Next Article in Journal
Immunopathogenesis of Human Sporotrichosis: What We Already Know
Next Article in Special Issue
Impact of Fungal MAPK Pathway Targets on the Cell Wall
Previous Article in Journal
Challenges and Opportunities in the Management of Onychomycosis
Previous Article in Special Issue
Biological Roles of Protein-Coding Tandem Repeats in the Yeast Candida Albicans
Open AccessReview

Cryptococcal Traits Mediating Adherence to Biotic and Abiotic Surfaces

Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St Room E5132, Baltimore, MD 21205, USA
*
Author to whom correspondence should be addressed.
J. Fungi 2018, 4(3), 88; https://doi.org/10.3390/jof4030088
Received: 1 July 2018 / Revised: 25 July 2018 / Accepted: 27 July 2018 / Published: 29 July 2018
(This article belongs to the Special Issue Cell Adhesion in Fungal Life and Pathogenesis)
Several species in the genus Cryptococcus are facultative intracellular pathogens capable of causing disease associated with high mortality and morbidity in humans. These fungi interact with other organisms in the soil, and these interactions may contribute to the development of adaptation mechanisms that function in virulence by promoting fungal survival in animal hosts. Fungal adhesion molecules, also known as adhesins, have been classically considered as cell-surface or secreted proteins that play critical roles in microbial pathogenesis or in biofilm formation as structural components. Pathogenic Cryptococcus spp. differ from other pathogenic yeasts in having a polysaccharide capsule that covers the cell wall surface and precludes interactions of those structures with host cell receptors. Hence, pathogenic Cryptococcus spp. use unconventional tools for surface attachment. In this essay, we review the unique traits and mechanisms favoring adhesion of Cryptococcus spp. to biotic and abiotic surfaces. Knowledge of the traits that mediate adherence could be exploited in the development of therapeutic, biomedical, and/or industrial products. View Full-Text
Keywords: Cryptococcus; adherence; environment; pathogenesis Cryptococcus; adherence; environment; pathogenesis
Show Figures

Figure 1

MDPI and ACS Style

Camacho, E.; Casadevall, A. Cryptococcal Traits Mediating Adherence to Biotic and Abiotic Surfaces. J. Fungi 2018, 4, 88. https://doi.org/10.3390/jof4030088

AMA Style

Camacho E, Casadevall A. Cryptococcal Traits Mediating Adherence to Biotic and Abiotic Surfaces. Journal of Fungi. 2018; 4(3):88. https://doi.org/10.3390/jof4030088

Chicago/Turabian Style

Camacho, Emma; Casadevall, Arturo. 2018. "Cryptococcal Traits Mediating Adherence to Biotic and Abiotic Surfaces" J. Fungi 4, no. 3: 88. https://doi.org/10.3390/jof4030088

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop