Essential Oils and Cultural Heritage Conservation: Are They Safe, Environmentally Friendly, Sustainable, and Negligibly Toxic?
Abstract
1. Introduction
2. Effect of Essential Oils, Hydro-Alcoholic Extracts and Hydrolates on Microorganisms in Controlled Environments
2.1. Emulsions and Mixtures of Essential Oils
2.2. Essential Oils Functionalized on Carrier Materials—Hydrogels
3. In Situ Studies Using Essential Oils, Hydrolates and Plant-Derived Extracts Applications
3.1. Inorganic Materials
3.1.1. Field Trials and Biocide Comparisons
3.1.2. Hydrogels
3.1.3. Stabilized Systems and Extracts
3.1.4. Commercial EO Blends
3.1.5. Environmental Impact and Recolonization
3.2. Organic Materials
4. Effects of Essential Oils on Material Characteristics
| Pigment | Essential Oil | Concentration (% v/v) | ΔE* (Color Change) | Effect Description | References |
|---|---|---|---|---|---|
| Charcoal black, malachite, cinnabar | Clove | 7.5 | >4 | Pronounced color shift | [44] |
| Cinnabar | Oregano, clove, common thyme | 1–10 | <2 | ![]() | [24] |
| Hematite | Clove | 1–10 | 2.99 | ![]() | [24] |
| Hematite | Clove | 7.5 | >4 | Pronounced color shift | [44] |
| Hematite | Oregano | 1–10 | 2.89 | ![]() | [24] |
| Hematite | Cassia | 1–10 | 4.06 | ![]() | [24] |
| Hematite | Common thyme | 1–10 | 3.37 | ![]() | [24] |
| Oyster shell white | Common thyme, oregano | 1–10 | <1 | ![]() | [24] |
| Oyster shell white | Cassia | 3–10 | 5.89 | Yellowing effect | [24] |
| Vinyl blue | Zeylantium green emulsion | Undiluted | 10.3 | Significant color variation | [45] |
| Alkyd blue | Zeylantium green emulsion | Undiluted | 3–4 | Moderate shifts in unaged samples only | [45] |
| Acrylic blue | Zeylantium green emulsion | Undiluted | <3 | ![]() | [45] |
| Alkyd yellow | Zeylantium green emulsion | Undiluted | 12.5 | Noticeable shifts in unaged samples only | [45] |
| Acrylic and vinyl yellow | Zeylantium green emulsion | Undiluted | <2 | ![]() | [45] |
| Acrylic, vinyl, alkyd red, and green | Zeylantium green emulsion | Undiluted | <3 | ![]() | [45] |
ΔE* > 4 = significant color change,
ΔE*~3–4 = moderate change,
ΔE* 1–3 = minimal change.| Stone | Essential Oils and Biocides | Concentration (% v/v) | ΔE*/ΔL*/Δb* (Color Change) | Effect Description | References |
|---|---|---|---|---|---|
| Limestone | Green lavender | 20 | ΔE* 9.4 ΔL* −9.3 | Blurring, staining, marked lightness reduction | [40] |
| Limestone | Fennel | 20 | ΔE* 2.3 ΔL* −2.2 | Staining, lightness reduction | [40] |
| Limestone | Pennyroyal | 20 | ΔE* 3.4 ΔL* −3.3 | Staining, lightness reduction | [40] |
| Limestone | Common thyme | 0.075 | ΔE* 2.5 | Cumulative risk with repeated treatment | [15] |
| Limestone | Clove | 0.1 | ΔE* 0.8 | ![]() | [15] |
| Limestone | Geranium | 0.1 | ΔE* 4.1 | ![]() | [15] |
| Limestone, tuff | Biotin© T | 1 | No noticeable color change; staining only on low-porosity rock | [40] | |
| Granite | White thyme | 2 | ΔE*~6 | ![]() | [71] |
| Schist, mortar, granite | Oregano, common thyme | 2 | No mineralogical or color changes | [71] | |
| Granite, gneiss | Oregano, clove, common thyme, cassia | 1–10 | No color or chemical changes | [24] | |
| Granite, gneiss | Oregano, clove | 7.5 | Negligible color change; no change in water absorption | [24,44] | |
| Carrara marble | Oregano, common thyme, Biotin© T | 2 | ΔE* < 3 | Combination of the two EOs (ΔE*~3); stone yellowing observed | [26] |
| Brick, peperino, mortar | Nanocomposite with oregano EO or eugenol | — | ΔE* < 3 | Surfaces hydrophobic, vapor-permeable; no aesthetic alteration | [72] |
| Peperino | BioTersus© | — | — | No color interference | [64] |
| White sedimentary rock | Cinnamon, oregano | 0.5–1 | ΔE* < 2 Δb* < 2 | Possible yellowing from Δb* | [33] |
| White sedimentary rock | Biotersus©, Essenzio© | 1.4 and undiluted | ΔE* < 2 Δb* < 2 | Possible yellowing from Δb* | [33] |
| White sedimentary rock | Biotin© R1 + R2, NewDes© 50, Preventol© RI50 | 3/5 | ΔE* < 2 Δb* < 2 | Possible yellowing from Δb* | [33] |
ΔE* > 4 = significant color change,
ΔE*~3–4 = moderate change,
ΔE* 1–3 = minimal change.| Essential Oils | Material | Treatment Method | Concentration | ΔE* (Color Change) | Observed Effect | Reference |
|---|---|---|---|---|---|---|
| Clove, lavender | Gelatin prints | Vapor exposure | Undiluted | ~5 | Oxidation and depolymerization of cellulose | [74] |
| Clove, lavender | Wood | Vapor exposure | Undiluted | <4 | Oxidation and depolymerization of cellulose | [74] |
| Common thyme | Pine wood | Immersion in solution | 0.75 µL/mL | 2.7 | ![]() | [15] |
| Clove | Pine wood | Immersion in solution | 1 µL/mL | 4 | ![]() | [15] |
| Geranium | Pine wood | Immersion in solution | 1 µL/mL | 9 | ![]() | [15] |
| Common thyme | Historical book | Vapor exposure | 10% in dimethyl sulfoxide | Improved mechanical properties; increased bulk | [67] | |
| Wild bergamot, bitter orange hydrolates | Paper from 18th-century books | Hydrogel treatment | 1.27 (bergamot), 0.46 (orange) | No fiber damage | [53] | |
| Rosemary, lavender | Historical archive paper | Fumigation | 1% v/v (rosemary), 0.4% v/v (lavender) | 0–2.5 | ![]() | [75] |
| Common thyme, sage | Cotton and hemp fabrics | Vapor exposure with | Undiluted EOs encapsulated in ethyl cellulose | Thyme decreased strength; sage increased cotton strength but decreased hemp strength | [76] | |
| Cinnamon | Cotton, linen, silk fabrics | Vapor exposure | Undiluted | 0.84 (cotton), 2.42 (linen), 2.67 (silk) | No change in optical, mechanical, or structural properties | [12] |
ΔE* > 4 = significant color change,
ΔE*~3–4 = moderate change,
ΔE* 1–3 = minimal change.5. Toxicity, Ecotoxicity and Sustainability of Essential Oils
5.1. Human Toxicity
- -
- Basil is a mild skin irritant.
- -
- Cinnamon bark oil is known for being highly irritating and sensitizing to the skin and mucous membranes due to its components cinnamaldehyde and eugenol.
- -
- Clove bud is a mild skin irritant. It contains 60–96% of phenols including methyl eugenol that despite being moderately toxic, has been demonstrated to be genotoxic and carcinogenic according to The National Toxicology Program of the US Department of Health and Human Services [92] (Table 5). Since 2021, under the Regulation EC No 1272/2008, any product sold in the European Union that contains more than 0.01% methyl eugenol is required to carry a label indicating its presence.
- -
- Oregano is highly dermocaustic (skin irritant). Much commercial oregano oil is extracted from Thymus capitatus.
- -
- Common thyme (Thymus vulgaris L.). Its key constituents include the phenols thymol and carvacrol, glycosides, flavonoids, p-cymene, borneol, linalool, alcohols, rosmarinic acid, saponins, tannins, and terpenoids [7]. Thyme ct. linalool, thyme ct. geraniol and thyme ct. thujanol are terpenol-dominant. They do not irritate the skin, making them more broadly applicable and versatile in practical use compared to other chemotypes. Terpenols, such as geraniol, linalool, and citronellol, are acyclic compounds, which contain an alcohol functional group (-OH) attached to a monoterpene structure. Geraniol, one of the most important molecules used in cosmetic industries for its antimicrobial activities, can induce allergic reactions such as irritant contact dermatitis (see review in [93]). Thyme ct. thymol is phenol-dominant and is highly irritant to the skin and mucosa. Thymol, a terpenoid phenol, is naturally found in the EO of thyme and various species of the genera Origanum, Satureja, and many others. It induced cytotoxicity and genotoxicity through oxidative damage in several types of target cells (see review in [84]) (Table 5). Thymus capitatus EO is particularly rich in carvacrol-typically ranging from 40–50% and occasionally reaching concentrations as high as 74%. It presents a significant risk of cumulative toxicity and is associated with moderate to severe skin irritation and sensitization [7] (Table 5). Thyme EO has an LD50 of 980 mg/kg body weight (oral, rat) [90] (Table 5). Under the European Union Classification Criteria for Acute Toxicity, it corresponds to substances categorized as “harmful if swallowed.”
- -
| Substance | LD50 (mg/kg bw) | NOAEL (mg/kg bw/day) | IC50/Cytotoxicity Thresholds | Genotoxicity/Cytotoxicity Observations | Regulatory Classification | Reference |
|---|---|---|---|---|---|---|
| α-terpinene | ~1650 (oral, rat) | - | 0.5–1.0 mL/kg (daily oral administration rat for 10 days) | Neurotoxicity, oxidative stress, genotoxicity in liver | ECHA: acute Tox. 4; H302—harmful if swallowed | See review in [79] |
| Carvacrol | 810 (oral, rat) | - | ≥500 µM L−1 (cytotoxicity); ≥115 µM L−1 (mutagenic) | Genotoxic at 460 µM L−1; apoptosis at 50 mg/L; mutagenic at 115–230 µM L−1; marked decreases in cell viability at 500 μM L−1 | ECHA: Skin corrosive Cat. 1B/C | See review in [88,89,90] |
| Citral | ~5000 (oral, rat) | - | >60 mg/kg | Maternal and embryo toxicity (human body) | EMA: reproductive toxicity concern | See review in [79] |
| Estragole | ~1000–2000 (oral, rat) | - | ≥1 mM (estragole); ≥25 µM (1′OH-estragole) | DNA adducts, genotoxicity, cytotoxicity in human liver cells | EMA: genotoxic concern; not formally classified by IARC | [96] |
| Eugenol | >2000 (oral, rat) | 300 | ~0.75 mM L−1 (IC50); 750 µM L−1; 2500 µM L−1; 0.06% | DNA strand breaks, chromosomal aberrations, apoptosis | FDA: GRAS; not acutely toxic | See review in [89,90] |
| Limonene | 4400–5600 (dermal, rat) | - | ≥100 µM | Highly toxic to human lung cells | FDA: GRAS; ECHA: sensitizer | See review in [79] |
| Linalool | ~2790 (oral, rat); >2000 (dermal, rabbit) | - | ≥0.3% (patch test) | Skin sensitization | ECHA: sensitizer; FDA: GRAS | [86] |
| Methyl eugenol | ~850 (oral, rat) | None (carcinogenic) | 10–100 mg/kg/day by gavage (14-week study), rats/mice | DNA adducts, liver tumors; genotoxic and carcinogenic | IARC: Group 2B; FDA: not authorized; EMA: restricted | [92] |
| Pulegone and menthofuran (product of metabolic pathway of pulegone) | 470 (oral, rat); 3090 (dermal, rabbit) | 25 ng/mL (pulegone); 41 ng/mL (menthofuran) | Hepatotoxicity, reproductive toxicity, oxidative stress | IARC: possibly carcinogenic to humans, Group 2B; FDA: not authorized as flavoring; EMA: limit 0.1 mg/kg/day | See review in [79,80] | |
| Safrole | ~1950 (oral, rat) | - | ≥125 µM; TC50: 361.9 µM (24 h), 193.2 µM (48 h) | DNA damage, micronuclei formation; genotoxic in vitro and in vivo | IARC: possibly carcinogenic to humans, Group 2B; FDA/EMA: banned in food | [97] |
| Thujone | ~192 (oral, rat) | ~5 (rats) | ≥25 mg/kg (intraperitoneally for 14 days, mice) | Organ damage, mortality, hepatic and renal dysfunction | EMA: limit 0.1 mg/kg/day; FDA: not authorized as flavoring | See review in [79,82] |
| Thymol | 980 (oral, rat) | 667 (subchronic exposure, rat) | ~400–700 µM (IC50); ≥75–600 µM (apoptosis) | Apoptosis in HL-60 and glioblastoma cells; no cytotoxicity in neurons; no genotoxicity ≤ 250 µM | FDA: GRAS | See review in [88,89,90] |
| Vanillin | 3978 (oral, rat) | 650 | mM range | Low cytotoxicity; viability reduction at high concentrations | FDA: GRAS; low toxicity profile | See review in [89,90] |
5.2. Environmental Toxicity and Regulatory Considerations
6. Current Limitations and Future Prospects of Essential Oil Applications in Cultural Heritage Preservation
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Lo Schiavo, S.; De Leo, F.; Urzì, C. Present and future perspectives for biocides and antifouling products for stone-built cultural heritage: Ionic liquids as a challenging alternative. Appl. Sci. 2020, 10, 6568. [Google Scholar] [CrossRef]
- Fidanza, M.R.; Caneva, G. Natural biocides for the conservation of stone cultural heritage: A review. J. Cult. Herit. 2019, 38, 271–286. [Google Scholar] [CrossRef]
- Favero-Longo, S.E.; Viles, H.A. A review of the nature, role and control of lithobionts on stone cultural heritage: Weighing-up and managing biodeterioration and bioprotection. World J. Microbiol. Biotechnol. 2020, 36, 100. [Google Scholar] [CrossRef] [PubMed]
- Reiß, F.; Nadine Kiefer, N.; Noll, M.; Kalkhof, S. Application, release, ecotoxicological assessment of biocide in building materials and its soil microbial response. Ecotoxicol. Environ. Saf. 2021, 224, 112707. [Google Scholar] [CrossRef] [PubMed]
- Vigan, M. Essential oils: Renewal of interest and toxicity. Eur. J. Dermatol. 2010, 20, 685–692. [Google Scholar] [PubMed]
- Sezen, S.; Güllüce, M.; Kesmezcan, F.; Alaylar, B. Essential oils and antimicrobial effects. Int. J. Sci. Eng. Res. 2019, 10, 65–70. [Google Scholar]
- Holmes, P. Aromatica: A Clinical Guide to Essential Oil Therapeutics; Jessica Kingsley Publishers: London, UK, 2019. [Google Scholar]
- Tavares, C.S.; Gameiro, J.A.; Roseiro, L.B.; Figueiredo, A.C. Hydrolates: A review on their volatiles composition, biological properties and potential uses. Phytochem. Rev. 2022, 21, 1661–1737. [Google Scholar] [CrossRef]
- Ferraz, C.A.; Pastorinho, M.R.; Palmeira-de-Oliveira, A.; Sousa, A.C.A. Ecotoxicity of plant extracts and essential oils: A review. Environ. Pollut. 2022, 292, 118319. [Google Scholar] [CrossRef]
- Tisserand, R.; Young, R. Essential Oil Safety: A Guide for Health Care Professionals; Elsevier Health Sciences: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Stupar, M.; Grbić, M.L.; Džamić, A.; Unković, N.; Ristić, M.; Jelikić, A.; Vukojević, J. Antifungal activity of selected essential oils and biocide benzalkonium chloride against the fungi isolated from cultural heritage objects. S. Afr. J. Bot. 2014, 93, 118–124. [Google Scholar] [CrossRef]
- Matusiak, K.; Machnowski, W.; Wrzosek, H.; Polak, J.; Rajkowska, K.; Smigielski, K.; Kunicka-Styczynska, A.; Gutarowska, B. Application of Cinnamomum zeylanicum essential oil in vapour phase for heritage textiles disinfection. Int. Biodeterior. Biodegrad. 2018, 131, 88–96. [Google Scholar] [CrossRef]
- Geweely, N.S.; Afifi, H.A.; Ibrahim, D.M.; Soliman, M.M. Efficacy of Essential Oils on Fungi Isolated from Archaeological Objects in Saqqara Excavation, Egypt. Geomicrobiol. J. 2019, 36, 148–168. [Google Scholar] [CrossRef]
- Antonelli, F.; Bartolini, M.; Plissonnier, M.L.; Esposito, A.; Galotta, G.; Ricci, S.; Davidde Petriaggi, B.; Pedone, C.; Di Giovanni, A.; Piazza, S.; et al. Essential oils as alternative biocides for the preservation of waterlogged archaeological wood. Microorganisms 2020, 8, 2015. [Google Scholar] [CrossRef] [PubMed]
- Geweely, N.S.; Afifi, H.A.; Ibrahim, D.M.; Soliman, M.M. Inhibitory effect of essential oils on growth and physiological activity of deteriorated fungal species isolated from three archeological objects, Saqqara excavation, Egypt. Geomicrobiol. J. 2020, 37, 520–533. [Google Scholar] [CrossRef]
- Albasil, M.D.; Abeer EIHagrassy, G.M.; Reyad, A.M. Evaluating the antimicrobial activity of essential oils in the conservation of mural paintings. Conserv. Sci. Cult. Herit. 2021, 21, 125–148. [Google Scholar]
- Argyri, A.A.; Doulgeraki, A.I.; Varla, E.G.; Bikouli, V.C.; Natskoulis, P.I.; Haroutounian, S.A.; Moulas, G.A.; Tassou, C.C.; Chorianopoulos, N.G. Evaluation of plant origin essential oils as herbal biocides for the protection of caves belonging to natural and cultural heritage sites. Microorganisms 2021, 9, 1836. [Google Scholar] [CrossRef]
- D’Agostino, G.; Giambra, B.; Palla, F.; Bruno, M.; Badalamenti, N. The application of the essential oils of Thymus vulgaris L. and Crithmum maritimum L. as biocidal on two Tholu Bommalu Indian leather puppets. Plants 2021, 10, 1508. [Google Scholar] [CrossRef]
- Gatti, L.; Troiano, F.; Vacchini, V.; Cappitelli, F.; Balloi, A. An in vitro evaluation of the biocidal effect of oregano and cloves’ volatile compounds against microorganisms colonizing an oil painting—A pioneer study. Appl. Sci. 2021, 11, 78. [Google Scholar] [CrossRef]
- Sparacello, S.; Gallo, G.; Faddetta, T.; Megna, B.; Nicotra, G.; Bruno, B.; Giambra, B.; Palla, F. Thymus vulgaris essential oil and hydro-alcoholic solutions to counteract wooden artwork microbial colonization. Appl. Sci. 2021, 11, 8704. [Google Scholar] [CrossRef]
- Bosco, F.; Mollea, C.; Demichela, M.; Fissore, D. Application of essential oils to control the biodeteriogenic microorganisms in archives and libraries. Heritage 2022, 5, 2181–2195. [Google Scholar] [CrossRef]
- Geweely, N.S.; Afifi, H.A.; AbdelRahim, S.A.; Kamh, G.M.I.; Soliman, M.M.; AbdelSattar, M.; Ali, H.M.; Akrami, M.; Salem, M.Z.M. Bioactivities of six plant essential oils against some isolated microbes from an archaeological limestone statue at the Saqqara excavation. BioResources 2022, 17, 543–573. [Google Scholar] [CrossRef]
- Minotti, D.; Vergari, L.; Proto, M.R.; Barbanti, L.; Garzoli, S.; Bugli, F.; Sanguinetti, M.; Sabatini, L.; Peduzzi, A.; Rosato, R.; et al. Il Silenzio: The first Renaissance oil painting on canvas from the Uffizi Museum restored with a safe, green antimicrobial emulsion based on Citrus aurantium var. amara hydrolate and Cinnamomum zeylanicum essential oil. J. Fungi 2022, 8, 140. [Google Scholar] [CrossRef]
- Lee, H.-J.; Chung, Y.-J. Antifungal, antibacterial, and interference effects of plant-extracted essential oils used for mural conservation at Buyeo Royal Tomb No. 1. Appl. Sci. 2023, 13, 3645. [Google Scholar] [CrossRef]
- Palla, F.; Bucchini, A.E.A.; Giamperi, L.; Marino, P.; Raimondo, F.M. Plant extracts as antimicrobial agents in sustainable conservation of Erythrina caffra (Fabaceae) Historical Trees. Antibiotics 2023, 12, 1098. [Google Scholar] [CrossRef] [PubMed]
- Santo, A.P.; Agostini, B.; Cuzman, O.A.; Michelozzi, M.; Salvatici, T.; Perito, B. Essential oils to contrast biodeterioration of the external marble of Florence Cathedral. Sci. Total Environ. 2023, 877, 162913. [Google Scholar] [CrossRef] [PubMed]
- Geweely, N.S.; Abu Taleb, A.M.; Grenni, P.; Caneva, G.; Atwa, D.M.; Plaisier, J.R.; Ibrahim, S. Eco-friendly preservation of Pharaonic wooden artifacts using natural green products. Appl. Sci. 2024, 14, 5023. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Ahmed, M.A.; Korayem, A.S.; Abu-Hussien, S.H.; Bakry Rashidy, W. Antifungal, toxicological, and colorimetric properties of Origanum vulgare, Moringa oleifera, and Cinnamomum verum essential oils mixture against Egyptian Prince Yusuf Palace deteriorative fungi. BMC Biotechnol. 2025, 25, 4. [Google Scholar] [CrossRef]
- Ranaldi, R.; Rugnini, L.; Migliore, G.; Tasso, F.; Gabriele, F.; Spreti, N.; Scuderi, F.; Braglia, R.; Di Martino, P.; Pujia, A.; et al. The role of essential oils as eco-friendly strategy to control biofilm collected in the Colosseum (Rome, Italy). Appl. Microbiol. Biotechnol. 2025, 109, 48. [Google Scholar] [CrossRef]
- Mateus, D.; Costa, F.; de Jesus, V.; Malaquias, L. Biocides based on essential oils for sustainable conservation and restoration of mural paintings in built cultural heritage. Sustainability 2024, 16, 11223. [Google Scholar] [CrossRef]
- Macchia, A.; Aureli, H.; Prestileo, F.; Ortenzi, F.; Sellathurai, S.; Docci, A.; Cerafogli, E.; Colasanti, I.A.; Ricca, M.; La Russa, M.F. In-situ comparative study of eucalyptus, basil, cloves, thyme, pine tree, and tea tree essential oil biocide efficacy. Methods Protoc. 2022, 5, 37. [Google Scholar] [CrossRef]
- Cennamo, P.; Scielzo, R.; Rippa, M.; Trojsi, G.; Carfagna, S.; Chianese, E. UV-C irradiation and essential-oils-based product as tools to reduce biodeteriorates on the wall paints of the archeological site of Baia (Italy). Coatings 2023, 13, 1034. [Google Scholar] [CrossRef]
- Antonelli, A.; Iovine, S.; Sacco Perasso, C.; Macro, N.; Gioventù, E.; Capasso, F.E.; Bartolini, M. Essential oils and essential oil-based products compared to chemical biocides against microbial patinas on stone cultural heritage. Coatings 2024, 14, 1546. [Google Scholar] [CrossRef]
- Fierascu, I.; Ion, R.M.; Radu, M.; Dima, S.O.; Bunghez, I.R.; Avramescu, S.M.; Fierascu, R.C. Comparative study of antifungal effect of natural extracts and essential oils of Ocimum basilicum on selected artefacts. Rev. Roum. Chim. 2014, 59, 207–211. [Google Scholar]
- Tomić, A.; Šovljanski, O.; Nikolić, V.; Pezo, L.; Aćimović, M.; Cvetković, M.; Stanojev, J.; Kuzmanović, N.; Markov, S. Screening of antifungal activity of essential oils in controlling biocontamination of historical papers in archives. Antibiotics 2023, 12, 103. [Google Scholar] [CrossRef]
- Arantes, S.M.; Piçarra, A.; Guerreiro, M.; Salvador, C.; Candeias, F.; Caldeira, A.T.; Martins, M.R. Toxicological and pharmacological properties of essential oils of Calamintha nepeta, Origanum virens and Thymus mastichina of Alentejo (Portugal). Food Chem. Toxicol. 2019, 133, 110747. [Google Scholar] [CrossRef] [PubMed]
- Genova, C.; Fuentes, E.; Sanmartín, P.; Favero, G.; Prieto, B. Phytochemical compounds as cleaning agents on granite colonized by phototrophic subaerial biofilms. Coatings 2020, 10, 295. [Google Scholar] [CrossRef]
- Menicucci, F.; Palagano, E.; Michelozzi, M.; Ienco, A. Essential oils for the conservation of paper items. Molecules 2023, 28, 5003. [Google Scholar] [CrossRef]
- Rugnini, L.; Migliore, G.; Tasso, F.; Ellwood, N.T.W.; Sprocati, A.R.; Bruno, L. Biocidal activity of phyto-derivative products used on phototrophic biofilms growing on stone surfaces of the Domus Aurea in Rome (Italy). Appl. Sci. 2020, 10, 6584. [Google Scholar] [CrossRef]
- Mateus, D.M.R.; Ferraz, E.; Perna, V.; Sales, P.; Hipolito-Correia, V. Essential oils and extracts of plants as biocides against microorganisms isolated from the ruins of the Roman city of Conímbriga (Portugal). Environ. Sci. Pollut. Res. Int. 2023, 31, 40669–40677. [Google Scholar] [CrossRef]
- Marco, A.; Santos, S.; Caetano, J.; Pintado, M.; Vieira, E.; Moreira, P.R. Basil essential oil as an alternative to commercial biocides against fungi associated with black stains in mural painting. Build. Environ. 2020, 167, 106459. [Google Scholar] [CrossRef]
- Corbu, V.M.; Gheorghe-Barbu, I.; Marinas, I.C.; Avramescu, S.M.; Pecete, I.; Geană, E.I.; Chifiriuc, M.C. Eco-friendly solution based on Rosmarinus officinalis hydro-alcoholic extract to prevent biodeterioration of cultural heritage objects and buildings. Int. J. Mol. Sci. 2022, 23, 11463. [Google Scholar] [CrossRef]
- Rotolo, V.; Barresi, G.; Di Carlo, E.; Giordano, A.; Lombardo, G.; Crimi, E.; Costa, E.; Bruno, M.; Palla, F. Plant extracts as green potential strategies to control the biodeterioration of cultural heritage. Int. J. Conserv. Sci. 2016, 7, 839–846. [Google Scholar]
- Isola, D.; Bartoli, F.; Municchia, A.C.; Lee, H.J.; Jeong, S.H.; Chung, Y.J.; Caneva, G. Green biocides for the conservation of hypogeal mural paintings raised from Western and Eastern traditions: Evaluation of interference on pigments and substrata and multifactor parameters affecting their activity. J. Cult. Herit. 2023, 61, 116–126. [Google Scholar] [CrossRef]
- Di Vito, M.; Vergari, L.; Mariotti, M.; Proto, M.R.; Barbanti, L.; Garzoli, S.; Sanguinetti, M.; Sabatini, L.; Peduzzi, A.; Bellardi, M.G.; et al. Anti-mold effectiveness of a green emulsion based on Citrus aurantium hydrolate and Cinnamomum zeylanicum essential oil for the modern paintings restoration. Microorganisms 2022, 10, 205. [Google Scholar] [CrossRef]
- Goni, P.; López, P.; Sánchez, C.; Gómez-Lus, R.; Becerril, R.; Nerín, C. Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chem. 2009, 116, 982–989. [Google Scholar] [CrossRef]
- Genova, C.; Grottolic, A.; Zoppis, E.; Cencetti, C.; Matricardi, P.; Favero, G. An integrated approach to the recovery of travertine biodegradation by combining phyto-cleaning with genomic characterization. Microchem. J. 2020, 156, 104918. [Google Scholar] [CrossRef]
- Ranaldi, R.; Rugnini, L.; Gabriele, F.; Spreti, N.; Casieri, C.; Di Marco, G.; Gismondi, A.; Bruno, L. Plant essential oils suspended into hydrogel: Development of an easy-to-use protocol for the restoration of stone cultural heritage. Int. Biodeterior. Biodegrad. 2022, 172, 105436. [Google Scholar] [CrossRef]
- Macedo-Arantes, S.; Piçarra, A.; Caldeira, A.T.; Candeias, A.E.; Martins, M.R. Essential oils of Portuguese flavouring plants: Potential as green biocides in cultural heritage. Eur. Phys. J. Plus 2021, 136, 1106. [Google Scholar] [CrossRef]
- Gabriele, F.; Ranaldi, R.; Bruno, L.; Casieri, C.; Rugnini, L.; Spreti, N. Biodeterioration of stone monuments: Studies on the influence of bioreceptivity on cyanobacterial biofilm growth and on the biocidal efficacy of essential oils in natural hydrogel. Sci. Total Environ. 2023, 870, 161901. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Y.; Zhang, Z.; Zhang, B. The application of thymol-loaded chitosan nanoparticles to control the biodeterioration of cultural heritage sites. J. Cult. Herit. 2022, 53, 206–211. [Google Scholar] [CrossRef]
- Menicucci, F.; Palagano, E.; Michelozzi, M.; Cencetti, G.; Raio, A.; Bacchi, A.; Mazzeo, P.P.; Cuzman, O.A.; Sidoti, A.; Guarino, S.; et al. Effects of trapped-into-solids volatile organic compounds on paper biodeteriogens. Int. Biodeterior. Biodegrad. 2022, 174, 105469. [Google Scholar] [CrossRef]
- Di Vito, M.; Bellardi, M.G.; Colaizzi, P.; Ruggiero, D.; Mazzuca, C.; Micheli, L.; Sotgiu, S.; Iannuccelli, S.; Michelozzi, M.; Mondello, F.; et al. Hydrolates and gellan: An eco-innovative synergy for safe cleaning of paper artworks. Stud. Conserv. 2018, 63, 13–23. [Google Scholar] [CrossRef]
- Campanella, L.; Angeloni, R.; Cibin, F.; Dell’Aglio, E.; Grimaldi, F.; Reale, R.; Vitali, M. Capsulated essential oil in gel spheres for the protection of cellulosic cultural heritage. Nat. Prod. Res. 2021, 35, 116–123. [Google Scholar] [CrossRef]
- Bartolini, M.; Pietrini, A.M. La disinfezione delle patine biologiche sui manufatti lapidei: Biocidi chimici e naturali a confronto. Boll. ICR 2016, 33, 39–48. [Google Scholar]
- Spada, M.; Cuzman, O.A.; Tosini, I.; Galeotti, M.; Sorella, F. Essential oils mixtures as an eco-friendly biocidal solution for a marble statue restoration. Int. Biodeterior. Biodegrad. 2021, 163, 105280. [Google Scholar] [CrossRef]
- Díaz-Alonso, J.; Bernardos, A.; Regidor-Ros, J.L.; Martínez-Máñez, R.; Bosch-Roig, P. Innovative use of essential oil cold diffusion system for improving air quality on indoor cultural heritage spaces. Int. Biodeterior. Biodegrad. 2021, 162, 105251. [Google Scholar] [CrossRef]
- Genova, C.; Fuentes, E.; Favero, G.; Prieto, B. Evaluation of the cleaning effect of natural-based biocides: Application on different phototropic biofilms colonizing the same granite wall. Coatings 2023, 13, 520. [Google Scholar] [CrossRef]
- Boccalon, E.; Nocchetti, M.; Pica, M.; Romani, A.; Sterflinger, K. Hydrogels: A ‘stepping stone’ towards new cleaning strategies for biodeteriorated surfaces. J. Cult. Herit. 2021, 47, 1–11. [Google Scholar] [CrossRef]
- Gagliano Candela, R.; Maggi, F.; Lazzara, G.; Rosselli, S.; Bruno, M. The Essential oil of Thymbra capitata and its application as a biocide on stone and derived surfaces. Plants 2019, 8, 300. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, C.; Hu, Y.; Zhang, Z.; Zhang, B. Development and application of cinnamaldehyde-loaded halloysite nanotubes for the conservation of stone cultural heritage. Appl. Clay Sci. 2023, 236, 106886. [Google Scholar] [CrossRef]
- Favero-Longo, S.E.; Laurenzi Tabasso, M.; Brigadeci, F.; Capua, M.C.; Morelli, A.; Pastorello, P.; Sohrabi, M.; Chaverdi, A.A.; Callieri, P. A first assessment of the biocidal efficacy of plant essential oils against lichens on stone cultural heritage, and the importance of evaluating suitable application protocols. J. Cult. Herit. 2022, 55, 68–77. [Google Scholar] [CrossRef]
- Isola, D.; Capobianco, G.; Tovazzi, V.; Pelosi, C.; Trotta, O.; Serranti, S.; Lanteri, L.; Zucconi, L.; Spizzichino, V. Biopatinas on peperino stone: Three eco-friendly methods for their control and multi-technique approach to evaluate their efficacy. Microorganisms 2025, 13, 375. [Google Scholar] [CrossRef] [PubMed]
- Berti, L.; Arfelli, F.; Villa, F.; Cappitelli, F.; Gulotta, D.; Ciacci, L.; Bernardi, E.; Vassura, I.; Passarini, F.; Napoli, S.; et al. LCA as a complementary tool for the evaluation of biocolonization management: The case of Palazzo Rocca Costaguta. Heritage 2024, 7, 6871–6890. [Google Scholar] [CrossRef]
- Pop, D.M.; Timar, M.C.; Beldean, E.C.; Varodi, A.M. Antifungal clove essential oil. BioResources 2020, 15, 9474–9489. [Google Scholar] [CrossRef]
- Palla, F.; Bruno, M.; Mercurio, F.; Tantillo, A.; Rotolo, V. Essential oils as natural biocides in conservation of cultural heritage. Molecules 2020, 25, 730. [Google Scholar] [CrossRef]
- Pietrzak, K.; Otlewska, A.; Danielewicz, D.; Dybka, K.; Pangallo, D.; Kraková, L.; Pŭskárová, A.; Bučková, M.; Scholtz, V.; Ďurovič, M.; et al. Disinfection of archival documents using thyme essential oil, silver nanoparticles misting and low temperature plasma. J. Cult. Herit. 2017, 24, 69–77. [Google Scholar] [CrossRef]
- Pinna, D. Can we do without biocides to cope with biofilms and lichens on stone heritage? Int. Biodeterior. Biodegrad. 2022, 172, 105437. [Google Scholar] [CrossRef]
- Mokrzycki, W.S.; Tatol, M. Color difference Delta E—A survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Sasse, H.S.; Snethlage, R. Methods for the evaluation of stone conservation treatments. In Dahlem Workshop on Saving Our Architectural Heritage; Baer, N.S., Snethlage, R., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 1997; pp. 223–243. [Google Scholar]
- Prieto, B.; Sanmartín, P.; Cancelo-González, J.; Torres, L.; Silva, B. Impact of herbicide treatments on the construction materials in the Roman wall of Lugo, Spain (UNESCO World Heritage Site). Appl. Sci. 2021, 11, 5276. [Google Scholar] [CrossRef]
- Privitera, A.; Tuti, S.; Laverdura, U.P.; Duranti, L.; Di Bartolomeo, E.; Taddei, A.R.; Sodo, A. One-step nanoencapsulation of essential oils and their application in hybrid coatings: A sustainable long-lasting treatment of stone materials against biodeterioration. Prog. Org. Coat. 2024, 196, 108759. [Google Scholar] [CrossRef]
- Rakotonirainy, M.S.; Juchauld, F.; Gillet, M.; Othman-Choulak, M.; Lavedrine, B. The effect of linalool vapour on silver-gelatine photographs and bookbinding leathers. Restaurator 2007, 28, 95–111. [Google Scholar] [CrossRef]
- Ali, M.; Fawzy, M. The effect of the vapors of clove and lavender oils on the chemical and optical properties of silver gelatin prints in wood frames. Int. J. Conserv. Sci. 2021, 12, 961–976. [Google Scholar]
- Paolino, B.; Sorrentino, M.C.; Pacifico, S.; Garrigos, M.C.; Riccardi, M.G.; Paradiso, R.; Lahoz, E.; Borriello, G. A preliminary study on the efficacy of essential oils against Trichoderma longibrachiatum Isolated from an archival document in Italy. Heritage 2025, 8, 187. [Google Scholar] [CrossRef]
- Indrie, L.; Affandi, N.D.N.; Díaz-García, P.; Haji, A.; Ilies, D.C.; Zlatev, Z.; Taghiyari, H.R.; Grama, V.; Farima, D. Mechanical and morphological properties of cellulosic fabrics treated with microencapsulated essential oils. Coatings 2022, 12, 1958. [Google Scholar] [CrossRef]
- Narciso, L.; Raggi, C. Oli essenziali e sicurezza: Studi di tossicità nei modelli animali. Natural1 2023, 32–38. [Google Scholar]
- Romano, I.; Granata, G.; Poli, A.; Finore, I.; Napoli, E.; Geraci, C. Inhibition of bacterial growth on marble stone of 18th century by treatment of nanoencapsulated essential oils. Int. Biodeterior. Biodegrad. 2020, 148, 104909. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.A. Toxicity of selected monoterpenes and essential oils rich in these compounds. Molecules 2022, 27, 1716. [Google Scholar] [CrossRef]
- EMA/HMPC/137212/2005 Rev 1; Public Statement on the Use of Herbal Medicinal Products Containing Estragole. European Medicines Agency (EMA): Amsterdam, The Netherlands, 2021.
- Lanzerstorfer, P.; Sandner, G.; Pitsch, J.; Mascher, B.; Aumiller, T.; Weghuber, J. Acute, reproductive, and developmental toxicity of essential oils assessed with alternative in vitro and in vivo systems. Arch. Toxicol. 2021, 95, 673–691. [Google Scholar] [CrossRef]
- Espadero, M.; Gavilanes, S.; Mosquera, T.; Alvarez, G. Toxicological evaluation of essential oil and ethanolic extracts of Ruta graveolens in Artemia salina. Smart Innov. Syst. Technol. 2022, 252, 165–174. [Google Scholar]
- Sartori Tamburlin, I.; Roux, E.; Feuillée, M.; Labbé, J.; Aussaguès, Y.; El Fadle, F.E.; Fraboul, F.; Bouvier, G. Toxicological safety assessment of essential oils used as food supplements to establish safe oral recommended doses. Food Chem. Toxicol. 2021, 157, 112603. [Google Scholar] [CrossRef]
- Contini, A.; Di Bello, D.; Azzara, A.; Giovanelli, S.; D’Urso, G.; Piaggi, S.; Pinto, B.; Pistelli, L.; Scarpato, R.; Testi, S. Assessing the cytotoxic/genotoxic activity and estrogenic/antiestrogenic potential of essential oils from seven aromatic plants. Food Chem. Toxicol. 2020, 138, 111205. [Google Scholar] [CrossRef]
- Agus, H.H. Terpene toxicity and oxidative stress. In Toxicology; Patel, V.B., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 33–42. [Google Scholar]
- Soulimani, R.; Joshi, R.K. Toxicological aspects and pharmaco-therapeutic properties of linalool, a natural terpene derivative of essential oils: Literature studies. Am. J. Essent. Oil Nat. Prod. 2020, 8, 24–34. [Google Scholar]
- Radulović, N.; Gencic, M.; Stojanovic, N.; Randjelovic, P.; Stojanović-Radić, Z.; Stojiljkovic, N. Toxic essential oils. Part V: Behaviour modulating and toxic properties of thujones and thujone-containing essential oils of Salvia officinalis L., Artemisia absinthium L., Thuja occidentalis L. and Tanacetum vulgare L. Food Chem. Toxicol. 2017, 105, 355–369. [Google Scholar] [CrossRef]
- Llana-Ruiz-Cabello, M.; Gutiérrez-Praena, D.; Pichardo, S.; Moreno, F.J.; Bermúdez, J.M.; Aucejo, S.; Cameán, A.M. Cytotoxicity and morphological effects induced by carvacrol and thymol on the human cell line Caco-2. Food Chem. Toxicol. 2014, 64, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, C.; Fuentes, A.; Barat, J.M.; Ruiz, M.J. Relevant essential oil components: A minireview on increasing applications and potential toxicity. Toxicol. Mech. Methods 2021, 31, 559–565. [Google Scholar] [CrossRef] [PubMed]
- European Chemicals Agency. 2021. Available online: https://echa.europa.eu/home (accessed on 4 November 2020).
- European Food Safety Authority EFSA. Compendium of botanicals reported to contain naturally occurring substances of possible concern for human health when used in food and food supplements. EFSA J. 2012, 10, 2663. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2012.2663 (accessed on 4 November 2025). [CrossRef]
- National Toxicology Program (NTP). Toxicology and Carcinogenesis Studies of Methyleugenol (CAS NO. 93-15-2) in F344/N Rats and B6C3F1 Mice (Gavage Studies). Natl. Toxicol. Program Tech. Rep. Ser. 2000, 491, 1–412. [Google Scholar]
- Romani, M.; Warscheid, T.; Nicole, L.; Marcon, L.; Di Martino, P.; Suzuki, M.T.; Lebaron, P.; Lami, R. Current and future chemical treatments to fight biodeterioration of outdoor building materials and associated biofilms: Moving away from ecotoxic and towards efficient, sustainable solutions. Sci. Total Environ. 2022, 802, 149846. [Google Scholar] [CrossRef]
- Guerriaud, M. Réglementation des huiles essentielles, un besoin de sécurité. Actual. Pharm. 2018, 580, 21–25. [Google Scholar] [CrossRef]
- Nematollahi, N.; Weinberg, J.L.; Flattery, J.; Goodman, N.; Kolev, S.D.; Steinemann, A. Volatile chemical emissions from essential oils with therapeutic claims. Air Qual. Atmos. Health 2020, 14, 365–369. [Google Scholar] [CrossRef]
- Ackermann, G.; Peil, M.; Quarz, C.; Schmidt, A.; Halaczkiewicz, M.; Thomas, A.D.; Stegmüller, S.; Riching, E.; Manolikakes, G.; Christmann, M.; et al. Molecular dosimetry of estragole and 1′-hydroxyestragole-induced DNA adduct formation, clastogenicity and cytotoxicity in human liver cell models. Arch. Toxicol. 2025, 99, 3769–3785. [Google Scholar] [CrossRef]
- Chiang, S.Y.; Lee, P.Y.; Lai, M.T.; Shen, L.C.; Chung, W.S.; Huang, H.F.; Wu, K.Y.; Wu, H.C. Safrole-2′,3′-oxide induces cytotoxic and genotoxic effects in HepG2 cells and in mice. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2011, 726, 234–241. [Google Scholar] [CrossRef]
- da Silva, I.I., Jr.; da Silva, N.P.C.; Marrs, J.A.; Cadena, P.G. Essential oils produce developmental toxicity in Zebrafish embryos and cause behavior changes in Zebrafish larvae. Biomedicines 2023, 11, 2821. [Google Scholar] [CrossRef] [PubMed]
- Causil, S.; Villa, A.L. Circular economy and life cycle assessment in extraction process and transformation of essential oils for reaching sustainable development goals. In The Contribution of Life Cycle Analyses and Circular Economy to the Sustainable Development Goals; Brandli, L., Rosa, F.D., Petrorius, R., Veiga Avila, L., Filho, W.L., Eds.; World Sustainability Series; Springer: Cham, Germany, 2025; pp. 3–24. [Google Scholar]
- Paolino, B.; Sorrentino, M.C.; Pacifico, S. Greener solutions for biodeterioration of organic-media cultural heritage: Where are we? Herit. Sci. 2024, 12, 334. [Google Scholar] [CrossRef]
- Celi, D.; Marvasi, M.; Perito, B. Conventional and innovative approaches to black fungi control for stone heritage preservation. IUBMB Life 2025, 77, e70010. [Google Scholar] [CrossRef]
- Radulović, N. Toxic effects of essential oils and their constituents. Food Chem. Toxicol. 2020. [Google Scholar]
- Tanasă, F.; Nechifor, M.; Teacă, C.-A. Essential oils as alternative green broad-spectrum biocides. Plants 2024, 13, 3442. [Google Scholar] [CrossRef]

| Scientific Name | Synonym | Common Name |
|---|---|---|
| Allium sativum L. | Garlic | |
| Boswellia spp. | Frankincense | |
| Calamintha nepeta (L.) Savi | Calamint | |
| * Cinnamomum cassia (L.) J.Presl | Cassia | |
| * Cinnamomum verum Presl | C. zeylanicum Blume | Cinnamon |
| Citrus aurantium L. ssp. amara Engl. | Citrus aurantium L. ssp. aurantium L. | Bitter orange |
| * Citrus limon (L.) Burm. F. | Lemon | |
| Crithmum maritimum L. | Sea fennel | |
| Cyanus segetum Hill. | Cornflower | |
| * Cymbopogon citratus (DC.) Stapf | Lemongrass | |
| Eucalyptus globulus Labill. | Eucalyptus | |
| * Foeniculum vulgare Mill. | Fennel | |
| Glycyrrhiza glabra L. | Liquorice | |
| Grindelia robusta Nutt. | Gumplant | |
| Hamamelis virginiana L. | Witch hazel | |
| Lavandula angustifolia Mill. | English lavender | |
| * Lavandula latifolia Medik. | Spike lavender | |
| Lavandula stoechas L. | French lavender | |
| Lavandula viridis L’Hér. | Green lavender | |
| Melaleuca alternifolia Maiden & Betche | Tea tree | |
| * Melissa officinalis L. | Lemon balm | |
| * Mentha piperita L. | Peppermint | |
| Mentha pulegium L. | Pennyroyal | |
| Mentha suaveolens Ehrh. | Mentha rotundifolia var. suaveolens (Ehrh.) Briq. | Apple mint |
| Monarda citriodora Cerv. ex Lag. | Lemon bergamot | |
| Monarda dydima L. | Scarlet beebalm | |
| Monarda fistulosa L. | Wild bergamot | |
| * Nigella sativa L. | Black cumin | |
| * Ocimum basilicum L. | Basil | |
| Origanum vulgare L. | Oregano | |
| Origanum vulgare L. subsp. hirtum | Greek oregano | |
| Origanum vulgare L. subsp. viridulum (Martrin-Donos) Nyman | O. heracloticum L. | Green oregano |
| * Pelargonium graveolens L’Hér. | Geranium | |
| Pinus cembra L. | Pine tree | |
| * Rosmarinus officinalis L. | Rosemary | |
| * Salvia officinalis L. | Sage | |
| Satureja montana L. | Winter savory | |
| Satureja thymbra L. | Pink savory | |
| Syzygium aromaticum (L.) Merr. et L.M. Perry | Eugenia caryophyllata Thunb. | Clove |
| Thymbra capitata (L.) Cav. | Thymus capitatus (L.) Hoffmanns. & Link, Coridothymus capitatus (L.) Cav. | Conehead thyme |
| Thymus mastichina (L.) L. | Mastic thyme | |
| * Thymus serpyllum L. | Wild thyme | |
| * Thymus vulgaris L. | Common thyme | |
| * Thymus zygis Loefl. Ex L. | White thyme |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinna, D. Essential Oils and Cultural Heritage Conservation: Are They Safe, Environmentally Friendly, Sustainable, and Negligibly Toxic? Gels 2025, 11, 978. https://doi.org/10.3390/gels11120978
Pinna D. Essential Oils and Cultural Heritage Conservation: Are They Safe, Environmentally Friendly, Sustainable, and Negligibly Toxic? Gels. 2025; 11(12):978. https://doi.org/10.3390/gels11120978
Chicago/Turabian StylePinna, Daniela. 2025. "Essential Oils and Cultural Heritage Conservation: Are They Safe, Environmentally Friendly, Sustainable, and Negligibly Toxic?" Gels 11, no. 12: 978. https://doi.org/10.3390/gels11120978
APA StylePinna, D. (2025). Essential Oils and Cultural Heritage Conservation: Are They Safe, Environmentally Friendly, Sustainable, and Negligibly Toxic? Gels, 11(12), 978. https://doi.org/10.3390/gels11120978
