Next Article in Journal
Oral Candidiasis: A Disease of Opportunity
Previous Article in Journal
A Re-Evaluation of the Relationship between Morphology and Pathogenicity in Candida Species
Open AccessReview

Unraveling How Candida albicans Forms Sexual Biofilms

1
Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
2
Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
*
Author to whom correspondence should be addressed.
J. Fungi 2020, 6(1), 14; https://doi.org/10.3390/jof6010014
Received: 21 December 2019 / Accepted: 13 January 2020 / Published: 15 January 2020
(This article belongs to the Special Issue Fungal Biofilms 2020)
Biofilms, structured and densely packed communities of microbial cells attached to surfaces, are considered to be the natural growth state for a vast majority of microorganisms. The ability to form biofilms is an important virulence factor for most pathogens, including the opportunistic human fungal pathogen Candida albicans. C. albicans is one of the most prevalent fungal species of the human microbiota that asymptomatically colonizes healthy individuals. However, C. albicans can also cause severe and life-threatening infections when host conditions permit (e.g., through alterations in the host immune system, pH, and resident microbiota). Like many other pathogens, this ability to cause infections depends, in part, on the ability to form biofilms. Once formed, C. albicans biofilms are often resistant to antifungal agents and the host immune response, and can act as reservoirs to maintain persistent infections as well as to seed new infections in a host. The majority of C. albicans clinical isolates are heterozygous (a/α) at the mating type-like (MTL) locus, which defines Candida mating types, and are capable of forming robust biofilms when cultured in vitro. These “conventional” biofilms, formed by MTL-heterozygous (a/α) cells, have been the primary focus of C. albicans biofilm research to date. Recent work in the field, however, has uncovered novel mechanisms through which biofilms are generated by C. albicans cells that are homozygous or hemizygous (a/a, a/Δ, α/α, or α/Δ) at the MTL locus. In these studies, the addition of pheromones of the opposite mating type can induce the formation of specialized “sexual” biofilms, either through the addition of synthetic peptide pheromones to the culture, or in response to co-culturing of cells of the opposite mating types. Although sexual biofilms are generally less robust than conventional biofilms, they could serve as a protective niche to support genetic exchange between mating-competent cells, and thus may represent an adaptive mechanism to increase population diversity in dynamic environments. Although conventional and sexual biofilms appear functionally distinct, both types of biofilms are structurally similar, containing yeast, pseudohyphal, and hyphal cells surrounded by an extracellular matrix. Despite their structural similarities, conventional and sexual biofilms appear to be governed by distinct transcriptional networks and signaling pathways, suggesting that they may be adapted for, and responsive to, distinct environmental conditions. Here we review sexual biofilms and compare and contrast them to conventional biofilms of C. albicans. View Full-Text
Keywords: biofilms; Candida albicans; sexual biofilms; pheromone-induced biofilms; mating type-like (MTL) locus; white cell; opaque cell; phenotypic states; pheromone signaling; biofilm formation; biofilm development biofilms; Candida albicans; sexual biofilms; pheromone-induced biofilms; mating type-like (MTL) locus; white cell; opaque cell; phenotypic states; pheromone signaling; biofilm formation; biofilm development
Show Figures

Graphical abstract

MDPI and ACS Style

Perry, A.M.; Hernday, A.D.; Nobile, C.J. Unraveling How Candida albicans Forms Sexual Biofilms. J. Fungi 2020, 6, 14.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop