The Structural and Functional Diversities of Bacteria Inhabiting Plant Woody Tissues and Their Interactions with Fungi
Abstract
1. Introduction
2. Bacteria’s Degradation of Wood Components
3. Bacterial Diversity in Woody Plant Bark
4. Bacterial Diversity in Wood
4.1. Bacterial Diversity in Woody Grapevine Tissue
4.2. Bacterial Diversity in Woody Tree Tissues
5. Bacteria in Decaying Wood
5.1. Bacteria Vary During Wood Decay Phases
5.2. Influence of Wood Decay on Soil
6. Bacterial–Fungal Associations in Wood
6.1. Bacterial Synergistic Activity in Woody Plants
6.2. Antagonistic Bacteria of Fungal Pathogens in the Woody Plant Tissues
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Compant, S.; Cassan, F.; Kostić, T.; Johnson, L.; Brader, G.; Trognitz, F.; Sessitsch, A. Harnessing the Plant Microbiome for Sustainable Crop Production. Nat. Rev. Microbiol. 2024, 23, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Santoyo, G. How Plants Recruit Their Microbiome? New Insights into Beneficial Interactions. J. Adv. Res. 2021, 40, 45–58. [Google Scholar] [CrossRef]
- Fitzpatrick, C.R.; Salas-González, I.; Conway, J.M.; Finkel, O.M.; Gilbert, S.; Russ, D.; Teixeira, P.J.P.L.; Dangl, J.L. The Plant Microbiome: From Ecology to Reductionism and Beyond. Annu. Rev. Microbiol. 2020, 74, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Bonfante, P.; Anca, I.-A. Plants, Mycorrhizal Fungi, and Bacteria: A Network of Interactions. Annu. Rev. Microbiol. 2009, 63, 363–383. [Google Scholar] [CrossRef]
- Bettenfeld, P.; Fontaine, F.; Trouvelot, S.; Fernandez, O.; Courty, P.-E. Woody Plant Declines. What’s Wrong with the Microbiome? Trends Plant Sci. 2020, 25, 381–394. [Google Scholar] [CrossRef]
- Pinho, D.; Barroso, C.; Froufe, H.; Brown, N.; Vanguelova, E.; Egas, C.; Denman, S. Linking Tree Health, Rhizosphere Physicochemical Properties, and Microbiome in Acute Oak Decline. Forests 2020, 11, 1153. [Google Scholar] [CrossRef]
- Dashtban, M.; Schraft, H.; Syed, T.A.; Qin, W. Fungal Biodegradation and Enzymatic Modification of Lignin. Int. J. Biochem. Mol. Biol. 2010, 1, 36–50. [Google Scholar]
- Hoppe, B.; Purahong, W.; Wubet, T.; Kahl, T.; Bauhus, J.; Arnstadt, T.; Hofrichter, M.; Buscot, F.; Krüger, D. Linking Molecular Deadwood-Inhabiting Fungal Diversity and Community Dynamics to Ecosystem Functions and Processes in Central European Forests. Fungal Divers. 2016, 77, 367–379. [Google Scholar] [CrossRef]
- Baldrian, P.; Zrůstová, P.; Tláskal, V.; Davidová, A.; Merhautová, V.; Vrška, T. Fungi Associated with Decomposing Deadwood in a Natural Beech-Dominated Forest. Fungal Ecol. 2016, 23, 109–122. [Google Scholar] [CrossRef]
- Mali, T.; Mäki, M.; Hellén, H.; Heinonsalo, J.; Bäck, J.; Lundell, T. Decomposition of Spruce Wood and Release of Volatile Organic Compounds Depend on Decay Type, Fungal Interactions and Enzyme Production Patterns. FEMS Microbiol. Ecol. 2019, 95, fiz135. [Google Scholar] [CrossRef] [PubMed]
- Tien, M.; Kirk, T.K. Lignin-Degrading Enzyme from the Hymenomycete Phanerochaete chrysosporium Burds. Science 1983, 221, 661–663. [Google Scholar] [CrossRef]
- Bani, A.; Pioli, S.; Ventura, M.; Panzacchi, P.; Borruso, L.; Tognetti, R.; Tonon, G.; Brusetti, L. The Role of Microbial Community in the Decomposition of Leaf Litter and Deadwood. Appl. Soil. Ecol. 2018, 126, 75–84. [Google Scholar] [CrossRef]
- Purahong, W.; Wubet, T.; Lentendu, G.; Hoppe, B.; Jariyavidyanont, K.; Arnstadt, T.; Baber, K.; Otto, P.; Kellner, H.; Hofrichter, M.; et al. Determinants of Deadwood-Inhabiting Fungal Communities in Temperate Forests: Molecular Evidence From a Large Scale Deadwood Decomposition Experiment. Front. Microbiol. 2018, 9, 2120. [Google Scholar] [CrossRef]
- Frey-Klett, P.; Burlinson, P.; Deveau, A.; Barret, M.; Tarkka, M.; Sarniguet, A. Bacterial-Fungal Interactions: Hyphens between Agricultural, Clinical, Environmental, and Food Microbiologists. Microbiol. Mol. Biol. Rev. 2011, 75, 583–609. [Google Scholar] [CrossRef]
- Adejoro, D.O.; Jones, E.E.; Ridgway, H.J.; Mundy, D.C.; Vanga, B.R.; Bulman, S.R. Grapevines Escaping Trunk Diseases in New Zealand Vineyards Have a Distinct Microbiome Structure. Front. Microbiol. 2023, 14, 1231832. [Google Scholar] [CrossRef]
- Qu, Z.; Li, X.; Ge, Y.; Palviainen, M.; Zhou, X.; Heinonsalo, J.; Berninger, F.; Pumpanen, J.; Köster, K.; Sun, H. The Impact of Biochar on Wood-Inhabiting Bacterial Community and Its Function in a Boreal Pine Forest. Env. Microbiome 2022, 17, 45. [Google Scholar] [CrossRef] [PubMed]
- Bertazzoli, G.; Nerva, L.; Chitarra, W.; Fracchetti, F.; Campedelli, I.; Moffa, L.; Sandrini, M.; Nardi, T. A Polyphasic Molecular Approach to Characterize a Collection of Grapevine Endophytic Bacteria with Bioprotective Potential. J. Appl. Microbiol. 2024, 135, lxae050. [Google Scholar] [CrossRef] [PubMed]
- Mieszkin, S.; Richet, P.; Bach, C.; Lambrot, C.; Augusto, L.; Buée, M.; Uroz, S. Oak Decaying Wood Harbors Taxonomically and Functionally Different Bacterial Communities in Sapwood and Heartwood. Soil. Biol. Biochem. 2021, 155, 108160. [Google Scholar] [CrossRef]
- Hudson, J.E.; Levia, D.F.; Yoshimura, K.M.; Gottel, N.R.; Hudson, S.A.; Biddle, J.F. Mapping Bark Bacteria: Initial Insights of Stemflow-Induced Changes in Bark Surface Phyla. Microbiol. Spectr. 2023, 11, e03562-23. [Google Scholar] [CrossRef]
- Pioli, S.; Clagnan, E.; Chowdhury, A.A.; Bani, A.; Borruso, L.; Ventura, M.; Tonon, G.; Brusetti, L. Structural and Functional Microbial Diversity in Deadwood Respond to Decomposition Dynamics. Env. Microbiol. 2023, 25, 2351–2367. [Google Scholar] [CrossRef]
- Kielak, A.M.; Scheublin, T.R.; Mendes, L.W.; van Veen, J.A.; Kuramae, E.E. Bacterial Community Succession in Pine-Wood Decomposition. Front. Microbiol. 2016, 7, 231. [Google Scholar] [CrossRef]
- Rinta-Kanto, J.M.; Sinkko, H.; Rajala, T.; Al-Soud, W.A.; Sørensen, S.J.; Tamminen, M.V.; Timonen, S. Natural Decay Process Affects the Abundance and Community Structure of Bacteria and Archaea in Picea abies Logs. FEMS Microbiol. Ecol. 2016, 92, fiw087. [Google Scholar] [CrossRef]
- Tláskal, V.; Zrůstová, P.; Vrška, T.; Baldrian, P. Bacteria Associated with Decomposing Dead Wood in a Natural Temperate Forest. FEMS Microbiol. Ecol. 2017, 93, fix157. [Google Scholar] [CrossRef] [PubMed]
- Bruez, E.; Haidar, R.; Alou, M.T.; Vallance, J.; Bertsch, C.; Mazet, F.; Fermaud, M.; Deschamps, A.; Guerin-Dubrana, L.; Compant, S.; et al. Bacteria in a Wood Fungal Disease: Characterization of Bacterial Communities in Wood Tissues of Esca-Foliar Symptomatic and Asymptomatic Grapevines. Front. Microbiol. 2015, 6, 1137. [Google Scholar] [CrossRef]
- Bruez, E.; Vallance, J.; Gautier, A.; Laval, V.; Compant, S.; Maurer, W.; Sessitsch, A.; Lebrun, M.H.; Rey, P. Major Changes in Grapevine Wood Microbiota Are Associated with the Onset of Esca, a Devastating Trunk Disease. Env. Microbiol. 2020, 22, 5189–5206. [Google Scholar] [CrossRef] [PubMed]
- Schacht, H. Uber die veranderungen durch pilze in abgestorbenen pflanzenzellen. Jahrbücher Wiss. Bot. 1863, 3, 442–483. [Google Scholar]
- Willkomm, M. Zur Kenntnis der Rot-und Weiszfaulenin: «Die Mikroskopischen Feinde des Waldes. Naturwissenschaftliche Beiträge zur Kenntnis der Baum-und Holzkrankheiten»; Schönfeld’s Buchhandlung: Dresden, Germany, 1866–1867; 228p. [Google Scholar]
- Hartig, R. Wichtige Krankheiten der Waldbäume; Springer: Berlin/Heidelberg, Germany, 1874; 127p. [Google Scholar]
- Balows, A.; Jennison, M.W. Thermophilic, Cellulose-Decomposing Bacteria From The Porcupine. J. Bacteriol. 1949, 57, 135. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hulcher, F.H. Metabolicbasis for The Peferential Utilization of Disaccharideby the Cellulose-Decomposing Bacterium, Cellvibrio gilvus (Nov. sp.). Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 1957. [Google Scholar]
- Toms, H.A. The Bacterial Degradation of Lignin Model Compounds. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 1970. [Google Scholar]
- Deschamps, A.M.; Mahoudeau, G.; Lebeault, J.M. Fast degradation of kraft lignin by bacteria. Eur. J. Appl. Microbiol. Biotechnol. 1980, 9, 45–51. [Google Scholar] [CrossRef]
- Crawford, D.L.; Crawford, R.L. Microbial degradation of lignin. Enzym. Microb. Technol. 1980, 2, 11–22. [Google Scholar] [CrossRef]
- Odier, E.; Janin, G.; Monties, B. Poplar Lignin Decomposition by Gram-Negative Aerobic Bacteria. Appl. Env. Microbiol. 1981, 41, 337–341. [Google Scholar] [CrossRef]
- Gelbrich, J.; Mai, C.; Militz, H. Chemical changes in wood degraded by bacteria. Int. Biodeterior. Biodegrad. 2008, 61, 24–32. [Google Scholar] [CrossRef]
- Raj, A.; Reddy, M.M.K.; Chandra, R.; Purohit, H.J.; Kapley, A. Biodegradation of kraft-lignin by Bacillus sp. isolated from sludge of pulp and paper mill. Biodegradation 2007, 18, 783–792. [Google Scholar] [CrossRef]
- Lee, S.; Kang, M.; Bae, J.H.; Sohn, J.H.; Sung, B.H. Bacterial Valorization of Lignin: Strains, Enzymes, Conversion Pathways, Biosensors, and Perspectives. Front. Bioeng. Biotechnol. 2019, 3, 209. [Google Scholar] [CrossRef]
- Nargotra, P.; Sharma, V.; Lee, Y.C.; Tsai, Y.-H.; Liu, Y.C.; Shieh, C.-J.; Tsai, M.L.; Dong, C.D.; Kuo, C.H. Microbial Lignocellulolytic Enzymes for the Effective Valorization of Lignocellulosic Biomass: A Review. Catalysts 2023, 13, 83. [Google Scholar] [CrossRef]
- de Gonzalo, G.; Colpa, D.I.; Habib, M.H.; Fraaije, M.W. Bacterial enzymes involved in lignin degradation. J. Biotechnol. 2016, 20, 110–119. [Google Scholar] [CrossRef]
- Limaye, L.; Patil, R.; Ranadive, P.; Kamath, G. Application of Potent Actinomycete Strains for Bio-Degradation of Domestic Agro-Waste by Composting and Treatment of Pulp-Paper Mill Effluent. Adv. Microbiol. 2017, 7, 94–108. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, K.; Liu, P.; Han, H.; Zhao, S.; Kakade, A.; Khan, A.; Du, D.; Li, X. Lignin Depolymerization and Utilization by Bacteria. Bioresour. Technol. 2018, 269, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Weng, C.; Peng, X.; Han, Y. Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis. Biotechnol. Biofuels 2021, 14, 84. [Google Scholar] [CrossRef] [PubMed]
- Atiwesh, G.; Parrish, C.C.; Banoub, J.; Le, T.T. Lignin degradation by microorganisms: A review. Biotechnol. Prog. 2022, 38, e3226. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, J.; Zhao, D.; Jia, L.; Qin, B.; Cao, X.; Zang, L.; Lu, F.; Liu, F. Biological degradation of lignin: A critical review on progress and perspectives. Ind. Crops Prod. 2022, 188, 115715. [Google Scholar] [CrossRef]
- Prakram, S.C. Role of various bacterial enzymes in complete depolymerization of lignin: A review. Biocatal. Agric. Biotechnol. 2020, 23, 101498. [Google Scholar] [CrossRef]
- Granja-Travez, R.S.; Persinoti, G.F.; Squina, F.M.; Bugg, T. Functional genomic analysis of bacterial lignin degraders: Diversity in mechanisms of lignin oxidation and metabolism. Appl. Microbiol. Biotechnol. 2020, 104, 3305–3320. [Google Scholar] [CrossRef]
- Grgas, D.; Rukavina, M.; Bešlo, D.; Štefanac, T.; Crnek, V.; Šikić, T.; Habuda-Stanić, M.; Landeka Dragičević, T. The Bacterial Degradation of Lignin—A Review. Water 2023, 15, 1272. [Google Scholar] [CrossRef]
- Bautista-Cruz, A.; Aquino-Bolaños, T.; Hernández-Canseco, J.; Quiñones-Aguilar, E.E. Cellulolytic Aerobic Bacteria Isolated from Agricultural and Forest Soils: An Overview. Biology 2024, 13, 102. [Google Scholar] [CrossRef] [PubMed]
- Haidar, R.; Yacoub, A.; Vallance, J.; Compant, S.; Antonielli, L.; Saad, A.; Habenstein, B.; Kauffmann, B.; Grélard, A.; Loquet, A.; et al. Bacteria Associated with Wood Tissues of Esca-Diseased Grapevines: Functional Diversity and Synergy with Fomitiporia mediterranea to Degrade Wood Components. Env. Microbiol. 2021, 23, 6104–6121. [Google Scholar] [CrossRef]
- Chukwuma, O.B.; Rafatullah, M.; Tajarudin, H.A.; Ismail, N. A Review on Bacterial Contribution to Lignocellulose Breakdown into Useful Bio-Products. Int. J. Environ. Res. Public Health 2021, 18, 6001. [Google Scholar] [CrossRef]
- Dumova, V.A.; Kruglov, Y.V. A cellulose-decomposing bacterial association. Microbiology 2009, 78, 234–239. [Google Scholar] [CrossRef]
- Rosell, J.A. Bark in Woody Plants: Understanding the Diversity of a Multifunctional Structure. Integr. Comp. Biol. 2019, 59, 535–547. [Google Scholar] [CrossRef]
- Franceschi, V.R.; Krokene, P.; Christiansen, E.; Krekling, T. Anatomical and Chemical Defenses of Conifer Bark against Bark Beetles and Other Pests. New Phytol. 2005, 167, 353–376. [Google Scholar] [CrossRef]
- Dreyling, L.; Schmitt, I.; Dal Grande, F. Tree Size Drives Diversity and Community Structure of Microbial Communities on the Bark of Beech (Fagus sylvatica). Front. Glob. Change 2022, 5, 858382. [Google Scholar] [CrossRef]
- Vitulo, N.; Lemos, W.J.F.; Calgaro, M.; Confalone, M.; Felis, G.E.; Zapparoli, G.; Nardi, T. Bark and Grape Microbiome of V. vinifera: Influence of Geographic Patterns and Agronomic Management on Bacterial Diversity. Front. Microbiol. 2019, 9, 3203. [Google Scholar] [CrossRef]
- Arrigoni, E.; Antonielli, L.; Pindo, M.; Pertot, I.; Perazzolli, M. Tissue Age and Plant Genotype Affect the Microbiota of Apple and Pear Bark. Microbiol. Res. 2018, 211, 57–68. [Google Scholar] [CrossRef]
- Arrigoni, E.; Albanese, D.; Longa, C.M.O.; Angeli, D.; Donati, C.; Ioriatti, C.; Pertot, I.; Perazzolli, M. Tissue Age, Orchard Location and Disease Management Influence the Composition of Fungal and Bacterial Communities Present on the Bark of Apple Trees. Env. Microbiol. 2020, 22, 2080–2093. [Google Scholar] [CrossRef]
- Leff, J.W.; Del Tredici, P.; Friedman, W.E.; Fierer, N. Spatial Structuring of Bacterial Communities within Individual Ginkgo Biloba Trees. Env. Microbiol. 2015, 17, 2352–2361. [Google Scholar] [CrossRef]
- Aguirre-von-Wobeser, E.; Alonso-Sánchez, A.; Méndez-Bravo, A.; Villanueva Espino, L.A.; Reverchon, F. Barks from Avocado Trees of Different Geographic Locations Have Consistent Microbial Communities. Arch. Microbiol. 2021, 203, 4593–4607. [Google Scholar] [CrossRef]
- Jones, J.M.; Heath, K.D.; Ferrer, A.; Dalling, J.W. Habitat-Specific Effects of Bark on Wood Decomposition: Influences of Fragmentation, Nitrogen Concentration and Microbial Community Composition. Func. Ecol. 2020, 34, 1123–1133. [Google Scholar] [CrossRef]
- Zhang, H.B.; Yang, M.-X.; Tu, R. Unexpectedly High Bacterial Diversity in Decaying Wood of a Conifer as Revealed by a Molecular Method. Int. Biodeterior. Biodegrad. 2008, 62, 471–474. [Google Scholar] [CrossRef]
- Johnston, S.R.; Boddy, L.; Weightman, A.J. Bacteria in Decomposing Wood and Their Interactions with Wood-Decay Fungi. FEMS Microbiol. Ecol. 2016, 92, fiw179. [Google Scholar] [CrossRef] [PubMed]
- Hagge, J.; Bässler, C.; Gruppe, A.; Hoppe, B.; Kellner, H.; Krah, F.-S.; Müller, J.; Seibold, S.; Stengel, E.; Thorn, S. Bark Coverage Shifts Assembly Processes of Microbial Decomposer Communities in Dead Wood. Proc. R. Soc. Biol. Sci. 2019, 286, 20191744. [Google Scholar] [CrossRef]
- Dreyling, L.; Penone, C.; Schenk, N.V.; Schmitt, I.; Dal Grande, F. Biotic Interactions Outweigh Abiotic Factors as Drivers of Bark Microbial Communities in Central European Forests. ISME Commun. 2024, 4, ycae012. [Google Scholar] [CrossRef]
- Aschenbrenner, I.A.; Cernava, T.; Erlacher, A.; Berg, G.; Grube, M. Differential Sharing and Distinct Co-Occurrence Networks among Spatially Close Bacterial Microbiota of Bark, Mosses and Lichens. Mol. Ecol. 2017, 26, 2826–2838. [Google Scholar] [CrossRef]
- Kobayashi, K.; Aoyagi, H. Microbial Community Structure Analysis in Acer palmatum Bark and Isolation of Novel Bacteria IAD-21 of the Candidate Division FBP. PeerJ 2019, 7, e7876. [Google Scholar] [CrossRef] [PubMed]
- Dunlap, C.A.; Lueschow, S.; Carrillo, D.; Rooney, A.P. Screening of Bacteria for Antagonistic Activity against Phytopathogens of Avocados. Plant Gene 2017, 11, 17–22. [Google Scholar] [CrossRef]
- Phuengjayaem, S.; Poothong, S.; Sitdhipol, J.; Chaiyawan, N.; Thitiprasert, S.; Thongchul, N.; Tanasupawat, S. Sporolactobacillus mangiferae sp. Nov., a Spore-Forming Lactic Acid Bacterium Isolated from Tree Bark in Thailand. Int. J. Syst. Evol. Microbiol. 2023, 73, 005993. [Google Scholar] [CrossRef]
- Jeffrey, L.C.; Maher, D.T.; Chiri, E.; Leung, P.M.; Nauer, P.A.; Arndt, S.K.; Tait, D.R.; Greening, C.; Johnston, S.G. Bark-Dwelling Methanotrophic Bacteria Decrease Methane Emissions from Trees. Nat. Commun. 2021, 12, 2127. [Google Scholar] [CrossRef] [PubMed]
- Ristinmaa, A.S.; Tafur Rangel, A.; Idström, A.; Valenzuela, S.; Kerkhoven, E.J.; Pope, P.B.; Hasani, M.; Larsbrink, J. Resin Acids Play Key Roles in Shaping Microbial Communities during Degradation of Spruce Bark. Nat. Commun. 2023, 14, 8171. [Google Scholar] [CrossRef]
- Embacher, J.; Zeilinger, S.; Neuhauser, S.; Kirchmair, M. Co-Culture Wood Block Decay Test with Bacteria and Wood Rotting Fungi to Analyse Synergism/Antagonism during Wood Degradation. Bio Protoc. 2023, 13, e4837. [Google Scholar] [CrossRef] [PubMed]
- Bosch, J.; Némethová, E.; Tláskal, V.; Brabcová, V.; Baldrian, P. Bacterial, but Not Fungal, Communities Show Spatial Heterogeneity in European Beech (Fagus sylvatica L.) Deadwood. FEMS Microbiol. Ecol. 2023, 99, fiad023. [Google Scholar] [CrossRef]
- Bettenfeld, P.; Cadena I Canals, J.; Jacquens, L.; Fernandez, O.; Fontaine, F.; van Schaik, E.; Courty, P.-E.; Trouvelot, S. The Microbiota of the Grapevine Holobiont: A Key Component of Plant Health. J. Adv. Res. 2022, 40, 1–15. [Google Scholar] [CrossRef]
- Qi, L.; Yuan, J.; Zhang, W.; Liu, H.; Li, Z.; Bol, R.; Zhang, S. Metagenomics Reveals the Underestimated Role of Bacteria in the Decomposition of Downed Logs in Forest Ecosystems. Soil. Biol. Biochem. 2023, 187, 109185. [Google Scholar] [CrossRef]
- Denman, S.; Plummer, S.; Kirk, S.; Peace, A.; McDonald, J.E. Isolation Studies Reveal a Shift in the Cultivable Microbiome of Oak Affected with Acute Oak Decline. Syst. Appl. Microbiol. 2016, 39, 484–490. [Google Scholar] [CrossRef]
- Brady, C.; Arnold, D.; McDonald, J.; Denman, S. Taxonomy and Identification of Bacteria Associated with Acute Oak Decline. World J. Microbiol. Biotechnol. 2017, 33, 143. [Google Scholar] [CrossRef]
- Greaves, H. The Bacterial Factor in Wood Decay. Wood Sci. Technol. 1971, 5, 6–16. [Google Scholar] [CrossRef]
- Clausen, C.A. Bacterial Associations with Decaying Wood: A Review. Int. Biodeterior. Biodegrad. 1996, 37, 101–107. [Google Scholar] [CrossRef]
- Singh, A.P.; Singh, S.; Bari, E. Bacterial Degradation of Wood by Tunnel Formation: Role of TEM in Understanding the Intricate Architecture of Tunnels and the Cell Wall Degradation Process. Microsc. Today 2022, 30, 24–30. [Google Scholar] [CrossRef]
- Singh, A.P.; Butcher, J.A. Bacterial Degradation of Wood Cell Walls: A Review of Degradation Patterns. J. Wood Sci. 1991, 12, 143–157. [Google Scholar]
- Björdal, C.G.; Dayton, P.K. First Evidence of Microbial Wood Degradation in the Coastal Waters of the Antarctic. Sci. Rep. 2020, 10, 12774. [Google Scholar] [CrossRef] [PubMed]
- Björdal, C.G. Evaluation of Microbial Degradation of Shipwrecks in the Baltic Sea. Int. Biodeterior. Biodegrad. 2012, 70, 126–140. [Google Scholar] [CrossRef]
- Muszynski, S.; Maurer, F.; Henjes, S.; Horn, M.A.; Noll, M. Fungal and Bacterial Diversity Patterns of Two Diversity Levels Retrieved From a Late Decaying Fagus sylvatica Under Two Temperature Regimes. Front. Microbiol. 2021, 11, 548793. [Google Scholar] [CrossRef]
- Moreno-Gámez, S. How Bacteria Navigate Varying Environments. Science 2022, 378, 845. [Google Scholar] [CrossRef]
- Tláskal, V.; Baldrian, P. Deadwood-Inhabiting Bacteria Show Adaptations to Changing Carbon and Nitrogen Availability During Decomposition. Front. Microbiol. 2021, 12, 685303. [Google Scholar] [CrossRef]
- Glassman, S.I.; Weihe, C.; Li, J.; Albright, M.B.N.; Looby, C.I.; Martiny, A.C.; Treseder, K.K.; Allison, S.D.; Martiny, J.B.H. Decomposition Responses to Climate Depend on Microbial Community Composition. Proc. Natl. Acad. Sci. USA 2018, 115, 11994–11999. [Google Scholar] [CrossRef] [PubMed]
- Andreolli, M.; Lampis, S.; Zapparoli, G.; Angelini, E.; Vallini, G. Diversity of Bacterial Endophytes in 3 and 15 Year-Old Grapevines of V. vinifera Cv. Corvina and Their Potential for Plant Growth Promotion and Phytopathogen Control. Microbiol. Res. 2016, 183, 42–52. [Google Scholar] [CrossRef]
- Aleynova, O.A.; Nityagovsky, N.N.; Dubrovina, A.S.; Kiselev, K.V. The Biodiversity of Grapevine Bacterial Endophytes of Vitis amurensis Rupr. Plants 2022, 11, 1128. [Google Scholar] [CrossRef] [PubMed]
- Hamaoka, K.; Aoki, Y.; Takahashi, S.; Enoki, S.; Yamamoto, K.; Tanaka, K.; Suzuki, S. Diversity of Endophytic Bacterial Microbiota in Grapevine Shoot Xylems Varies Depending on Wine Grape-Growing Region, Cultivar, and Shoot Growth Stage. Sci. Rep. 2022, 12, 15772. [Google Scholar] [CrossRef]
- Gramaje, D.; Úrbez-Torres, J.R.; Sosnowski, M.R. Managing Grapevine Trunk Diseases With Respect to Etiology and Epidemiology: Current Strategies and Future Prospects. Plant Dis. 2018, 102, 12–39. [Google Scholar] [CrossRef] [PubMed]
- Bertsch, C.; Ramírez-Suero, M.; Magnin-Robert, M.; Larignon, P.; Chong, J.; Abou-Mansour, E.; Spagnolo, A.; Clément, C.; Fontaine, F. Grapevine trunk diseases: Complex and still poorly understood. Plant Pathol. 2013, 62, 243–265. [Google Scholar] [CrossRef]
- Larignon, P.; Dubos, B. Fungi associated with Esca disease in grapevine. Eur. J. Plant Pathol. 1997, 103, 147–157. [Google Scholar] [CrossRef]
- Mugnai, L.; Graniti, A.; Surico, G. Esca (Black Measles) and brown wood-streaking: Two old and elusive diseases of grapevines. Plant Dis. 1999, 83, 404–418. [Google Scholar] [CrossRef]
- Maher, N.; Piot, J.; Bastien, S.; Vallance, J.; Rey, P.; Guérin-Dubrana, L. Wood necrosis in esca-affected vines: Types, relationships and possible links with foliar symptom expression. J. Int. Sci. Vigne Vin. 2012, 46, 15–27. [Google Scholar] [CrossRef]
- Moretti, S.; Pacetti, A.; Pierron, R.; Kassemeyer, H.H.; Fischer, M.; Péros, J.P.; Perez-Gonzalez, G.; Bieler, E.; Schilling, M.; DI Marco, S.; et al. Fomitiporia mediterranea M. Fisch., the historical Esca agent: A comprehensive review on the main grapevine wood rot agent in Europe. Phytopathol. Mediterr. 2021, 60, 351–379. [Google Scholar] [CrossRef]
- Paolinelli, M.; Escoriaza, G.; Cesari, C.; Garcia-Lampasona, S.; Hernandez-Martinez, R. Characterization of grapevine wood microbiome through a metatranscriptomic approach. Microb. Ecol. 2022, 83, 658–668. [Google Scholar] [CrossRef]
- Bekris, F.; Vasileiadis, S.; Papadopoulou, E.; Samaras, A.; Testempasis, S.; Gkizi, D.; Tavlaki, G.; Tzima, A.; Paplomatas, E.; Markakis, E.; et al. Grapevine Wood Microbiome Analysis Identifies Key Fungal Pathogens and Potential Interactions with the Bacterial Community Implicated in Grapevine Trunk Disease Appearance. Env. Microb. 2021, 16, 23. [Google Scholar] [CrossRef] [PubMed]
- Niem, J.M.; Billones-Baaijens, R.; Stodart, B.; Savocchia, S. Diversity Profiling of Grapevine Microbial Endosphere and Antagonistic Potential of Endophytic Pseudomonas Against Grapevine Trunk Diseases. Front. Microbiol. 2020, 11, 477. [Google Scholar] [CrossRef] [PubMed]
- Rezgui, A.; Ben Ghnaya-Chakroun, A.; Vallance, J.; Bruez, E.; Hajlaoui, M.R.; Sadfi-Zouaoui, N.; Rey, P. Endophytic Bacteria with Antagonistic Traits Inhabit the Wood Tissues of Grapevines from Tunisian Vineyards. Biol. Control 2016, 99, 28–37. [Google Scholar] [CrossRef]
- Haidar, R.; Antonielli, L.; Compant, S.; Sauer, U.; Pandin, C.; Gassie, C.; Yacoub, A.; Chrysovergi, M.; Attard, E.; Rey, P.; et al. Paenibacillus xylinteritus sp. Nov., a Novel Bacterial Species Isolated from Grapevine Wood. bioRxiv 2022. [Google Scholar] [CrossRef]
- Ren, F.; Kovalchuk, A.; Mukrimin, M.; Liu, M.; Zeng, Z.; Ghimire, R.P.; Kivimäenpää, M.; Holopainen, J.K.; Sun, H.; Asiegbu, F.O. Tissue Microbiome of Norway Spruce Affected by Heterobasidion-Induced Wood Decay. Microb. Ecol. 2019, 77, 640–650. [Google Scholar] [CrossRef]
- Asiegbu, F.O.; Adomas, A.; Stenlid, J. Conifer Root and Butt Rot Caused by Heterobasidion annosum (Fr.) Bref. s.l. Mol. Plant Pathol. 2005, 6, 395–409. [Google Scholar] [CrossRef]
- Garbelotto, M.; Gonthier, P. Biology, Epidemiology, and Control of Heterobasidion Species Worldwide. Annu. Rev. Phytopathol. 2013, 51, 39–59. [Google Scholar] [CrossRef]
- Singh, J.; Silva, K.J.P.; Fuchs, M.; Khan, A. Potential Role of Weather, Soil and Plant Microbial Communities in Rapid Decline of Apple Trees. PLoS ONE 2019, 14, e0213293. [Google Scholar] [CrossRef]
- Proença, D.N.; Grass, G.; Morais, P.V. Understanding Pine Wilt Disease: Roles of the Pine Endophytic Bacteria and of the Bacteria Carried by the Disease-Causing Pinewood Nematode. Microbiologyopen 2017, 6, e00415. [Google Scholar] [CrossRef]
- Ren, F.; Dong, W.; Shi, S.; Dou, G.; Yan, D.-H. Chinese Chestnut Yellow Crinkle Disease Influence Microbiota Composition of Chestnut Trees. Microb. Pathog. 2021, 152, 104606. [Google Scholar] [CrossRef]
- Liu, Y.; Ponpandian, L.N.; Kim, H.; Jeon, J.; Hwang, B.S.; Lee, S.K.; Park, S.-C.; Bae, H. Distribution and Diversity of Bacterial Endophytes from Four Pinus Species and Their Efficacy as Biocontrol Agents for Devastating Pine Wood Nematodes. Sci. Rep. 2019, 9, 12461. [Google Scholar] [CrossRef]
- Izumi, H.; Anderson, I.C.; Killham, K.; Moore, E.R.B. Diversity of Predominant Endophytic Bacteria in European Deciduous and Coniferous Trees. Can. J. Microbiol. 2008, 54, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Bahram, M.; Küngas, K.; Pent, M.; Polme, S.; Gohar, D.; Poldmaa, K. Vertical Stratification of Microbial Communities in Woody Plants. Phytobiomes J. 2022, 6, 161–168. [Google Scholar] [CrossRef]
- Freschet, G.T.; Weedon, J.T.; Aerts, R.; van Hal, J.R.; Cornelissen, J.H.C. Interspecific Differences in Wood Decay Rates: Insights from a New Short-Term Method to Study Long-Term Wood Decomposition. J. Ecol. 2012, 100, 161–170. [Google Scholar] [CrossRef]
- Stokland, J.N.; Siitonen, J.; Jonsson, B.G. Biodiversity in Dead Wood; Cambridge University Press: Cambridge, UK, 2012; ISBN 978-1-107-37756-1. [Google Scholar]
- Rock, J.; Badeck, F.-W.; Harmon, M.E. Estimating Decomposition Rate Constants for European Tree Species from Literature Sources. Eur. J. For. Res. 2008, 127, 301–313. [Google Scholar] [CrossRef]
- Moll, J.; Kellner, H.; Leonhardt, S.; Stengel, E.; Dahl, A.; Bässler, C.; Buscot, F.; Hofrichter, M.; Hoppe, B. Bacteria Inhabiting Deadwood of 13 Tree Species Are Heterogeneously Distributed between Sapwood and Heartwood. Env. Microbiol. 2018, 20, 3744–3756. [Google Scholar] [CrossRef]
- Shannon, V.L.; Vanguelova, E.I.; Morison, J.I.L.; Shaw, L.J.; Clark, J.M. The Contribution of Deadwood to Soil Carbon Dynamics in Contrasting Temperate Forest Ecosystems. Eur. J. For. Res. 2022, 141, 241–252. [Google Scholar] [CrossRef]
- Deng, X.; Cheng, F.; Li, M.; He, P.; Shen, L.; Liu, H. Effect of Different Decay Classes of Eucalyptus Stump Substrates on Microbial Resource Limitation and Carbon-Use Efficiency. Plant Soil. 2022, 478, 651–669. [Google Scholar] [CrossRef]
- Peng, M.; Jing, Y.; Wang, Q.; Yan, S. Different Decaying Wood Effects on Bacterial Diversity: Insights from Molecular Methods. Phyton 2020, 90, 207–222. [Google Scholar] [CrossRef]
- Pastorelli, R.; Paletto, A.; Agnelli, A.E.; Lagomarsino, A.; De Meo, I. Microbial Communities Associated with Decomposing Deadwood of Downy Birch in a Natural Forest in Khibiny Mountains (Kola Peninsula, Russian Federation). Ecol. Manag. 2020, 455, 117643. [Google Scholar] [CrossRef]
- Přívětivý, T.; Janík, D.; Unar, P.; Adam, D.; Král, K.; Vrška, T. How Do Environmental Conditions Affect the Deadwood Decomposition of European Beech (Fagus sylvatica L.)? Ecol. Manag. 2016, 381, 177–187. [Google Scholar] [CrossRef]
- Stutz, K.P.; Dann, D.; Wambsganss, J.; Scherer-Lorenzen, M.; Lang, F. Phenolic Matter from Deadwood Can Impact Forest Soil Properties. Geoderma 2017, 288, 204–212. [Google Scholar] [CrossRef]
- Mäkipää, R.; Rajala, T.; Schigel, D.; Rinne, K.T.; Pennanen, T.; Abrego, N.; Ovaskainen, O. Interactions between Soil- and Dead Wood-Inhabiting Fungal Communities during the Decay of Norway Spruce Logs. ISME J. 2017, 11, 1964–1974. [Google Scholar] [CrossRef]
- Błońska, E.; Ważny, R.; Górski, A.; Lasota, J. Decomposing Benefits: Examining the Impact of Beech Deadwood on Soil Properties and Microbial Diversity. Sci. Total Environt 2024, 930, 172774. [Google Scholar] [CrossRef]
- Sun, H.; Terhonen, E.; Kasanen, R.; Asiegbu, F.O. Diversity and Community Structure of Primary Wood-Inhabiting Bacteria in Boreal Forest. Geomicrobiol. J. 2014, 31, 315–324. [Google Scholar] [CrossRef]
- Haq, I.U.; Hillmann, B.; Moran, M.; Willard, S.; Knights, D.; Fixen, K.R.; Schilling, J.S. Bacterial Communities Associated with Wood Rot Fungi That Use Distinct Decomposition Mechanisms. ISME Commun. 2022, 2, 26. [Google Scholar] [CrossRef]
- Hervé, V.; Le Roux, X.; Uroz, S.; Gelhaye, E.; Frey-Klett, P. Diversity and Structure of Bacterial Communities Associated with Phanerochaete chrysosporium during Wood Decay. Env. Microbiol. 2014, 16, 2238–2252. [Google Scholar] [CrossRef]
- Hervé, V.; Ketter, E.; Pierrat, J.-C.; Gelhaye, E.; Frey-Klett, P. Impact of Phanerochaete chrysosporium on the Functional Diversity of Bacterial Communities Associated with Decaying Wood. PLoS ONE 2016, 11, e0147100. [Google Scholar] [CrossRef]
- Odriozola, I.; Abrego, N.; Tláskal, V.; Zrůstová, P.; Morais, D.; Větrovský, T.; Ovaskainen, O.; Baldrian, P. Fungal Communities Are Important Determinants of Bacterial Community Composition in Deadwood. mSystems 2021, 6, e01017-20. [Google Scholar] [CrossRef] [PubMed]
- Valášková, V.; de Boer, W.; Klein Gunnewiek, P.J.A.; Pospíšek, M.; Baldrian, P. Phylogenetic Composition and Properties of Bacteria Coexisting with the Fungus Hypholoma fasciculare in Decaying Wood. ISME J. 2009, 3, 1218–1221. [Google Scholar] [CrossRef] [PubMed]
- Rinne, K.T.; Rajala, T.; Peltoniemi, K.; Chen, J.; Smolander, A.; Mäkipää, R. Accumulation Rates and Sources of External Nitrogen in Decaying Wood in a Norway Spruce Dominated Forest. Funct. Ecol. 2017, 31, 530–541. [Google Scholar] [CrossRef]
- de Boer, W.; van der Wal, A. Chapter 8 Interactions between Saprotrophic Basidiomycetes and Bacteria. In British Mycological Society Symposia Series; Boddy, L., Frankland, J.C., van West, P., Eds.; Ecology of Saprotrophic Basidiomycetes; Academic Press: Cambridge, MA, USA, 2008; Volume 28, pp. 143–153. [Google Scholar]
- Hoppe, B.; Kahl, T.; Karasch, P.; Wubet, T.; Bauhus, J.; Buscot, F.; Krüger, D. Network Analysis Reveals Ecological Links between N-Fixing Bacteria and Wood-Decaying Fungi. PLoS ONE 2014, 9, e88141. [Google Scholar] [CrossRef]
- Starke, R.; Morais, D.; Větrovský, T.; López Mondéjar, R.; Baldrian, P.; Brabcová, V. Feeding on Fungi: Genomic and Proteomic Analysis of the Enzymatic Machinery of Bacteria Decomposing Fungal Biomass. Env. Microbiol. 2020, 22, 4604–4619. [Google Scholar] [CrossRef] [PubMed]
- Haidar, R.; Compant, S.; Robert, C.; Antonielli, L.; Yacoub, A.; Grélard, A.; Loquet, A.; Brader, G.; Guyoneaud, R.; Attard, E.; et al. Two Paenibacillus spp. Strains Promote Grapevine Wood Degradation by the Fungus Fomitiporia mediterranea: From Degradation Experiments to Genome Analyses. Sci. Rep. 2024, 14, 15779. [Google Scholar] [CrossRef]
- Haidar, R.; Yacoub, A.; Pinard, A.; Roudet, J.; Fermaud, M.; Rey, P. Synergistic effects of water deficit and wood-inhabiting bacteria on pathogenicity of the grapevine trunk pathogen Neofusicoccum parvum. Phytopathol. Mediterr. 2020, 59, 473–484. [Google Scholar] [CrossRef]
- Tláskal, V.; Brabcová, V.; Vetrovský, T.; Jomura, M.; López-Mondéjar, R.; Oliveira Monteiro, L.M.; Saraiva, J.P.; Human, Z.R.; Cajthaml, T.; Nunes da Rocha, U.; et al. Complementary roles of wood-inhabiting fungi and bacteria facilitate deadwood decomposition. mSystems 2021, 6, e01078-20. [Google Scholar] [CrossRef]
- Christofides, S.R.; Hiscox, J.; Savoury, M.; Boddy, L.; Weightman, A.J. Fungal Control of Early-Stage Bacterial Community Development in Decomposing Wood. Fungal Ecol. 2019, 42, 100868. [Google Scholar] [CrossRef]
- Cazorla, F.M.; Mercado-Blanco, J. Biological Control of Tree and Woody Plant Diseases: An Impossible Task? Biol. Control 2016, 61, 233–242. [Google Scholar] [CrossRef]
- Naik, S.; Palys, S.; Di Falco, M.; Tsang, A.; Périnet, P.; Ramanan, U.S.; Dayanandan, S. Isolation and Characterization of Bacillus Velezensis EB14, an Endophytic Bacterial Strain Antagonistic to Poplar Stem Canker Pathogen Sphaerulina musiva and Its Interactions with the Endophytic Fungal Microbiome in Poplar. PhytoFrontiers™ 2021, 1, 229–238. [Google Scholar] [CrossRef]
- Mesguida, O.; Haidar, R.; Yacoub, A.; Dreux-Zigha, A.; Berthon, J.Y.; Guyoneaud, R.; Attard, E.; Rey, P. Microbial Biological Control of Fungi Associated with Grapevine Trunk Diseases: A Review of Strain Diversity, Modes of Action, and Advantages and Limits of Current Strategies. J. Fungi 2023, 9, 638. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, X.Q.; Wang, Y.H.; Zhu, M.L. Biocontrol potential of Bacillus pumilus HR10 against Sphaeropsis shoot blight disease of pine. Biol. Control 2021, 152, 104458. [Google Scholar] [CrossRef]
- Jung, S.J.; Kim, N.K.; Lee, D.H.; Hong, S.I.; Lee, J.K. Screening and Evaluation of Streptomyces Species as a Potential Biocontrol Agent against a Wood Decay Fungus, Gloeophyllum trabeum. Mycobiology 2018, 46, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Soria, S.; Alonso, R.; Bettucci, L. Endophytic Bacteria from Pinus taeda L. as Biocontrol Agents of Fusarium circinatum Nirenberg & O’Donnell. Chilean J. Agric. Res. 2012, 72, 281–284. [Google Scholar] [CrossRef]
- Ren, H.; Li, H.; Wang, Y.F.; Ye, J.R.; Yan, A.Q.; Wu, X.Q. Biocontrol potential of an endophytic Bacillus pumilus JK-SX001 against poplar canker. Biol. Control 2013, 67, 421–430. [Google Scholar] [CrossRef]
- Li, L.; Zheng, T.; Chen, Y.; Sui, Y.; Ding, R.; Hou, L.; Zheng, F.; Zhu, C. The antagonistic mechanisms of Streptomyces sioyaensis on the growth and metabolism of poplar canker pathogen Valsa sordida. Biol. Control 2020, 151, 104392. [Google Scholar] [CrossRef]
- Zhang, J.; Gu, Y.; Chi, F.; Ji, Z.; Wu, J.; Dong, Q.; Zhou, Z. Bacillus amyloliquefaciens GB1 Can Effectively Control Apple Valsa Canker. Biol. Control 2015, 88, 1–7. [Google Scholar] [CrossRef]
- Li, Z.; Gao, X.; Kang, Z.; Huang, L.; Fan, D.; Yan, X.; Kang, Z. Saccharothrix yanglingensis Strain Hhs.015 Is a Promising Biocontrol Agent on Apple Valsa Canker. Plant Dis. 2016, 100, 510–514. [Google Scholar] [CrossRef]
- Liu, J. Identification of Members of the Apple Endomicrobiome with the Potential to Protect Against European Canker. Ph.D. Thesis, Lincoln University, Lincoln, NZ, USA, 2019. [Google Scholar]
- Melnick, R.L.; Suárez, C.; Bailey, B.A.; Backman, P.A. Isolation of Endophytic Endospore-Forming Bacteria from Theobroma cacao as Potential Biological Control Agents of Cacao Diseases. Biol. Control 2011, 57, 236–245. [Google Scholar] [CrossRef]
- Daungfu, O.; Youpensuk, S.; Lumyong, S. Endophytic Bacteria Isolated from Citrus Plants for Biological Control of Citrus Canker in Lime Plants. Trop. Life Sci. Res. 2019, 30, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-González, M.M.; Schilirò, E.; Prieto, P.; Mercado-Blanco, J. Endophytic Colonization and Biocontrol Performance of Pseudomonas fluorescens PICF7 in Olive (Olea europaea L.) Are Determined Neither by Pyoverdine Production nor Swimming Motility. Env. Microbiol. 2015, 17, 3139–3153. [Google Scholar] [CrossRef] [PubMed]
- Zicca, S.; De Bellis, P.; Masiello, M.; Saponari, M.; Saldarelli, P.; Boscia, D.; Sisto, A. Antagonistic activity of olive endophytic bacteria and of Bacillus spp. strains against Xylella fastidiosa. Microbiol. Res. 2020, 236, 126467. [Google Scholar] [CrossRef] [PubMed]
- Etminani, F.; Harighi, B. Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees. Plant Pathol. J. 2018, 34, 208–217. [Google Scholar] [CrossRef]
- Velasco-Rodríguez, Ó.; Fil, M.; Heggeset, T.M.B.; Degnes, K.F.; Becerro-Recio, D.; Kolsaková, K.; Haugen, T.; Jønsson, M.; Toral-Martínez, M.; García-Estrada, C.; et al. Characterization of Microbial Diversity in Decayed Wood from a Spanish Forest: An Environmental Source of Industrially Relevant Microorganisms. Microorganisms 2022, 10, 1249. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haidar, R.; Yacoub, A.; Mesguida, O.; Guyoneaud, R.; Attard, E.; Rey, P. The Structural and Functional Diversities of Bacteria Inhabiting Plant Woody Tissues and Their Interactions with Fungi. J. Fungi 2025, 11, 652. https://doi.org/10.3390/jof11090652
Haidar R, Yacoub A, Mesguida O, Guyoneaud R, Attard E, Rey P. The Structural and Functional Diversities of Bacteria Inhabiting Plant Woody Tissues and Their Interactions with Fungi. Journal of Fungi. 2025; 11(9):652. https://doi.org/10.3390/jof11090652
Chicago/Turabian StyleHaidar, Rana, Amira Yacoub, Ouiza Mesguida, Rémy Guyoneaud, Eléonore Attard, and Patrice Rey. 2025. "The Structural and Functional Diversities of Bacteria Inhabiting Plant Woody Tissues and Their Interactions with Fungi" Journal of Fungi 11, no. 9: 652. https://doi.org/10.3390/jof11090652
APA StyleHaidar, R., Yacoub, A., Mesguida, O., Guyoneaud, R., Attard, E., & Rey, P. (2025). The Structural and Functional Diversities of Bacteria Inhabiting Plant Woody Tissues and Their Interactions with Fungi. Journal of Fungi, 11(9), 652. https://doi.org/10.3390/jof11090652