On Thermomechanics of a Nonlinear Heat Conducting Suspension
Abstract
:1. Introduction
2. The Governing Equations
3. The Constitutive Equations
3.1. Stress Tensor
3.2. Heat Flux Vector
4. Entropy Analysis
5. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
symmetric part of the velocity gradient | |
identity tensor | |
gradient of the velocity vector | |
Cauchy stress tensor | |
heat flux vector constitutive coefficients, i = 1 to 6 | |
body force vector | |
divergence operator | |
k | thermal conductivity |
heat flux vector | |
r | radiant heating |
velocity vector | |
spatial position | |
material constitutive coefficients, i = 0 to 5 | |
ε | specific internal energy |
θ | temperature |
ρ | bulk density |
reference density | |
φ | volume fraction |
∇ | gradient symbol |
Δ | Laplacian operator |
⊗ | outer product |
References
- Gupta, G.; Massoudi, M. Flow of a generalized second grade fluid between heated plates. Acta Mech. 1993, 99, 21–33. [Google Scholar] [CrossRef]
- Schowalter, W.R. Mechanics of Non-Newtonian Fluids; Pergamon Press: New York, NY, USA, 1978. [Google Scholar]
- Massoudi, M.; Vaidya, A. On some generalizations of the second grade fluid model. Nonlinear Anal. Real World Appl. 2008, 9, 1169–1183. [Google Scholar] [CrossRef]
- Rajagopal, K.R.; Tao, L. Mechanics of Mixtures; World Scientific: Singapore, 1995. [Google Scholar]
- Massoudi, M. A note on the meaning of mixture viscosity using the classical continuum theories of mixtures. Int. J. Eng. Sci. 2008, 46, 677–689. [Google Scholar] [CrossRef]
- Massoudi, M. A Mixture Theory formulation for hydraulic or pneumatic transport of solid particles. Int. J. Eng. Sci. 2010, 48, 1440–1461. [Google Scholar] [CrossRef]
- Stokes, G.G. On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Trans. Camb. Philos. Soc. 1845, 8, 287–305. [Google Scholar]
- Maxwell, J.C. On stresses in rarified gases arising from inequalities of temperature. Philos. Trans. R. Soc. Lond. 1876, 170, 231–256. [Google Scholar] [CrossRef]
- Mehrabadi, M.M.; Cowin, S.C.; Massoudi, M. Conservation laws and constitutive relations for density-gradient- dependent viscous fluids. Contin. Mech. Thermodyn. 2005, 17, 183–200. [Google Scholar] [CrossRef]
- Truesdell, C.; Noll, W. The Non-Linear Field Theories of Mechanics; Springer Verlag: New York, NY, USA, 1992. [Google Scholar]
- Dunn, J.E.; Serrin, J. On thermodynamics of interstitial working. Arch. Ration. Mech. Anal. 1985, 88, 95–133. [Google Scholar] [CrossRef]
- Blinowski, A. On the order of magnitude of the gradient-of-density dependent part of an elastic potential in liquids. Arch. Mech. 1973, 25, 833–849. [Google Scholar]
- Blinowski, A. Gradient description of capillary phenomena in multicomponent fluids. Arch. Mech. 1975, 27, 273–292. [Google Scholar]
- Rajagopal, K.R.; Massoudi, M. A Method for Measuring Material Moduli of Granular Materials: Flow in an Orthogonal Rheometer; Topical Report DOE/PETC/TR-90/3; USDOE Pittsburgh Energy Technology Center: Pittsburgh, PA, USA, 1990. [Google Scholar]
- Massoudi, M. On the flow of granular materials with variable material properties. Int. J. Non-Linear Mech. 2001, 36, 25–37. [Google Scholar] [CrossRef]
- Massoudi, M.; Mehrabadi, M.M. A continuum model for granular materials: Considering dilatancy, and the Mohr-Coulomb criterion. Acta Mech. 2001, 152, 121–138. [Google Scholar] [CrossRef]
- Fourier, J. The Analytical Theory of Heat; Freeman, A., Translator; Dover Publications, Inc.: Mineola, NY, USA, 1955. [Google Scholar]
- Winterton, R.H.S. Heat in history. Heat Transf. Eng. 2001, 22, 3–11. [Google Scholar] [CrossRef]
- Kaviany, M. Principles of Heat Transfer in Porous Media, 2nd ed.; Springer Verlag: New York, NY, USA, 1995. [Google Scholar]
- Massoudi, M. On the heat flux vector for flowing granular materials. Part 2: Derivation and special cases. Math. Methods Appl. Sci. 2006, 29, 1599–1613. [Google Scholar] [CrossRef]
- Massoudi, M. On the heat flux vector for flowing granular materials. Part 1: Effective thermal conductivity and background. Math. Methods Appl. Sci. 2006, 29, 1585–1598. [Google Scholar] [CrossRef]
- Slattery, J.C. Advanced Transport Phenomena; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Müller, I.A. On the entropy inequality. Arch. Ration. Mech. Anal. 1967, 26, 118–141. [Google Scholar] [CrossRef]
- Ziegler, H. An Introduction to Thermomechanics, 2nd ed.; North-Holland: New York, NY, USA, 1983. [Google Scholar]
- Liu, I.S. Continuum Mechanics; Springer Verlag: Berlin, Germany, 2002. [Google Scholar]
- Rajagopal, K.R.; Srinivasa, A.R. A thermodynamic frame work for rate type fluid models. J. Non-Newton. Fluid Mech. 2000, 88, 207–227. [Google Scholar] [CrossRef]
- Rajagopal, K.R.; Srinivasa, A.R. Modeling anisotropic fluids within the framework of bodies with multiple natural configurations. J. Non-Newton. Fluid Mech. 2001, 99, 109–124. [Google Scholar] [CrossRef]
- Dunn, J.E.; Fosdick, R.L. Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade. Arch. Ration. Mech. Anal. 1974, 56, 191–252. [Google Scholar] [CrossRef]
- Truesdell, C. Rational Thermodynamics, 2nd ed.; Springer Verlag: New York, NY, USA, 1984. [Google Scholar]
- Rivlin, R.S.; Ericksen, J.L. Stress-deformation relations for isotropic materials. J. Ration. Mech. Anal. 1955, 4, 323–425. [Google Scholar] [CrossRef]
- Deshpande, A.P.; Krishnan, J.M.; Kumar, S. (Eds.) Rheology of Complex Fluids; Science and Business Media, Springer: Berlin, Germany, 2010.
- Goodman, M.A.; Cowin, S.C. Continuum Theory for Granular Materials. Arch. Ration. Mech. Anal. 1972, 44, 249–266. [Google Scholar] [CrossRef]
- Spencer, A.J.M. Theory of invariants. In Continuum Physics; Eringen, A.C., Ed.; Academic Press: Cambridge, MA, USA, 1971; Part III; Volume 1, pp. 239–353. [Google Scholar]
- Walton, O.R.; Braun, R.L. Stress calculations for assemblies of inelastic spheres in uniform shear. Acta Mech. 1986, 63, 73–86. [Google Scholar] [CrossRef]
- Rajagopal, K.R.; Troy, W.C.; Massoudi, M. Existence of solutions to the equations governing the flow of granular materials. Eur. J. Mech. B Fluids 1992, 11, 265–276. [Google Scholar]
- Narasimhan, T.N. Fourier’s heat conduction equation: History, influence, and connections. Rev. Geophys. 1999, 37. [Google Scholar] [CrossRef]
- Wang, L. Vector-field theory of heat flux in confective heat transfer. Nonlinear Anal. 2001, 47, 5009–5020. [Google Scholar] [CrossRef]
- Jaric, J.; Golubovic, Z. Fourier’s law of heat conduction in a non-linear fluid. J. Therm. Stresses 1999, 22, 293–303. [Google Scholar]
- Yang, H.; Aubry, N.; Massoudi, M. Heat transfer in granular materials: Effects of nonlinear heat conduction and viscous dissipation. Math. Methods Appl. Sci. 2013, 36, 1947–1964. [Google Scholar] [CrossRef]
- Hutter, K.; Schneider, L. Important aspects in the formulation of solid-fluid debris-flow models. Part I. Thermodynamic implications. Contin. Mech. Thermodyn. 2010, 22, 363–390. [Google Scholar] [CrossRef]
- Hutter, K.; Rajagopal, K.R. On flows of granular material. Contin. Mech. Thermodyn. 1994, 6, 81–139. [Google Scholar] [CrossRef]
- Kirwan, A.D., Jr. On Objectivity, Irreversibility, and Non-Newtonian Fluids. Fluids 2016, 1, 3. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massoudi, M.; Kirwan, A.D. On Thermomechanics of a Nonlinear Heat Conducting Suspension. Fluids 2016, 1, 19. https://doi.org/10.3390/fluids1020019
Massoudi M, Kirwan AD. On Thermomechanics of a Nonlinear Heat Conducting Suspension. Fluids. 2016; 1(2):19. https://doi.org/10.3390/fluids1020019
Chicago/Turabian StyleMassoudi, Mehrdad, and A. D. Kirwan. 2016. "On Thermomechanics of a Nonlinear Heat Conducting Suspension" Fluids 1, no. 2: 19. https://doi.org/10.3390/fluids1020019
APA StyleMassoudi, M., & Kirwan, A. D. (2016). On Thermomechanics of a Nonlinear Heat Conducting Suspension. Fluids, 1(2), 19. https://doi.org/10.3390/fluids1020019