Rendering the Navier–Stokes Equations for a Compressible Fluid into the Schrödinger Equation for Quantum Mechanics
Abstract
:1. Introduction
2. Problem Formulation and the Madelung Transformation
3. Rendering the Transformation of the Navier–Stokes Equations via Helmholtz Decomposition
3.1. Navier–Stokes Equations
3.2. Helmholtz Decomposition
4. Inverse Madelung Transformation and the Extended Schrödinger Equation
5. Results and Discussion
6. Conclusions
Conflicts of Interest
Abbreviations
EPR | Einstein, Podolsky, and Rosen paper [10] |
Appendix A: Definition of the Inverse Gradient Operator
Appendix B: The First Identity
Appendix C: The Second Identity
References
- Bohm, D. Quantum Theory; Dover Publications: Mineola, NY, USA, 1989. [Google Scholar]
- Griffiths, D.J. Introduction to Quantum Mechanics, 2nd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Bowman, G.E. Essential Quantum Mechanics; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Schrödinger, E. Quantisierung als Eigenwertproblem (Erste Mitteilung). Ann. Phys. 1926, 79, 361–376. [Google Scholar] [CrossRef]
- Schrödinger, E. Quantisierung als Eigenwertproblem (Zweite Mitteilung). Ann. Phys. 1926, 79, 489–527. [Google Scholar] [CrossRef]
- Schrödinger, E. Quantisierung als Eigenwertproblem (Dritte Mitteilung: Störungstheorie, mit Anwendung auf den Starkeffekt der Balmerlinien). Ann. Phys. 1926, 80, 437–490. [Google Scholar]
- Schrödinger, E. Quantisierung als Eigenwertproblem (Vierte Mitteilung). Ann. Phys. 1926, 81, 109–139. [Google Scholar] [CrossRef]
- Schrödinger, E. Collected Papers on Wave Mechanics, 3rd (augmented) English Edition; AMS Chelsea Publishing Company: New York, NY, USA, 1982. [Google Scholar]
- Born, M. Zur Quantenmechanik der Stoßvorgänge. Z. Phys. 1926, 37, 863–867. [Google Scholar] [CrossRef]
- Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical Description of Physical Reality be Considered Complete? Phys. Rev. 1935, 47, 777–780. [Google Scholar] [CrossRef]
- Einstein, A. Zur Theorie der Brownschen Bewegung. Ann. Phys. 1906, 19, 371–381. [Google Scholar] [CrossRef]
- Einstein, A. On the Theory of the Brownian Movement. In Albert Einstein: Investigations on the Theory of Brownian Movement; Dover Publications: Mineola, NY, USA, 1956; pp. 19–35. [Google Scholar]
- Bohr, N. Can Quantum-Mechanical Description of Physical Reality be Considered Complete? Phys. Rev. 1935, 48, 696–702. [Google Scholar] [CrossRef]
- Madelung, E. Quantentheorie in hydrodynamischer Form. Z. Phys. 1926–1927, 40, 322–326. [Google Scholar] [CrossRef]
- Madelung, E. Quantum Theory in Hydrodynamical Form. Available online: http://www.neo-classical-physics.info/uploads/3/0/6/5/3065888/madelung_-_hydrodynamical_interp..pdf (accessed on 12 June 2016).
- Sonego, D. Interpretation of the Hydrodynamical Formalism of Quantum Mechanics. Found. Phys. 1991, 21, 1135–1181. [Google Scholar] [CrossRef]
- Takabayasi, T. On the Formulation of Quantum Mechanics associated with Classical Pictures. Prog. Theor. Phys. 1952, 8, 143–182. [Google Scholar] [CrossRef]
- Takabayasi, T. Remarks on the Formulation of Quantum Mechanics with Classical Pictures and on Relations between Linear Scalar Fields and Hydrodynamical Fields. Prog. Theor. Phys. 1952, 9, 187–222. [Google Scholar] [CrossRef]
- Wilhelm, H.E. Hydrodynamic Model of Quantum Mechanics. Phys. Rev. D 1970, 1, 2278–2285. [Google Scholar] [CrossRef]
- Sorokin, A.L. Madelung Transformations for Vortex Flows of a Perfect Fluid. Dokl. Phys. 2001, 46, 576–578. [Google Scholar] [CrossRef]
- Broadbridge, P. Classical and Quantum Burgers Fluids: A Challenge for Group Analysis. Symmetry 2015, 7, 1803–1815. [Google Scholar] [CrossRef]
- Spiegel, M.R.; Lipschutz, S.; Liu, J. Mathematical Handbook of Formulas and Tables; Schaum’s Outline Series; McGraw Hill: New York, NY, USA, 2009. [Google Scholar]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vadasz, P. Rendering the Navier–Stokes Equations for a Compressible Fluid into the Schrödinger Equation for Quantum Mechanics. Fluids 2016, 1, 18. https://doi.org/10.3390/fluids1020018
Vadasz P. Rendering the Navier–Stokes Equations for a Compressible Fluid into the Schrödinger Equation for Quantum Mechanics. Fluids. 2016; 1(2):18. https://doi.org/10.3390/fluids1020018
Chicago/Turabian StyleVadasz, Peter. 2016. "Rendering the Navier–Stokes Equations for a Compressible Fluid into the Schrödinger Equation for Quantum Mechanics" Fluids 1, no. 2: 18. https://doi.org/10.3390/fluids1020018
APA StyleVadasz, P. (2016). Rendering the Navier–Stokes Equations for a Compressible Fluid into the Schrödinger Equation for Quantum Mechanics. Fluids, 1(2), 18. https://doi.org/10.3390/fluids1020018