# Semicompressible Ocean Thermodynamics and Boussinesq Energy Conservation

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Semicompressible Equations

## 3. Semicompressible Thermodynamics

#### 3.1. Type I Thermodynamics

#### 3.2. Type I Mechanical Energy Equation

#### 3.3. Type II Equations: Potential, Kinetic, and Thermal Energies

#### 3.4. A Comparison to the Boussinesq Set

## 4. Summary

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Dewar, W.; Schoonover, J.; McDougall, T.; Young, W. Semicompressible ocean dynamics. J. Phys. Oceanogr.
**2015**, 45, 149–156. [Google Scholar] [CrossRef] - Klein, R.; Pauluis, O. Thermodynamic consistency of a psuedoincompressible approximation for general equations of state. J. Atmos. Sci.
**2012**, 69, 961–968. [Google Scholar] [CrossRef] - De Szoeke, R.; Samelson, R. The duality between the Boussinesq and non-Boussinesq hydrostatic equations of motion. J. Phys. Oceanogr.
**2002**, 32, 2194–2203. [Google Scholar] [CrossRef] - Intergovernmental Oceanographic Commission (IOC); Scientific Committee on Oceanic Research (SCOR); International Association for the Physical Sciences of the Oceans (IAPSO). The International Thermodynamic Equation of Seawater—2010: Calculation and Use of Thermodynamic Properties; 2010 Manuals and Guides No. 56, UNESCO (English); Intergovernmental Oceanographic Commission: West Perth, Australia, 2010; p. 196. [Google Scholar]
- Landau, L.M.; Lifshitz, E.M. Fluid Mechanics, 1st ed.; Pergamon Press: Oxford, UK, 1959. [Google Scholar]
- McDougall, T. Potential enthalpy: A conservative oceanic variable for evaluating heat content and heat fluxes. J. Phys. Oceanogr.
**2003**, 33, 945–963. [Google Scholar] [CrossRef] - Young, W. Dynamic enthalpy, conservative temperature and the seawater Boussinesq approximation. J. Phys. Oceanogr.
**2010**, 40, 394–400. [Google Scholar] [CrossRef] - Graham, F.S.; McDougall, T.J. Quantifying the Nonconservative Production of Conservative Temperature, Potential Temperature, and Entropy. J. Phys. Oceanogr.
**2013**, 43, 838–862. [Google Scholar] [CrossRef] - Pauluis, O. Thermodynamic consistency of the anelastic approximatio for a moist atmosphere. J. Atmos. Sci.
**2008**, 65, 2719–2729. [Google Scholar] [CrossRef] - Tailleux, R. On the energetics of stratified turbulent mixing, irreversible thermodynamics, Boussinesq models and the ocean heat engine controversy. J. Fluid Mech.
**2009**, 638, 339–382. [Google Scholar] [CrossRef] - Tailleux, R. Irreversible compressible work and available potential energy dissipation in turbulent stratified fluids. Phys. Scr.
**2013**. [Google Scholar] [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dewar, W.K.; Schoonover, J.; McDougall, T.; Klein, R.
Semicompressible Ocean Thermodynamics and Boussinesq Energy Conservation. *Fluids* **2016**, *1*, 9.
https://doi.org/10.3390/fluids1020009

**AMA Style**

Dewar WK, Schoonover J, McDougall T, Klein R.
Semicompressible Ocean Thermodynamics and Boussinesq Energy Conservation. *Fluids*. 2016; 1(2):9.
https://doi.org/10.3390/fluids1020009

**Chicago/Turabian Style**

Dewar, William K., Joseph Schoonover, Trevor McDougall, and Rupert Klein.
2016. "Semicompressible Ocean Thermodynamics and Boussinesq Energy Conservation" *Fluids* 1, no. 2: 9.
https://doi.org/10.3390/fluids1020009