.D.; Vaidya, S.S.; Morton, R.P.; Ghodke, B.V.; Kim, L.J. Cerebral Aneurysms Treated with Flow-Diverting Stents: Computational Models with Intravascular Blood Flow Measurements. Am. J. Neuroradiol. 2014, 35, 143–148. [Google Scholar] [CrossRef]
- Steinman, D.A.; Pereira, V.M. How Patient Specific Are Patient-Specific Computational Models of Cerebral Aneurysms? An Overview of Sources of Error and Variability. Neurosurg. Focus 2019, 47, E14. [Google Scholar] [CrossRef]
- Cebral, J.R.; Castro, M.A.; Burgess, J.E.; Pergolizzi, R.S.; Sheridan, M.J.; Putman, C.M. Characterization of Cerebral Aneurysms for Assessing Risk of Rupture by Using Patient-Specific Computational Hemodynamics Models. Am. J. Neuroradiol. 2005, 26, 2550–2559. [Google Scholar] [CrossRef]
- Xiang, J.; Natarajan, S.K.; Tremmel, M.; Ma, D.; Mocco, J.; Hopkins, L.N.; Siddiqui, A.H.; Levy, E.I.; Meng, H. Hemodynamic-Morphologic Discriminants for Intracranial Aneurysm Rupture. Stroke 2011, 42, 144–152. [Google Scholar] [CrossRef]
- Rakesh, L.; Anees Fahim, C.P.; Prakashini, K.; Anish, S. Computational Studies on the Hemodynamics of Patient-Specific Human Carotid Artery. In Proceedings of the Conference on Fluid Mechanics and Fluid Power, Jodhpur, India, 20–22 December 2023; Lecture Notes in Mechanical Engineering. Springer: Singapore, 2023; pp. 373–378. [Google Scholar] [CrossRef]
- Farghadan, A.; Arzani, A. The Combined Effect of Wall Shear Stress Topology and Magnitude on Cardiovascular Mass Transport. Int. J. Heat Mass Transf. 2019, 131, 252–260. [Google Scholar] [CrossRef]
- Mutlu, O.; Olcay, A.B.; Bilgin, C.; Hakyemez, B. Evaluating the Effect of the Number of Wire of Flow Diverter Stents on the Nonstagnated Region Formation in an Aneurysm Sac Using Lagrangian Coherent Structure and Hyperbolic Time Analysis. World Neurosurg. 2020, 133, e666–e682. [Google Scholar] [CrossRef] [PubMed]
- Chien, A.; Tateshima, S.; Castro, M.; Sayre, J.; Cebral, J.; Viñuela, F. Patient-Specific Flow Analysis of Brain Aneurysms at a Single Location: Comparison of Hemodynamic Characteristics in Small Aneurysms. Med. Biol. Eng. Comput. 2008, 46, 1113–1120. [Google Scholar] [CrossRef]
- Baek, H.; Jayaraman, M.V.; Richardson, P.D.; Karniadakis, G.E. Flow Instability and Wall Shear Stress Variation in Intracranial Aneurysms. J. R. Soc. Interface 2010, 7, 967–988. [Google Scholar] [CrossRef]
- Goubergrits, L.; Schaller, J.; Kertzscher, U.; van den Bruck, N.; Poethkow, K.; Petz, C.; Hege, H.-C.; Spuler, A. Statistical Wall Shear Stress Maps of Ruptured and Unruptured Middle Cerebral Artery Aneurysms. J. R. Soc. Interface 2011, 9, 677–688. [Google Scholar] [CrossRef]
- Gambaruto, A.M.; João, A.J. Flow Structures in Cerebral Aneurysms. Comput. Fluids 2012, 65, 56–65. [Google Scholar] [CrossRef]
- Suzuki, D.; Funamoto, K.; Sugiyama, S.; Nakayama, T.; Hayase, T.; Tominaga, T. Investigation of Characteristic Hemodynamic Parameters Indicating Thinning and Thickening Sites of Cerebral Aneurysms. J. Biomech. Sci. Eng. 2015, 10, 14–00265. [Google Scholar] [CrossRef]
- Rayz, V.L.; Boussel, L.; Lawton, M.T.; Acevedo-Bolton, G.; Ge, L.; Young, W.L.; Higashida, R.T.; Saloner, D. Numerical Modeling of the Flow in Intracranial Aneurysms: Prediction of Regions Prone to Thrombus Formation. Ann. Biomed. Eng. 2008, 36, 1793–1804. [Google Scholar] [CrossRef]
- Cilla, M.; Casales, M.; Peña, E.; Martínez, M.A.; Malvè, M. A Parametric Model for Studying the Aorta Hemodynamics by Means of the Computational Fluid Dynamics. J. Biomech. 2020, 103, 109691. [Google Scholar] [CrossRef]
- Perinajová, R.; Juffermans, J.F.; Westenberg, J.J.M.; van der Palen, R.L.F.; van den Boogaard, P.J.; Lamb, H.J.; Kenjereš, S. Geometrically Induced Wall Shear Stress Variability in CFD-MRI Coupled Simulations of Blood Flow in the Thoracic Aortas. Comput. Biol. Med. 2021, 133, 104385. [Google Scholar] [CrossRef]
- Abdallah, W.; Darwish, A.; Garcia, J.; Kadem, L. Three-Dimensional Lagrangian Coherent Structures in Patients with Aortic Regurgitation. Phys. Fluids 2024, 36, 011702. [Google Scholar] [CrossRef]
- Arzani, A.; Gambaruto, A.M.; Chen, G.; Shadden, S.C. Lagrangian Wall Shear Stress Structures and near Wall Transport in High Schmidt Aneurysmal Flows. J. Fluid Mech. 2016, 790, 158–172. [Google Scholar] [CrossRef]
- Pasta, S.; Agnese, V.; Gallo, A.; Cosentino, F.; Di Giuseppe, M.; Gentile, G.; Raffa, G.M.; Maalouf, J.F.; Michelena, H.I.; Bellavia, D.; et al. Shear Stress and Aortic Strain Associations With Biomarkers of Ascending Thoracic Aortic Aneurysm. Ann. Thorac. Surg. 2020, 110, 1595–1604. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.W.; Wee, I.; Syn, N.; Ng, S.; Leo, H.L.; Richards, A.M.; Choong, A.M.T.L. Computational Fluid Dynamics Modeling of Hemodynamic Parameters in the Human Diseased Aorta: A Systematic Review. Ann. Vasc. Surg. 2020, 63, 336–381. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xu, X.Y.; Rosendahl, U.; Pepper, J.; Mirsadraee, S. Advanced Risk Prediction for Aortic Dissection Patients Using Imaging-Based Computational Flow Analysis. Clin. Radiol. 2023, 78, e155–e165. [Google Scholar] [CrossRef] [PubMed]
- Caro, C.G. Discovery of the Role of Wall Shear in Atherosclerosis. Arter. Thromb. Vasc. Biol. 2009, 29, 158–161. [Google Scholar] [CrossRef] [PubMed]
- Caro, C.G.; Fitz-Gerald, J.M.; Schroter, R.C. Atheroma and Arterial Wall Shear. Observation, Correlation and Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis. Proc. R. Soc. London Ser. B. Biol. Sci. 1971, 177, 109–159. [Google Scholar] [CrossRef]
- Zarins, C.K.; Giddens, D.P.; Bharadvaj, B.K.; Sottiurai, V.S.; Mabon, R.F.; Glagov, S. Carotid Bifurcation Atherosclerosis. Quantitative Correlation of Plaque Localization with Flow Velocity Profiles and Wall Shear Stress. Circ. Res. 1983, 53, 502–514. [Google Scholar] [CrossRef]
- Wang, C.; Baker, B.M.; Chen, C.S.; Schwartz, M.A. Endothelial Cell Sensing of Flow Direction. Arter. Thromb. Vasc. Biol. 2013, 33, 2130–2136. [Google Scholar] [CrossRef]
- Peiffer, V.; Sherwin, S.J.; Weinberg, P.D. Does Low and Oscillatory Wall Shear Stress Correlate Spatially with Early Atherosclerosis ? A Systematic Review. Cardiovasc. Res. 2013, 99, 242–250. [Google Scholar] [CrossRef]
- Pedrigi, R.M.; Poulsen, C.B.; Mehta, V.V.; Holm, N.R.; Pareek, N.; Post, A.L.; Kilic, I.D.; Banya, W.A.S.; Dall’Ara, G.; Mattesini, A.; et al. Inducing Persistent Flow Disturbances Accelerates Atherogenesis and Promotes Thin Cap Fibroatheroma Development in D374Y-PCSK9 Hypercholesterolemic Minipigs. Circulation 2015, 132, 1003–1012. [Google Scholar] [CrossRef]
- Tang, D.; Yang, C.; Mondal, S.; Liu, F.; Canton, G.; Hatsukami, T.S.; Yuan, C. A Negative Correlation between Human Carotid Atherosclerotic Plaque Progression and Plaque Wall Stress: In Vivo MRI-Based 2D/3D FSI Models. J. Biomech. 2008, 41, 727–736. [Google Scholar] [CrossRef]
- Groen, H.C.; Gijsen, F.J.H.; Van Der Lugt, A.; Ferguson, M.S.; Hatsukami, T.S.; Van Der Steen, A.F.W.; Yuan, C.; Wentzel, J.J. Plaque Rupture in the Carotid Artery Is Localized at the High Shear Stress Region: A Case Report. Stroke 2007, 38, 2379–2381. [Google Scholar] [CrossRef]
- Gijsen, F.J.H.; Wentzel, J.J.; Thury, A.; Mastik, F.; Schaar, J.A.; Schuurbiers, J.C.H.; Slager, C.J.; Van Der Giessen, W.J.; De Feyter, P.J.; Van Der Steen, A.F.W.; et al. Strain Distribution over Plaques in Human Coronary Arteries Relates to Shear Stress. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, 1608–1614. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-W.; Antiga, L.; Steinman, D.A. Correlations Among Indicators of Disturbed Flow at the Normal Carotid Bifurcation. J. Biomech. Eng. 2009, 131, 061013. [Google Scholar] [CrossRef] [PubMed]
- Kandangwa, P.; Cheng, K.; Patel, M.; Sherwin, S.J.; de Silva, R.; Weinberg, P.D. Relative Residence Time Can Account for Half of the Anatomical Variation in Fatty Streak Prevalence Within the Right Coronary Artery. Ann. Biomed. Eng. 2025, 53, 144–157. [Google Scholar] [CrossRef]
- Reza, M.M.S.; Arzani, A. A Critical Comparison of Different Residence Time Measures in Aneurysms. J. Biomech. 2019, 88, 122–129. [Google Scholar] [CrossRef]
- Poelma, C.; Watton, P.N.; Ventikos, Y. Transitional Flow in Aneurysms and the Computation of Haemodynamic Parameters. J. R. Soc. Interface 2015, 12, 20141394. [Google Scholar] [CrossRef]
- Gallo, D.; Steinman, D.A.; Morbiducci, U. Insights into the Co-Localization of Magnitude-Based versus Direction-Based Indicators of Disturbed Shear at the Carotid Bifurcation. J. Biomech. 2016, 49, 2413–2419. [Google Scholar] [CrossRef]
- Buradi, A.; Mahalingam, A. Effect of Stenosis Severity on Wall Shear Stress Based Hemodynamic Descriptors Using Multiphase Mixture Theory. J. Appl. Fluid Mech. 2018, 11, 1497–1509. [Google Scholar] [CrossRef]
Descriptor | Defined in | Year | N of Articles | Humans |
---|---|---|---|---|
OSI | [40] | 1985 | 865 | 575 |
RRT | [42] | 2004 | 289 | 176 |
transWSS | [44] | 2013 | 24 | 15 |
TAWSS | [48] | 1996 | 403 | 253 |
WSSG | [49] | 2000 | 204 | 97 |
Axial WSS | [47] | 2015 | 9 | 6 |
SPI | [25] | 2017 | 13 | 10 |
WSSET | [58] | 2017 | 2 | 2 |
TSVI | [67] | 2021 | 9 | 7 |
FFR | [61] | 1993 | 8946 | 8160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ene-Iordache, B. Descriptors of Flow in Computational Hemodynamics. Fluids 2025, 10, 191. https://doi.org/10.3390/fluids10080191
Ene-Iordache B. Descriptors of Flow in Computational Hemodynamics. Fluids. 2025; 10(8):191. https://doi.org/10.3390/fluids10080191
Chicago/Turabian StyleEne-Iordache, Bogdan. 2025. "Descriptors of Flow in Computational Hemodynamics" Fluids 10, no. 8: 191. https://doi.org/10.3390/fluids10080191
APA StyleEne-Iordache, B. (2025). Descriptors of Flow in Computational Hemodynamics. Fluids, 10(8), 191. https://doi.org/10.3390/fluids10080191