Statistical Physics Perspective on Droplet Spreading in Reactive Wetting Interfaces
Abstract
1. Introduction
2. The Experimental System and Methodology
3. The Spreading Process
3.1. Bulk Spreading
3.2. Kinetic Roughening
4. Scaling Exponents
4.1. The Roughness and Growth Exponents
4.2. The Persistence Exponent
5. The Big Picture
6. Universality—High Temperatures
7. Kinetic Roughening, the QKPZ Equation, and the Ising Model
8. Effect of Temperature on Kinetic Roughening Exponents
9. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- de Gennes, P.G. Wetting: Statics and Dynamics. Rev. Mod. Phys. 1985, 57, 827. [Google Scholar] [CrossRef]
- Leger, L.; Joanny, J.F. Liquid Spreading. Rep. Prog. Phys. 1992, 55, 431. [Google Scholar] [CrossRef]
- Oron, A.; Davis, S.H.; Bankoff, S.G. Long-Scale Evolution of Thin Liquid Films. Rev. Mod. Phys. 1997, 69, 931. [Google Scholar] [CrossRef]
- de Gennes, P.G. The Dynamics of Reactive Wetting on Solid Surfaces. Physica A 1998, 249, 196. [Google Scholar] [CrossRef]
- Bonn, D.; Eggers, J.; Indekeu, J.; Meunier, J.; Rolley, E. Wetting and Spreading. Rev. Mod. Phys. 2009, 81, 739. [Google Scholar] [CrossRef]
- Tadmor, R. Approaches in Wetting Phenomena. Soft Matter 2011, 7, 1577. [Google Scholar] [CrossRef]
- Karim, A.M. A Review of Physics of Moving Contact Line Dynamics Models and its Applications in Interfacial Science. J. Appl. Phys. 2022, 132, 080701. [Google Scholar] [CrossRef]
- Karim, A.M.; Suszynski, W.J. Physics of Dynamic Contact Line: Hydrodynamics Theory versus Molecular Kinetic Theory. Fluids 2022, 7, 318. [Google Scholar] [CrossRef]
- Tanner, L.H. The Spreading of Silicone Oil Drops on Horizontal Surfaces. J. Phys. D 1979, 12, 1473. [Google Scholar] [CrossRef]
- Lopez, J.; Miller, C.A.; Ruckenstein, E. Spreading Kinetics of Liquid Drops on Solids. J. Colloid Interface Sci. 1976, 56, 460. [Google Scholar] [CrossRef]
- Blake, T.D. Dynamic Contact Angles and Wetting Kinetics in Wettability; Berg, J.C., Ed.; Marcel Dekker: New York, NY, USA, 1993. [Google Scholar]
- Davidovitch, B.; Moro, E.; Stone, H.A. Spreading of Viscous Fluid Drops on a Solid Substrate Assisted by Thermal Fluctuations. Phys. Rev. Lett. 2005, 95, 244505. [Google Scholar] [CrossRef] [PubMed]
- Landry, K.; Eustathopoulos, N. Dynamics of Wetting in Reactive Metal/Ceramic Systems: Linear Spreading. Acta Mater. 1996, 44, 3923. [Google Scholar] [CrossRef]
- Eustathopoulos, N. Dynamics of Wetting in Reactive Metal/Ceramic Systems. Acta Mater. 1998, 46, 2319. [Google Scholar] [CrossRef]
- Eustathopoulos, N.; Nicholas, M.G.; Drevet, B. Wettability at High Temperatures; Pergamon: New York, NY, USA, 1999. [Google Scholar]
- Kumar, G.; Prabhu, K.N. Review of Non-Reactive and Reactive Wetting of Liquids on Surfaces. Adv. Colloid Interface Sci. 2007, 133, 61. [Google Scholar] [CrossRef]
- Yin, L.; Chauhan, A.; Singler, T.J. Reactive Wetting in Metal/Metal systems: Dissolutive versus Compound-Forming Systems. Mater. Sci. Eng. A 2008, 495, 80. [Google Scholar] [CrossRef]
- Singler, T.J.; Su, S.; Yin, L.; Murray, B.T. Modeling and Experiments in Dissolutive Wetting: A Review. J. Mater. Sci. 2012, 47, 8261. [Google Scholar] [CrossRef]
- Bormashenko, E. Wetting of Real Surfaces; de Gruyter: Berlin, Germany, 2013. [Google Scholar]
- Bormashenko, E. Apparent contact angles for reactive wetting of smooth, rough, and heterogeneous surfaces calculated from the variational principles. J. Colloid Interface Sci. 2019, 537, 597. [Google Scholar] [CrossRef]
- Lin, Q.; Xie, K.; Sui, R.; Mu, D.; Cao, R.; Chang, J.; Qiu, F. Kinetic analysis of wetting and spreading at high temperatures: A review. Adv. Colloid Interface Sci. 2022, 305, 102698. [Google Scholar] [CrossRef] [PubMed]
- Sobczak, N.; Agathopoulos, S. (Eds.) HTC 2022: Book of Abstracts of the 10th International Conference on High Temperature Capillarity, Krakow, Poland, 12–16 September 2022; Polish Foundrymen’s Association: Kraków, Poland, 2022; ISBN 978-83-963247-1-9. [Google Scholar]
- Be’er, A.; Lereah, Y.; Taitelbaum, H. The Dynamics and Geometry of Solid-Liquid Reaction Interface. Physica A 2000, 285, 156. [Google Scholar] [CrossRef]
- Be’er, A.; Lereah, Y.; Hecht, I.; Taitelbaum, H. The Roughness and Growth of a Silver-Mercury Reaction Interface. Physica A 2001, 302, 297. [Google Scholar] [CrossRef]
- Be’er, A.; Lereah, Y.; Frydman, A.; Taitelbaum, H. Spreading of a Mercury Droplet on Thin Gold Films. Physica A 2002, 314, 325. [Google Scholar] [CrossRef]
- Be’er, A.; Lereah, Y. Time-resolved, three-dimensional quantitative microscopy of a droplet spreading on solid substrates. J. Microsc. 2002, 208, 148. [Google Scholar] [CrossRef]
- Hecht, I.; Taitelbaum, H. Roughness and Growth in a Continuous Fluid Invasion Model. Phys. Rev. E 2004, 70, 046307. [Google Scholar] [CrossRef]
- Be’er, A.; Hecht, I.; Taitelbaum, H. Interface Roughening Dynamics: Temporal Width Fluctuations and the Correlation Length. Phys. Rev. E 2005, 72, 031606. [Google Scholar] [CrossRef]
- Hecht, I.; Be’er, A.; Taitelbaum, H. Single Interface Growth: Fluctuations and the Correlation Length. Fluct. Noise Lett. 2005, 5, L319. [Google Scholar] [CrossRef]
- Be’er, A.; Lereah, Y.; Frydman, A.; Taitelbaum, H. Spreading of Mercury Droplets on Thin Silver Films at Room Temperature. Phys. Rev. E 2007, 75, 051601. [Google Scholar] [CrossRef] [PubMed]
- Be’er, A.; Lereah, Y.; Taitelbaum, H. Reactive-Wetting of Hg-Ag System at Room Temperature. Mater. Sci. Eng. A 2008, 495, 102. [Google Scholar] [CrossRef]
- Efraim, Y.; Taitelbaum, H. Can Ising model and/or QKPZ equation properly describe reactive-wetting interface dynamics? Cent. Eur. J. Phys. 2009, 7, 503. [Google Scholar] [CrossRef]
- Yin, L.; Murray, B.T.; Su, S.; Sun, Y.; Efraim, Y.; Taitelbaum, H.; Singler, T.J. Reactive Wetting in Metal-Metal Systems. J. Phys. Condens. Matter 2009, 21, 464130. [Google Scholar] [CrossRef]
- Efraim, Y.; Taitelbaum, H. Persistence in Reactive-Wetting Interfaces. Phys. Rev. E 2011, 84, 050602. [Google Scholar] [CrossRef]
- Harel, M.; Taitelbaum, H. Effect of Temperature on the Dynamics and Geometry of Reacting-Wetting Interfaces around Room Temperature. Phys. Rev. E 2017, 96, 062801. [Google Scholar] [CrossRef] [PubMed]
- Barlow, M.; Planting, P.J. The Wetting of Metal Surfaces by Liquid Mercury. Z. Met. 1969, 60, 10. [Google Scholar] [CrossRef]
- Vicsek, T. Fractal Growth Phenomena, 2nd ed.; World Scientific: Singapore, 1992. [Google Scholar]
- Bunde, A.; Havlin, S. Fractals in Science, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Bunde, A.; Havlin, S. Fractals and Disordered Systems, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Barabasi, A.L.; Stanley, H.E. Fractal Concepts in Surface Growth; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Meakin, P. Fractals, Scaling, and Growth Far from Equilibrium; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Halpin-Healy, T.; Zhang, Y.-C. Kinetic Roughening Phenomena, Stochastic Growth, Directed Polymers and all that. Aspects of Multidisciplinary Statistical Mechanics. Phys. Rep. 1995, 254, 215. [Google Scholar] [CrossRef]
- Alava, M.; Dube, M.; Rost, M. Imbibition in Disordered Media. Adv. Phys. 2004, 53, 83. [Google Scholar] [CrossRef]
- Family, F.; Vicsek, T. Scaling of the Active Zone in the Eden Process on Percolation Networks and the Ballistic Deposition Model. J. Phys. A 1985, 18, L75. [Google Scholar] [CrossRef]
- Kardar, M.; Parisi, G.; Zhang, Y.-C. Dynamic Scaling of Growing Interfaces. Phys. Rev. Lett. 1986, 56, 889. [Google Scholar] [CrossRef]
- Hentschel, H.G.E.; Family, F. Scaling in Open Dissipative Systems. Phys. Rev. Lett. 1991, 66, 1982. [Google Scholar] [CrossRef]
- Majumdar, S.N. Persistence in Nonequilibrium Systems. Curr. Sci. 1999, 77, 370. [Google Scholar] [CrossRef]
- Brú, A.; Pastor, J.M.; Fernaud, I.; Brú, I.; Melle, S.; Berenguer, C. Super-Rough Dynamics on Tumor Growth. Phys. Rev. Lett. 1998, 81, 4008. [Google Scholar] [CrossRef]
- Khain, E.; Sander, L.M. Dynamics and Pattern Formation in Invasive Tumor Growth. Phys. Rev. Lett. 2006, 96, 188103. [Google Scholar] [CrossRef]
- Ben-Jacob, E.; Schochet, O.; Tenenbaum, A.; Cohen, I.; Czirok, A.; Vicsek, T. Generic Modelling of Cooperative Growth Patterns in Bacterial Colonies. Nature 1994, 368, 46. [Google Scholar] [CrossRef] [PubMed]
- Huergo, M.A.C.; Pasquale, M.A.; González, P.H.; Bolzán, A.E.; Arvia, A.J. Growth Dynamics of Cancer Cell Colonies and their Comparison with Noncancerous Cells. Phys. Rev. E 2012, 85, 011918. [Google Scholar] [CrossRef] [PubMed]
- Santalla, S.N.; Rodríguez-Laguna, J.; Abad, J.P.; Marín, I.; Espinosa, M.M.; Muñoz-García, J.; Vázquez, L.; Cuerno, R. Nonuniversality of Front Fluctuations for Compact Colonies of Nonmotile Bacteria. Phys. Rev. E 2018, 98, 012407. [Google Scholar] [CrossRef] [PubMed]
- Santalla, S.N.; Ferreira, S.C. Eden Model with Nonlocal Growth Rules and Kinetic Roughening in Biological Systems. Phys. Rev. E 2018, 98, 022405. [Google Scholar] [CrossRef]
- Barreales, B.G.; Meléndez, J.J.; Cuerno, R.; Ruiz-Lorenzo, J.J. Kardar–Parisi–Zhang universality class for the critical dynamics of reaction–diffusion fronts. J. Stat. Mech. Theor. Exp. 2020, 2020, 023203. [Google Scholar] [CrossRef]
- Makse, H.A.; Havlin, S.; Stanley, H.E. Modelling urban growth patterns. Nature 1995, 377, 608. [Google Scholar] [CrossRef]
- Najem, S.; Krayem, A.; Ala-Nissila, T.; Grant, M. Kinetic Roughening of the Urban Skyline. Phys. Rev. E 2020, 101, 050301. [Google Scholar] [CrossRef]
- Maunuksela, J.; Myllys, M.; Timonen, J.; Alava, M.J.; Ala-Nissila, T. Kardar–Parisi–Zhang Scaling in Kinetic Roughening of Fire Fronts. Physica A 1999, 266, 372–376. [Google Scholar] [CrossRef]
- Maunuksela, J.; Myllys, M.; Kähkönen, O.-P.; Timonen, J.; Provatas, N.; Alava, M.J.; Ala-Nissila, T. Kinetic Roughening in Slow Combustion of Paper. Phys. Rev. Lett. 1997, 79, 1515. [Google Scholar] [CrossRef]
- Balankin, A.S.; Morales, D.; Susarrey, O.; Samayoa, D.; Trinidad, J.M.; Marquez, J.; García, R. Self-Similar Roughening of Drying Wet paper. Phys. Rev. E 2006, 73, 065105. [Google Scholar] [CrossRef]
- Balankin, A.S.; Paredes, R.G.; Susarrey, O.; Morales, D.; Vacio, F.C. Kinetic Roughening and Pinning of Two Coupled Interfaces in Disordered Media. Phys. Rev. Lett. 2006, 96, 056101. [Google Scholar] [CrossRef] [PubMed]
- Barness, D.; Efraim, Y.; Taitelbaum, H.; Sinvani, M.; Shaulov, A.; Yeshurun, Y. Kinetic Roughening of Magnetic Flux Fronts in Bi2Sr2CaCu2O8+δ Crystals with Columnar Defects. Phys. Rev. B 2012, 85, 174516. [Google Scholar] [CrossRef]
- Hasegawa, K.; Kishimoto, Y. Fingering Instability of Binary Droplets on Oil Pool. Fluids 2023, 8, 138. [Google Scholar] [CrossRef]
- Santalla, S.; Rodríguez-Laguna, J.; Cuerno, R. Circular Kardar-Parisi-Zhang Equation as an Inflating, Self-Avoiding Ring Polymer. Phys. Rev. E 2014, 89, 010401. [Google Scholar] [CrossRef]
- Barreales, B.G.; Meléndez, J.J.; Cuerno, R.; Ruiz-Lorenzo, J.J. Large-Scale Kinetic Roughening Behavior of Coffee-Ring Fronts. Phys. Rev. E 2022, 106, 044801. [Google Scholar] [CrossRef]
- Harel, M.; Taitelbaum, H. Non-Universal Dynamic Exponents for Thin-Film Spreading. Europhys. Lett. 2018, 122, 26002. [Google Scholar] [CrossRef]
- Harel, M.; Taitelbaum, H. Non-Monotonic Dynamics of Thin Film Spreading. Eur. Phys. J. E 2021, 44, 69. [Google Scholar] [CrossRef] [PubMed]
- Marcos, J.M.; Rodríguez-López, P.; Meléndez, J.J.; Cuerno, R.; Ruiz-Lorenzo, J.J. Spreading Fronts of Wetting Liquid Droplets: Microscopic Simulations and Universal Fluctuations. Phys. Rev. E 2022, 105, 054801. [Google Scholar] [CrossRef]
- Marcos, J.M.; Meléndez, J.J.; Cuerno, R.; Ruiz-Lorenzo, J.J. Microscopic Fluctuations in the Spreading Fronts of Circular Wetting Liquid Droplets. Phys. Rev. E 2025, 111, 045504. [Google Scholar] [CrossRef]
- Iliev, S.; Pesheva, N.; Iliev, P. Dependence of the Contact Line Roughness Exponent on the Contact Angle on Substrates with Dilute Mesa Defects: Numerical Study. Eur. Phys. J. E 2022, 45, 66. [Google Scholar] [CrossRef]
- Iliev, S.; Pesheva, N.; Iliev, P. Roughness Exponents of the Liquid/Vapor/Solid Contact Line on Surfaces with Dilute Random Gaussian Defects: Numerical Study. Eur. Phys. J. E 2025, 48, 32. [Google Scholar] [CrossRef] [PubMed]
Reactive-Wetting Experiment | QKPZ Simulations | Ising Simulations | |
---|---|---|---|
Persistence | |||
Growth | |||
Roughness |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taitelbaum, H. Statistical Physics Perspective on Droplet Spreading in Reactive Wetting Interfaces. Fluids 2025, 10, 170. https://doi.org/10.3390/fluids10070170
Taitelbaum H. Statistical Physics Perspective on Droplet Spreading in Reactive Wetting Interfaces. Fluids. 2025; 10(7):170. https://doi.org/10.3390/fluids10070170
Chicago/Turabian StyleTaitelbaum, Haim. 2025. "Statistical Physics Perspective on Droplet Spreading in Reactive Wetting Interfaces" Fluids 10, no. 7: 170. https://doi.org/10.3390/fluids10070170
APA StyleTaitelbaum, H. (2025). Statistical Physics Perspective on Droplet Spreading in Reactive Wetting Interfaces. Fluids, 10(7), 170. https://doi.org/10.3390/fluids10070170