Innovative Protein Gel Treatments to Improve the Quality of Tomato Fruit
Abstract
:1. Introduction
2. Results and Discussion
2.1. Protein Gel Characterization
2.1.1. Physicochemical Characteristics of the Protein Gels
2.1.2. Amino Acid Profile
2.1.3. Protein Secondary Structure of Protein Gels
2.2. Influence of Biostimulant Treatment on the Nutritive Compound Content in the Tomato Fruit
2.3. Influence of the Biostimulant Treatment on the Content of Antioxidant Compounds in the Tomato Fruit
2.4. Influence of the Treatment on the Antioxidant Activity of the Tomato Fruit
3. Conclusions
4. Materials and Methods
4.1. Obtaining of Gels (Protein Hydrolysates)
4.2. Determination of the Amino Acid Composition of the Protein Gels
4.3. Determination of the Secondary Structure of the Protein Gels
4.4. Biological Material
4.5. Biochemical Analyses of the Tomato Fruit
4.6. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Schaafsma, G. Safety of protein hydrolysates, fractions thereof and bioactive peptides in human nutrition. Eur. J. Clin. Nutr. 2009, 63, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Baglieri, A.; Cadili, V.; Monterumici, C.M.; Gennari, M.; Tabasso, S.; Montoneri, E.; Nardi, S.; Negre, M. Fertilization of bean plants with tomato plants hydrolysates. Effect on biomass production, chlorophyll content and N assimilation. Sci. Hortic. 2014, 176, 194–199. [Google Scholar] [CrossRef]
- Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguier, R.; Rouphael, Y. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 2015, 196, 28–38. [Google Scholar] [CrossRef]
- Malécange, M.; Sergheraert, R.; Teulat, B.; Mounier, E.; Lothier, J.; Sakr, S. Biostimulant Properties of Protein Hydrolysates: Recent Advances and Future Challenges. Int. J. Mol. Sci. 2023, 24, 9714. [Google Scholar] [CrossRef] [PubMed]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef] [PubMed]
- Sestili, F.; Rouphael, Y.; Cardarelli, M.; Pucci, A.; Bonini, P.; Canaguier, R.; Colla, G. Protein Hydrolysate Stimulates Growth in Tomato Coupled with N-Dependent Gene Expression Involved in N Assimilation. Front. Plant Sci. 2018, 9, 1233. [Google Scholar] [CrossRef] [PubMed]
- Marfà, O.; Cáceres, R.; Polo, J.; Ródenas, J. Animal protein hydrolysate as a biostimulant for transplanted strawberry plants subjected to cold stress. Acta Hortic. 2009, 842, 315–318. [Google Scholar] [CrossRef]
- Gurav, R.; Nalavade, V.; Aware, C.; Vyavahare, G.; Bhatia, S.K.; Yang, Y.H.; Jadhav, J. Microbial degradation of poultry feather biomass in a constructed bioreactor and application of hydrolysate as bioenhancer to vegetable crops. Environ. Sci. Pollut. Res. 2020, 27, 2027–2035. [Google Scholar] [CrossRef]
- Cristiano, G.; De Lucia, B. Petunia Performance under Application of Animal-Based Protein Hydrolysates: Effects on Visual Quality, Biomass, Nutrient Content, Root Morphology, and Gas Exchange. Front. Plant Sci. 2021, 12, 890. [Google Scholar] [CrossRef]
- Ruiz, J.M.; Castilla, N.; Romero, L. Nitrogen metabolism in pepper plants applied with different bioregulators. J. Agric. Food Chem. 2000, 48, 2925–2929. [Google Scholar] [CrossRef] [PubMed]
- Lisiecka, J.; Knaflewski, M.; Spizewski, T.; Fraszcazak, B.; Kalusewicz, A.; Krzesinski, W. The effect of animal protein hydrolysate on quantity and quality os strawberry daughter plants cv ‘Elsanta’. Acta Sci. Pol. Hortorum Cultus 2011, 10, 31–40. [Google Scholar]
- Cristiano, G.; Pallozzi, E.; Conversa, G.; Tufarelli, V.; De Lucia, B. Effects of an Animal-Derived Biostimulant on the Growth and Physiological Parameters of Potted Snapdragon (Antirrhinum majus L.). Front. Plant Sci. 2018, 20, 861. [Google Scholar] [CrossRef] [PubMed]
- Corte, L.; Dell’Abate, M.T.; Magini, A.; Migliore, M.; Felici, B.; Roscini, L.; Sardella, R.; Tancini, B.; Emiliani, C.; Cardinali, G.; et al. Assessment of Safety and Efficiency of Nitrogen Organic Fertilizers from Animal-Based Protein Hydrolysates—A Laboratory Multidisciplinary Approach. J. Sci. Food Agr. 2014, 94, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M. Anticarcinogenic, cardioprotective, and other health benefits of tomato compounds lycopene, α-tomatine, and tomatidine in pure form and in fresh and processed tomatoes. J. Agric. Food Chem. 2013, 61, 9534–9550. [Google Scholar] [CrossRef] [PubMed]
- Pinela, J.; Oliveira, B.; Ferreira, I. Bioactive Compounds of Tomatoes as Health Promoters. In Natural Bioactive Compounds from Fruits and Vegetables, 2nd ed.; Silva, L.R., Silva, B., Eds.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2016; pp. 48–91. [Google Scholar] [CrossRef]
- Tallarita, A.V.; Vecchietti, L.; Cozzolino, E.; Sekara, A.; Mirabella, A.; Cuciniello, A.; Maiello, R.; Cenvinzo, V.; Leone, V.; Caruso, G. Biostimulant application improves tomato (Solanum lycopersicum L.) fruit yield and quality during the autumn-winter season. Res. J. Agr. Sci. 2021, 53, 4. [Google Scholar]
- Balan, D.; Luţă, G.; Stanca, M.; Jerca, O.; Niculescu, M.; Gaidau, C.; Jurcoane, S.; Mihalcea, A. Effect of Protein Gel Treatments on Biometric and Biochemical Attributes of Tomato Seedlings in Greenhouse Condition. Agriculture 2023, 13, 54. [Google Scholar] [CrossRef]
- Aykin-Dincer, E.; Koc, A.; Erbas, M. Extraction and physicochemical characterization of broiler (Gallus gallus domesticus) skin gelatin compared to commercial bovine gelatin. Poult. Sci. 2017, 96, 4124–4131. [Google Scholar] [CrossRef]
- Han, M.; Zhang, C.; Suglo, P.; Sun, S.; Wang, M.; Su, T. L-Aspartate: An Essential Metabolite for Plant Growth and Stress Acclimation. Molecules 2021, 26, 1887. [Google Scholar] [CrossRef]
- Lei, S.; Rossi, S.; Huang, B. Metabolic and Physiological Regulation of Aspartic Acid-Mediated Enhancement of Heat Stress Tolerance in Perennial Ryegrass. Plants 2022, 11, 199. [Google Scholar] [CrossRef]
- Sun, M.; Li, S.; Gong, Q.; Xiao, Y.; Peng, F. Leucine Contributes to Copper Stress Tolerance in Peach (Prunus persica) Seedlings by Enhancing Photosynthesis and the Antioxidant Defense System. Antioxidants 2022, 11, 2455. [Google Scholar] [CrossRef] [PubMed]
- Sadak, M.S.; Abd El-Hameid, A.R.; Zaki, F.S.A. Physiological and biochemical responses of soybean (Glycine max L.) to cysteine application under sea salt stress. Bull. Natl. Res. Cent. 2020, 44, 1. [Google Scholar] [CrossRef]
- Octave, S.; Amborabé, B.E.; Luini, E.; Ferreira, T.; Fleurat-Lessard, P.; Roblin, G. Antifungal effects of cysteine towards Eutypa lata, a pathogen of vineyards. Plant. Physiol. Biochem. 2005, 43, 1006–1013. [Google Scholar] [CrossRef] [PubMed]
- Rigueto, C.V.T.; Rossetto, M.; Sousa Gomes, K.; Loss, R.A.; Biduski, B.; Manera, C.; Godinho, M.; Brião, V.B.; Dettmer, A.; Pizzutti, I.R. Steam explosion pretreatment for bovine limed hide waste gelatin extraction. Food Hydrocoll. 2023, 142, 108854. [Google Scholar] [CrossRef]
- Nagarajan, M.; Benjakul, S.; Prodpran, T.; Songtipya, P.; Kishimura, H. Characteristics and functional properties of gelatin from splendid squid (Loligo formosana) skin as affected by extraction temperatures. Food Hydrocoll. 2012, 29, 389–397. [Google Scholar] [CrossRef]
- Hidayati, D.; Sabiyla, G.S.; Prasetyo, E.N.; Sa’adah, N.N.; Kurniawan, F. The Characteristic of Gelatin Extracted from The Skin of Adult and Sub-Adult Striped Catfish (Pangasius hypophthalmus) Using Acid-Base Pretreatment: pH and FTIR. IOP Conf. Ser. Earth Environ. Sci. 2021, 755, 012018. [Google Scholar] [CrossRef]
- Ahmad, T.; Ismail, A.; Ahmad, S.A.; Abdul Khalil, K.; Awad, E.A.; Akhtar, M.T.; Sazili, A.Q. Recovery of Gelatin from Bovine Skin with the Aid of Pepsin and Its Effects on the Characteristics of the Extracted Gelatin. Polymers 2021, 13, 1554. [Google Scholar] [CrossRef]
- Pulidori, E.; Micalizzi, S.; Koutsomarkos, N.; Bramanti, E.; Tinè, M.R.; Vozzi, G.; De Maria, C.; Chatzinikolaidou, M.; Duce, C. Analysis of gelatin secondary structure in gelatin/keratin-based biomaterials. J. Mol. Struct. 2023, 1279, 134984. [Google Scholar] [CrossRef]
- Jackson, M.; Choo, L.P.; Watson, P.H.; Halliday, W.C.; Mantsch, H.H. Beware of connective tissue proteins: Assignment and implications of collagen absorptions in infrared spectra of human tissues. Biochim. Biophys. Acta 1995, 1270, 1–6. [Google Scholar] [CrossRef]
- Kittiphattanabawon, P.; Benjakul, S.; Sinthusamran, S.; Kishimura, H. Gelatin from clown featherback skin: Extraction conditions. LWT—Food Sci. Technol. 2016, 66, 186–192. [Google Scholar] [CrossRef]
- Wally, O.S.D.; Critchley, A.T.; Hiltz, D.; Craigie, J.S.; Han, X.; Zaharia, L.I. Regulation of phytohormone biosynthesis and accumulation in Arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum. J. Plant Growth Regul. 2013, 32, 324–339. [Google Scholar] [CrossRef]
- Abdelkader, M.M.; Gaplaev, M.S.; Terekbaev, A.A.; Puchkov, M.Y. The influence of biostimulants on tomato plants cultivated under hydroponic systems. J. Hortic. Res. 2021, 29, 107–116. [Google Scholar] [CrossRef]
- Grabowska, A.; Kunicki, E.; Sękara, A.; Kalisz, A.; Jezdinský, A.; Gintrowicz, K. The effect of biostimulants on the quality parameters of tomato grown for the processing industry. Agrochimica 2015, 59, 203–217. [Google Scholar] [CrossRef]
- Anthon, G.E.; Le Strange, M.; Barrett, D. Changes in pH, acids, sugars and other quality parameters during extended vine holding of ripe processing tomatoes. J. Sci. Food Agr. 2011, 91, 1175–1181. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.V.; Agarwal, S. Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: A review. Nutr. Res. 1999, 19, 305–323. [Google Scholar] [CrossRef]
- Abushita, A.A.; Daood, H.G.; Biacs, P.A. Changes in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. J. Agric. Food Chem. 2000, 48, 2075–2081. [Google Scholar] [CrossRef] [PubMed]
- Rouphael, Y.; Cardarelli, M.; Bonini, P.; Colla, G. Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Front. Plant Sci. 2017, 8, 131. [Google Scholar] [CrossRef]
- Luta, G.; Balan, D.; Gherghina, E.; Dobrin, E. Effect of Foliar Bioactive Treatments on the Oxidative Stress Tolerance in Tomato Seedlings. Sci. Pap. Ser. B Hortic. 2018, 62, 423–429. [Google Scholar]
- Ali, M.M.; Jeddi, K.; Attia, M.S.; Elsayed, S.M.; Yusuf, M.; Osman, M.S.; Soliman, M.-H.; Hessini, K. Wuxal amino (Biostimulant) improved growth and physiological performance of tomato plants under salinity stress through adaptive mechanisms and antioxidant potential. Saudi J. Biol. Sci. 2021, 28, 3204–3213. [Google Scholar] [CrossRef]
- Francesca, S.; Cirillo, V.; Raimondi, G.; Maggio, A.; Barone, A.; Rigano, M.M. A Novel Protein Hydrolysate-Based Biostimulant Improves Tomato Performances under Drought Stress. Plants 2021, 10, 783. [Google Scholar] [CrossRef]
- Asadi, M.; Rasouli, F.; Amini, T.; Hassanpouraghdam, M.B.; Souri, S.; Skrovankova, S.; Mlcek, J.; Ercisli, S. Improvement of Photosynthetic Pigment Characteristics, Mineral Content, and Antioxidant Activity of Lettuce (Lactuca sativa L.) by Arbuscular Mycorrhizal Fungus and Seaweed Extract Foliar Application. Agronomy 2022, 12, 1943. [Google Scholar] [CrossRef]
- Abd-Elkader, D.Y.; Mohamed, A.A.; Feleafel, M.N.; Al-Huqail, A.A.; Salem, M.Z.M.; Ali, H.M.; Hassan, H.S. Photosynthetic Pigments and Biochemical Response of Zucchini (Cucurbita pepo L.) to Plant-Derived Extracts. Microbial, and Potassium Silicate as Biostimulants Under Greenhouse Conditions. Front. Plant Sci. 2022, 13, 879545. [Google Scholar] [CrossRef] [PubMed]
- Ashour, M.; Hassan, S.M.; Elshobary, M.E.; Ammar, G.A.G.; Gaber, A.; Alsanie, W.F.; Mansour, A.T.; El-Shenody, R. Impact of Commercial Seaweed Liquid Extract (TAM®) Biostimulant and Its Bioactive Molecules on Growth and Antioxidant Activities of Hot Pepper (Capsicum annuum). Plants 2021, 10, 1045. [Google Scholar] [CrossRef]
- Colla, G.; Cardarelli, M.; Bonini, P.; Rouphael, Y. Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience 2017, 52, 1214–1220. [Google Scholar] [CrossRef]
- González-Morales, S.; Solís-Gaona, S.; Valdés-Caballero, M.V.; Juárez-Maldonado, A.; Loredo-Treviño, A.; Benavides-Mendoza, A. Transcriptomics of Biostimulation of Plants Under Abiotic Stress. Front. Genet. 2021, 12, 583888. [Google Scholar] [CrossRef] [PubMed]
- Niculescu, M.; Epure, D.; Lason-Rydel, M.; Gaidau, C.; Gidea, M.; Enascuta, C. Biocomposites based on collagen and keratin with properties for agriculture and industrie applications. EuroBiotech J. 2019, 3, 160–166. [Google Scholar] [CrossRef]
- Gaidau, C.; Epure, D.G.; Enascuta, C.E.; Carsote, C.; Sendrea, C.; Proietti, N.; Chen, W.; Gu, H. Wool keratin total solubilisation for recovery and reintegration—An ecological approach. J. Clean. Prod. 2019, 236, 117586. [Google Scholar] [CrossRef]
- SR EN ISO 4684:2006; Leather–Chemical Tests-Determination of Volatile Matter. ASRO (Romanian Standardization Association): Bucharest, Romania, 2006.
- Majidi, H.; Minaei, S.; Almasi, M.; Mostofi, Y. Total Soluble Solids, Titratable Acidity and Ripening Index of Tomato in Various Storage Conditions. Aust. J. Basic Appl. Sci. 2011, 5, 1723–1726. [Google Scholar]
- Elgailani, I.E.H.; Gad-Elkareem, M.A.M.; Noh, E.A.A.; Adam, O.E.A.; Alghamdi, A.M.A. Comparison of Two Methods for The Determination of Vitamin C (Ascorbic Acid) in Some Fruits. Am. J. Chem. 2017, 2, 1–7. [Google Scholar] [CrossRef]
- Iordachescu, D.; Dumitru, I.F. Biochimie Practica, 2nd ed.; Universitatea Bucuresti: Bucharest, Romania, 1988; pp. 205–206. [Google Scholar]
- Anthon, G.; Barrett, M.D. Standardization of a rapid spectrophotometric method for lycopene analysis. Acta Hortic. 2007, 758, 111–128. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
Characteristics | Gelatin-Based Gel (GB3) | Gelatin-Based Gel Additivated with Keratin (GB3K) |
---|---|---|
Dry substance (%) | 6.34 ± 0.35 | 6.86 ± 0.38 |
Total ash (%) | 0.26 ± 0.08 | 0.38 ± 0.07 |
Total nitrogen (%) | 0.83 ± 0.06 | 1.02 ± 0.06 |
Protein content (%) | 4.66 ± 0.24 | 5.73 ± 0.24 |
pH | 7.34 ± 0.05 | 7.25 ± 0.05 |
Bloom test (g) | 130 ± 1.15 | <50 ± 1 |
Viscosity (mPa∙s) | 1.25 ± 0.04 | 1 ± 0.05 |
Amino Acids (%) | Gelatin-Based Gel (GB3) | Gelatin-Based Gel Additivated with Keratin (GB3K) |
---|---|---|
Aspartic acid (Asp) | 3.67 ± 0.01 | 8.27 ± 0.03 |
Glutamic acid (Glu) | 9.76 ± 0.03 | 11.37 ± 0.04 |
Serine (Ser) | 3.21 ± 0.009 | 3.57 ± 0.011 |
Glycine (Gly) | 19.52 ± 0.07 | 17.57 ± 0.05 |
Histidine (His) | 0.57 ± 0.002 | 0.62 ± 0.002 |
Arginine (Arg) | 8.61 ± 0.02 | 7.24 ± 0.02 |
Threonine (Thr) | 1.84 ± 0.005 | 1.76 ± 0.005 |
Alanine (Ala) | 9.76 ± 0.003 | 7.75 ± 0.02 |
Proline (Pro) | 18.94 ± 0.04 | 14.47 ± 0.04 |
Tyrosine (Tyr) | 0.92 ± 0.003 | 2.58 ± 0.008 |
Valine (Val) | 2.58 ± 0.07 | 4.03 ± 0.012 |
Methionine (Met) | 0.29 ± 0.001 | 0.31 ± 0.001 |
Cysteine (Cys) | 0.29 ± 0.001 | 0.98 ± 0.005 |
Isoleucine (Ile) | 1.95 ± 0.005 | 2.79 ± 0.009 |
Leucine (Leu) | 3.27 ± 0.009 | 5.17 ± 0.02 |
Phenylalanine (Phe) | 2.12 ± 0.006 | 2.84 ± 0.008 |
Lysine (Lys) | 3.50 ± 0.01 | 3.00 ± 0.009 |
Hydroxyproline (Hyp) | 9.18 ± 0.03 | 5.68 ± 0.02 |
Structure | β-Sheet | Random | α-Helix | β-Turn |
---|---|---|---|---|
GB3 | 34.64 | 20.1 | 23.67 | 21.58 |
GB3K | 14.51 | 35.91 | 14.5 | 35.07 |
Variant | EC50 (mg/mL) |
---|---|
V1 (Control) | 56.91 ± 0.49 a |
V2 | 44.40 ± 1.85 b |
V3 | 34.96 ± 1.10 c |
Biochemical Compounds | R (Coefficient of Correlation) | R2 (Determining Coefficient) | p |
---|---|---|---|
Total biochemical compounds | −0.8713 | 0.7592 | <0.05 |
Total polyphenols | −0.8919 | 0.7955 | <0.05 |
Vitamin C | −0.7594 | 0.5767 | <0.05 |
Total carotenoids | −0.5788 | 0.3350 | ns |
Lycopene | −0.5953 | 0.3544 | ns |
β-Carotene | 0.4915 | 0.2416 | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luta, G.; Balan, D.; Stanca, M.; Jerca, O.; Jurcoane, S.; Niculescu, M.; Gaidau, C.; Stanculescu, I.R. Innovative Protein Gel Treatments to Improve the Quality of Tomato Fruit. Gels 2024, 10, 10. https://doi.org/10.3390/gels10010010
Luta G, Balan D, Stanca M, Jerca O, Jurcoane S, Niculescu M, Gaidau C, Stanculescu IR. Innovative Protein Gel Treatments to Improve the Quality of Tomato Fruit. Gels. 2024; 10(1):10. https://doi.org/10.3390/gels10010010
Chicago/Turabian StyleLuta, Gabriela, Daniela Balan, Maria Stanca, Ovidiu Jerca, Stefana Jurcoane, Mihaela Niculescu, Carmen Gaidau, and Ioana Rodica Stanculescu. 2024. "Innovative Protein Gel Treatments to Improve the Quality of Tomato Fruit" Gels 10, no. 1: 10. https://doi.org/10.3390/gels10010010
APA StyleLuta, G., Balan, D., Stanca, M., Jerca, O., Jurcoane, S., Niculescu, M., Gaidau, C., & Stanculescu, I. R. (2024). Innovative Protein Gel Treatments to Improve the Quality of Tomato Fruit. Gels, 10(1), 10. https://doi.org/10.3390/gels10010010