Mycoremediation of Petroleum-Contaminated Soil Using Native Ganoderma and Trametes Strains from the Ecuadorian Amazon
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Fungal Strains Cultures and Identification
2.3. Influence of Temperature on Mycelial Growth
2.4. Influence of Diesel on Fungal Growth
- GC (growth control) represents the mean diameter of the fungi grown on MEA.
- GT (growth treatment) represents the mean diameter of the three replicates of the fungi exposed to diesel.
2.5. Screening of Fungal Strains for Oxidative Enzymatic Activities
2.5.1. RBBR Dye Discoloration Test
2.5.2. Gallic Acid Oxidation Test
2.5.3. Guaiacol Oxidation Test
2.6. Laccase Production in Liquid Culture
2.7. Mycoremediation Assay Methodology
2.7.1. Contaminated Soil
2.7.2. Organic Substrate for Fungal Growth
2.7.3. Inoculum Preparation
2.7.4. Mycelium Development on Solid Organic Substrate
2.7.5. Mycelium Development on Polluted Soil
2.8. Analysis Methods
2.8.1. Laccase Activity Measurement
2.8.2. Characterization of the Untreated and Treated Soil
2.8.3. Ergosterol Quantification
2.9. Assessment of Microbial Populations
2.10. Carbon Mass Balance Calculation
2.11. Statistical Analysis
3. Results
3.1. Fungal Strains Identification
3.2. Diesel and Temperature Influence on Fungal Growth
3.3. Screening of Fungal Strains for Oxidizing Enzymatic Activities
3.4. Laccase Production Under Submerged Culture Conditions
3.5. Mycoremediation Assay Results
3.6. Assessment of Microbial Population
4. Discussion
4.1. Diesel and Temperature Influence on Fungal Growth and Enzymatic Activity
4.2. Mycoremediation Assay
- (1)
- Metabolic strategy differences: High-efficiency strains may prioritize extracellular enzyme production and substrate mineralization over biomass accumulation [61,63]. This strategy is characteristic of primary decomposer fungi that rapidly process available substrates. In this study, all fungal species demonstrated similar respiratory activity (1.2–1.7 mg CO2/g) and TPH removal rates, indicating that while the pathways could differ, their metabolic efficiency remains consistent.
- (2)
- Ecological adaptation: as primary colonizers of lignocellulosic materials, these species evolved to rapidly process substrates with minimal carbon retention, maximizing decomposition rates rather than biomass yield [64].
- (3)
- Microbial competition appears to play a key role in shaping fungal dynamics: In this study, bacterial populations maintained high levels across all treatments, suggesting a dominant presence that could suppress fungal growth [65].
- (4)
- Finally, fungi may be adopting a strategy focused on functional specialization rather than growth, allocating resources to the production of specific extracellular enzymes involved in TPH degradation. Degradation rates tend to correlate more closely with extracellular protein concentration and enzymatic activity than with overall fungal biomass. This could be related to the differences in bacteria cultured on King B and phosphate-solubilizing populations observed in this study, suggesting that each inoculated fungal species creates a distinct microenvironment, differentially influencing the compositions and function of the associated microbial communities [66].
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morales Maridueña, I.A.; Guadalupe Sánchez, K.W.; Sánchez Jiménez, K.A.; Cedeño Salazar, P.A. Impacto de La Actividad Petrolera En Las Finanzas de Ecuador. RECIAMUC 2022, 6, 284–293. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Li, C.; Zhang, L.; Ning, G.; Shi, W.; Zhang, X.; Yang, Z. Ligninolytic Enzyme Involved in Removal of High Molecular Weight Polycyclic Aromatic Hydrocarbons by Fusarium Strain ZH-H2. Environ. Sci. Pollut. Res. 2020, 27, 42969–42978. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Maddela, N.R.; Megharaj, M.; Venkateswarlu, K. Total Petroleum Hydrocarbons: Environmental Fate, Toxicity, and Remediation; Springer International Publishing: Cham, Switzerland, 2019; ISBN 9783030240356. [Google Scholar]
- Serrano, H. Caso Chevron-Texaco: Cuando Los Pueblos Toman La Palabra, 1st ed.; Ortiz Crespo, Q., Ed.; Corporación Editora Nacional: Quito, Ecuador, 2013; Volume 151, ISBN 978-9978-84-698-8. [Google Scholar]
- Mittermeier, R.; Mittermeier, C.; Robles Gil, P. Megadiversity: Earth’s Biologically Wealthiest Nations; CEMEX: San Pedro Garza García, Mexico, 1997. [Google Scholar]
- Læssøe, T.; Petersen, J. Svampelivet På Ækvator (Equatorial Fungi—Mycological Biodiversity in Ecuador). Svampe 2008, 58, 1–52. [Google Scholar]
- Batallas Molina, R.C. Catálogo de Hongos (Ascomycota y Basidiomycota) de La Colección Micológica Del Herbario Nacional Del Ecuador (QCNE) Del Instituto Nacional de Biodiversidad (INABIO). ACI Av. Cienc. Ing. 2021, 12, 10. [Google Scholar] [CrossRef]
- Hyde, K.D.; Xu, J.; Rapior, S.; Jeewon, R.; Lumyong, S.; Niego, A.G.T.; Abeywickrama, P.D.; Aluthmuhandiram, J.V.S.; Brahamanage, R.S.; Brooks, S.; et al. The Amazing Potential of Fungi: 50 Ways We Can Exploit Fungi Industrially. Fungal Divers. 2019, 97, 1–136. [Google Scholar] [CrossRef]
- Batista-García, R.A.; Kumar, V.V.; Ariste, A.; Tovar-Herrera, O.E.; Savary, O.; Peidro-Guzmán, H.; González-Abradelo, D.; Jackson, S.A.; Dobson, A.D.W.; Sánchez-Carbente, M.R.; et al. Simple Screening Protocol for Identification of Potential Mycoremediation Tools for the Elimination of Polycyclic Aromatic Hydrocarbons and Phenols from Hyperalkalophile Industrial Effluents. J. Environ. Manag. 2017, 198, 1–11. [Google Scholar] [CrossRef]
- Deshmukh, R.; Khardenavis, A.A.; Purohit, H.J. Diverse Metabolic Capacities of Fungi for Bioremediation. Indian J. Microbiol. 2016, 56, 247–264. [Google Scholar] [CrossRef]
- Harms, H.; Schlosser, D.; Wick, L.Y. Untapped Potential: Exploiting Fungi in Bioremediation of Hazardous Chemicals. Nat. Rev. Microbiol. 2011, 9, 177–192. [Google Scholar] [CrossRef]
- Levasseur, A.; Piumi, F.; Coutinho, P.M.; Rancurel, C.; Asther, M.; Delattre, M.; Henrissat, B.; Pontarotti, P.; Asther, M.; Record, E. FOLy: An Integrated Database for the Classification and Functional Annotation of Fungal Oxidoreductases Potentially Involved in the Degradation of Lignin and Related Aromatic Compounds. Fungal Genet. Biol. 2008, 45, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liang, J.; Wang, J.; Gao, S. Combining Stable Carbon Isotope Analysis and Petroleum-Fingerprinting to Evaluate Petroleum Contamination in the Yanchang Oilfield Located on Loess Plateau in China. Environ. Sci. Pollut. Res. 2018, 25, 2830–2841. [Google Scholar] [CrossRef]
- Treu, R.; Falandysz, J. Mycoremediation of Hydrocarbons with Basidiomycetes—A Review. J. Environ. Sci. Health Part B 2017, 52, 148–155. [Google Scholar] [CrossRef]
- Torres-Farradá, G.; Thijs, S.; Rineau, F.; Guerra, G.; Vangronsveld, J. White Rot Fungi as Tools for the Bioremediation of Xenobiotics: A Review. J. Fungi 2024, 10, 167. [Google Scholar] [CrossRef]
- Haroune, L.; Saibi, S.; Bellenger, J.-P.; Cabana, H. Evaluation of the Efficiency of Trametes Hirsuta for the Removal of Multiple Pharmaceutical Compounds under Low Concentrations Relevant to the Environment. Bioresour. Technol. 2014, 171, 199–202. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols; Elsevier: Amsterdam, The Netherlands, 1990; pp. 315–322. [Google Scholar]
- Jaramillo-Riofrío, A.; Decock, C.; Suárez, J.P.; Benítez, Á.; Castillo, G.; Cruz, D. Screening of Antibacterial Activity of Some Resupinate Fungi, Reveal Gloeocystidiellum lojanense sp. Nov. (Russulales) against E. coli from Ecuador. J. Fungi 2022, 9, 54. [Google Scholar] [CrossRef]
- Ebadzadsahrai, G.; Higgins Keppler, E.A.; Soby, S.D.; Bean, H.D. Inhibition of Fungal Growth and Induction of a Novel Volatilome in Response to Chromobacterium vaccinii Volatile Organic Compounds. Front. Microbiol. 2020, 11, 1035. [Google Scholar] [CrossRef] [PubMed]
- Pasti, M.B.; Crawford, D.L. Relationships between the Abilities of Streptomycetes to Decolorize Three Anthron-Type Dyes and to Degrade Lignocellulose. Can. J. Microbiol. 1991, 37, 902–907. [Google Scholar] [CrossRef]
- Harkin, J.M.; Obst, J.R.; Davidson, R.W.; Campbell, W.A.; Blaisdell, D.J. Syringaldazine, an Effective Reagent for Detecting Laccase and Peroxidase in Fungi. Mycologia 1974, 66, 469–476. [Google Scholar] [CrossRef]
- Koduri, R.S.; Tien, M. Oxidation of Guaiacol by Lignin Peroxidase. J. Biol. Chem. 1995, 270, 22254–22258. [Google Scholar] [CrossRef] [PubMed]
- Tien, M.; Kirk, T.K. Lignin Peroxidase of Phanerochaete chrysosporium. Methods Enzymol. 1988, 161, 238–249. [Google Scholar] [CrossRef]
- FAO. FAO Guidelines for Soil Description; FAO: Rome, Italy, 2006. [Google Scholar]
- Borràs, E.; Llorens-Blanch, G.; Rodríguez-Rodríguez, C.E.; Sarrà, M.; Caminal, G. Soil Colonization by Trametes Versicolor Grown on Lignocellulosic Materials: Substrate Selection and Naproxen Degradation. Int. Biodeterior. Biodegrad. 2011, 65, 846–852. [Google Scholar] [CrossRef]
- Couto, S.R.; Gundín, M.; Lorenzo, M.; Sanromán, M.Á. Screening of Supports and Inducers for Laccase Production by Trametes Versicolor in Semi-Solid-State Conditions. Process Biochem. 2002, 38, 249–255. [Google Scholar] [CrossRef]
- Fakoussa, R.M.; Frost, P.J. In Vivo-Decolorization of Coal-Derived Humic Acids by Laccase-Excreting Fungus Trametes Versicolor. Appl. Microbiol. Biotechnol. 1999, 52, 60–65. [Google Scholar] [CrossRef]
- Lorenzo, M.; Moldes, D.; Rodríguez Couto, S.; Sanromán, A. Improving Laccase Production by Employing Different Lignocellulosic Wastes in Submerged Cultures of Trametes Versicolor. Bioresour. Technol. 2002, 82, 109–113. [Google Scholar] [CrossRef]
- USDA. Soil Survey Field and Laboratory Methods Manual. Soil Survey Investigations Report No. 51, Version 2; Soil Survey Staff, Natural Resources Conservation Service (NRCS), United States Department of Agriculture (USDA): Lincoln, NE, USA, 2014.
- US EPA Method 9045D; Soil and Waste pH (Revision 4). United States Environmental Protection Agency: Washington, DC, USA, 2004.
- ASTM D2216-98; Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International: West Conshohocken, PA, USA, 1998.
- ASTM F1647-11; Standard Test Methods for Organic Matter Content of Athletic Field Rootzone Mixes. ASTM International: West Conshohocken, PA, USA, 2018.
- EN 13342; Characterization of Sludges—Determination of Kjeldahl Nitrogen. European Committee for Standardization (CEN): Brussels, Belgium, 2000.
- DIN ISO 11261:1997; Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method. Deutsches Institut für Normung (DIN): Berlin, Germany, 1997.
- U.S. EPA Method 8015D; EPA Method 8015D (SW-846): Nonhalogenated Organics Using GC/FID, Revision 4. United States Environmental Protection Agency: Washington, DC, USA, 2003.
- AOAC Official Method 2007.01; Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium Sulfate. Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Tandem Mass Spectrometry, First Action 2007. AOAC International: Rockville, MD, USA, 2005.
- US EPA. Method 6020B; EPA Method 6020B (SW-846): Inductively Coupled Plasma—Mass Spectrometry. United States Environmental Protection Agency: Washington, DC, USA, 2014.
- USDA-NRCS. Soil Quality Test Kit Guide, Natural Resources Conservation Service (NRCS); United States Department of Agriculture (USDA): Lincoln, NE, USA, 1999.
- Borràs, E.; Caminal, G.; Sarrà, M.; Novotný, Č. Effect of Soil Bacteria on the Ability of Polycyclic Aromatic Hydrocarbons (PAHs) Removal by Trametes versicolor and Irpex lacteus from Contaminated Soil. Soil. Biol. Biochem. 2010, 42, 2087–2093. [Google Scholar] [CrossRef]
- Kumar, R. Microbial Population Dynamics under Fertigation by Distillery Effluent in Sugarcane-Ratoon Cropping System. Environ. Dev. Sustain. 2016, 18, 187–196. [Google Scholar] [CrossRef]
- El Karkouri, A.; Assou, S.A.; El Hassouni, M. Isolation and Screening of Actinomycetes Producing Antimicrobial Substances from an Extreme Moroccan Biotope. Pan Afr. Med. J. 2019, 33, 329. [Google Scholar] [CrossRef] [PubMed]
- Kotasthane, A.S.; Agrawal, T.; Zaidi, N.W.; Singh, U.S. Identification of Siderophore Producing and Cynogenic Fluorescent Pseudomonas and a Simple Confrontation Assay to Identify Potential Bio-Control Agent for Collar Rot of Chickpea. 3 Biotech. 2017, 7, 137. [Google Scholar] [CrossRef]
- Mayadunna, N.; Karunarathna, S.C.; Asad, S.; Stephenson, S.L.; Elgorban, A.M.; Al-Rejaie, S.; Kumla, J.; Yapa, N.; Suwannarach, N. Isolation of Phosphate-Solubilizing Microorganisms and the Formulation of Biofertilizer for Sustainable Processing of Phosphate Rock. Life 2023, 13, 782. [Google Scholar] [CrossRef]
- Chumchalová, J.; Kubal, M. MPN Drop Agar Method for Determination of Heterotrophic Microorganisms in Soil and Water Samples Using Tissue Plate as a Carrier. Sustainability 2020, 12, 8252. [Google Scholar] [CrossRef]
- Djajakirana, G.; Joergensen, R.G.; Meyer, B. Ergosterol and Microbial Biomass Relationship in Soil. Biol. Fertil. Soils 1996, 22, 299–304. [Google Scholar] [CrossRef]
- Kameshwar, A.K.S.; Qin, W. Qualitative and Quantitative Methods for Isolation and Characterization of Lignin-Modifying Enzymes Secreted by Microorganisms. Bioenergy Res. 2017, 10, 248–266. [Google Scholar] [CrossRef]
- Castillo, G.; Nihoul, A.; Demoulin, V. Correlation between the in Vitro Growth Response to Temperature and the Habitat of Some Lignicolous Fungi from Papua New Guinea Coastal Forests. Cryptogam. Mycol. 2004, 25, 57–81. [Google Scholar]
- Krupodorova, T.; Barshteyn, V.; Sekan, A. Review of the Basic Cultivation Conditions Influence on the Growth of Basidiomycetes. Curr. Res. Environ. Appl. Mycol. 2021, 11, 494–531. [Google Scholar] [CrossRef]
- Lee, H.; Jang, Y.; Choi, Y.-S.; Kim, M.-J.; Lee, J.; Lee, H.; Hong, J.-H.; Lee, Y.M.; Kim, G.-H.; Kim, J.-J. Biotechnological Procedures to Select White Rot Fungi for the Degradation of PAHs. J. Microbiol. Methods 2014, 97, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Kalntremtziou, M.; Papaioannou, I.A.; Vangalis, V.; Polemis, E.; Pappas, K.M.; Zervakis, G.I.; Typas, M.A. Evaluation of the Lignocellulose Degradation Potential of Mediterranean Forests Soil Microbial Communities through Diversity and Targeted Functional Metagenomics. Front. Microbiol. 2023, 14, 1121993. [Google Scholar] [CrossRef]
- Lončar, N.; Colpa, D.I.; Fraaije, M.W. Exploring the Biocatalytic Potential of a DyP-Type Peroxidase by Profiling the Substrate Acceptance of Thermobifida Fusca DyP Peroxidase. Tetrahedron 2016, 72, 7276–7281. [Google Scholar] [CrossRef]
- Pazarlıoǧlu, N.K.; Sariişik, M.; Telefoncu, A. Laccase: Production by Trametes Versicolor and Application to Denim Washing. Process Biochem. 2005, 40, 1673–1678. [Google Scholar] [CrossRef]
- Eichlerová, I.; Šnajdr, J.; Baldrian, P. Laccase Activity in Soils: Considerations for the Measurement of Enzyme Activity. Chemosphere 2012, 88, 1154–1160. [Google Scholar] [CrossRef]
- Casieri, L.; Anastasi, A.; Prigione, V.; Varese, G.C. Survey of Ectomycorrhizal, Litter-Degrading, and Wood-Degrading Basidiomycetes for Dye Decolorization and Ligninolytic Enzyme Activity. Antonie Van. Leeuwenhoek 2010, 98, 483–504. [Google Scholar] [CrossRef]
- Moldes, D.; Lorenzo, M.; Sanromán, M.A. Different Proportions of Laccase Isoenzymes Produced by Submerged Cultures of Trametes Versicolor Grown on Lignocellulosic Wastes. Biotechnol. Lett. 2004, 26, 327–330. [Google Scholar] [CrossRef]
- Al-Hawash, A.B.; Zhang, X.; Ma, F. Removal and Biodegradation of Different Petroleum Hydrocarbons Using the Filamentous Fungus Aspergillus Sp. RFC-1. Microbiologyopen 2019, 8, e00619. [Google Scholar] [CrossRef]
- Daccò, C.; Girometta, C.; Asemoloye, M.D.; Carpani, G.; Picco, A.M.; Tosi, S. Key Fungal Degradation Patterns, Enzymes and Their Applications for the Removal of Aliphatic Hydrocarbons in Polluted Soils: A Review. Int. Biodeterior. Biodegrad. 2020, 147, 104866. [Google Scholar] [CrossRef]
- Karlapudi, A.P.; Venkateswarulu, T.C.; Tammineedi, J.; Kanumuri, L.; Ravuru, B.K.; Dirisala, V.R.; Kodali, V.P. Role of Biosurfactants in Bioremediation of Oil Pollution-a Review. Petroleum 2018, 4, 241–249. [Google Scholar] [CrossRef]
- Behrendorff, J.B.Y.H. Reductive Cytochrome P450 Reactions and Their Potential Role in Bioremediation. Front. Microbiol. 2021, 12, 649273. [Google Scholar] [CrossRef]
- Wojtowicz, K.; Steliga, T.; Skalski, T.; Kapusta, P. Influence of Biosurfactants on the Efficiency of Petroleum Hydrocarbons Biodegradation in Soil. Sustainability 2025, 17, 6520. [Google Scholar] [CrossRef]
- Sarkar, D.; Ferguson, M.; Datta, R.; Birnbaum, S. Bioremediation of Petroleum Hydrocarbons in Contaminated Soils: Comparison of Biosolids Addition, Carbon Supplementation, and Monitored Natural Attenuation. Environ. Pollut. 2005, 136, 187–195. [Google Scholar] [CrossRef]
- Hatakka, A. Lignin-Modifying Enzymes from Selected White-Rot Fungi: Production and Role from in Lignin Degradation. FEMS Microbiol. Rev. 1994, 13, 125–135. [Google Scholar] [CrossRef]
- Pointing, S. Feasibility of Bioremediation by White-Rot Fungi. Appl. Microbiol. Biotechnol. 2001, 57, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Fukasawa, Y.; Matsukura, K. Decay Stages of Wood and Associated Fungal Communities Characterise Diversity–Decomposition Relationships. Sci. Rep. 2021, 11, 8972. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Kuzyakov, Y. Mechanisms and Implications of Bacterial–Fungal Competition for Soil Resources. ISME J. 2024, 18, wrae073. [Google Scholar] [CrossRef]
- Zheng, W.; Lehmann, A.; Ryo, M.; Vályi, K.K.; Rillig, M.C. Growth Rate Trades off with Enzymatic Investment in Soil Filamentous Fungi. Sci. Rep. 2020, 10, 11013. [Google Scholar] [CrossRef] [PubMed]
- Sasek, V.; Eggen, T. Use of Edible and Medicinal Oyster Mushroom [Pleurotus ostreatus (Jacq.: Fr.) Kumm.] Spent Compost in Remediation of Chemically Polluted Soils. Int. J. Med. Mushrooms 2002, 4, 7. [Google Scholar] [CrossRef]
- Adeleke, R.; Nwangburuka, C.; Oboirien, B. Origins, Roles and Fate of Organic Acids in Soils: A Review. S. Afr. J. Bot. 2017, 108, 393–406. [Google Scholar] [CrossRef]
- Drever, J.I.; Vance, G.F. Role of Soil Organic Acids in Mineral Weathering Processes. In Organic Acids in Geological Processes; Pittman, E.D., Lewan, M.D., Eds.; Springer: Berlin/Heidelberg, Germany, 1994; ISBN 978-3-642-78527-9. [Google Scholar]
- Wu, H.; Cui, H.; Fu, C.; Li, R.; Qi, F.; Liu, Z.; Yang, G.; Xiao, K.; Qiao, M. Unveiling the Crucial Role of Soil Microorganisms in Carbon Cycling: A Review. Sci. Total Environ. 2024, 909, 168627. [Google Scholar] [CrossRef]
Fungal PUCE Code | Genbank | Fungal Species | Phylum | RBBR Test | Lac and Per Guaiacol Test | Phenol Oxidases Test | Growth Inhibition by 0.1% Diesel (%MGI) |
---|---|---|---|---|---|---|---|
QCAM7778 MUCL11665 | PQ660253 | Trametes veriscolor (reference strain) | Basidiomycota | + | + | B | 18 |
QCAM7779 | PQ660252 | Ganoderma ecuadorense | Basidiomycota | + | − | Y | 22 |
QCAM7780 | PQ328986 | Ganoderma ecuadorense | Basidiomycota | + | + | YB | 51 |
QCAM7781 | PQ328985 | Ganoderma cf. multiplicatum | Basidiomycota | + | − | Y | 0 |
QCAM7782 | PQ328987 | Porogramme epimiltina | Basidiomycota | + | + | YB | 0 |
QCAM7783 | PQ328988 | Trametes menziesii | Basidiomycota | + | + | Y | 0 |
QCAM7784 | PQ328989 | Bjerkandera sp. | Basidiomycota | + | − | B | 0 |
QCAM7785 | PQ328990 | Trametes meyenii | Basidiomycota | + | + | YB | 36 |
QCAM7787 | PQ328984 | Phlebiopsis sp. | Basidiomycota | + | + | B | 0 |
QCAM7788 | PQ328983 | Trametes menziesii | Basidiomycota | + | + | Y | 0 |
QCAM7790 | PQ328982 | Trametes menziesii | Basidiomycota | + | + | YB | 27 |
QCAM7791 | PQ328981 | Ganoderma cf. parvulum | Basidiomycota | + | + | - | 0 |
QCAM7792 | PQ328980 | Hornodermoporus martius | Basidiomycota | − | + | B | 20 |
QCAM7793 | PQ328979 | Trametes villosa | Basidiomycota | + | − | YB | 29 |
QCAM7795 | PQ328978 | Ascomycota sp. | Ascomycota | − | − | YB | 54 |
QCAM7796 | PQ328977 | Lentinus crinitus | Basidiomycota | + | − | YB | 0 |
QCAM7797 | PQ328976 | Annulohypoxylon stygium | Ascomycota | − | + | Y | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cipriani-Avila, I.; Decock, C.; Zambrano-Romero, A.; Zaldumbide, K.; Garcés-Ruiz, M.; Caiza-Olmedo, J.; Gordillo, A.; Luna, V.; Gerin, P.A. Mycoremediation of Petroleum-Contaminated Soil Using Native Ganoderma and Trametes Strains from the Ecuadorian Amazon. J. Fungi 2025, 11, 651. https://doi.org/10.3390/jof11090651
Cipriani-Avila I, Decock C, Zambrano-Romero A, Zaldumbide K, Garcés-Ruiz M, Caiza-Olmedo J, Gordillo A, Luna V, Gerin PA. Mycoremediation of Petroleum-Contaminated Soil Using Native Ganoderma and Trametes Strains from the Ecuadorian Amazon. Journal of Fungi. 2025; 11(9):651. https://doi.org/10.3390/jof11090651
Chicago/Turabian StyleCipriani-Avila, Isabel, Cony Decock, Aracely Zambrano-Romero, Katherine Zaldumbide, Mónica Garcés-Ruiz, Jazel Caiza-Olmedo, Ana Gordillo, Verónica Luna, and Patrick A. Gerin. 2025. "Mycoremediation of Petroleum-Contaminated Soil Using Native Ganoderma and Trametes Strains from the Ecuadorian Amazon" Journal of Fungi 11, no. 9: 651. https://doi.org/10.3390/jof11090651
APA StyleCipriani-Avila, I., Decock, C., Zambrano-Romero, A., Zaldumbide, K., Garcés-Ruiz, M., Caiza-Olmedo, J., Gordillo, A., Luna, V., & Gerin, P. A. (2025). Mycoremediation of Petroleum-Contaminated Soil Using Native Ganoderma and Trametes Strains from the Ecuadorian Amazon. Journal of Fungi, 11(9), 651. https://doi.org/10.3390/jof11090651