Exploration of Mangrove Endophytes as Novel Sources of Tannase Producing Fungi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sample Collection
2.3. Isolation of Endophytic Fungi
2.4. Morphological Characterization and Identification of Isolates
2.5. Screening of the Isolates for Tannase Production
2.5.1. Qualitative Screening (Plate Method)
2.5.2. Quantitative Screening (Liquid Broth)
2.6. Enzyme Tannase Assay
2.7. Protein Assay
2.8. Optimization of the Production of Extracellular Tannase Under SmF
2.8.1. Incubation Period
2.8.2. Temperature
2.8.3. pH
2.9. Determination of Fungal Biomass
2.10. Molecular Identification of LV_074 and LV_084
2.11. Sequence Alignment and Phylogenetic Analysis
2.12. Statistical Analysis
3. Results
3.1. Isolation of Tannase-Producing Fungi
3.2. Primary Screening of Tannase-Producing Fungi
3.3. Quantitative Estimation of Tannase Under SmF
3.4. Optimization of Conditions for Tannase Activity of LV_074 and LV_084
3.4.1. Optimization of the Incubation Period
3.4.2. Optimization of the Incubation Temperature
3.4.3. Optimization of the pH Level
3.5. Biomass Production
3.6. Molecular Identification of the Maximum Tannase Producer: LV_074 and LV_084
- LV_074. Aspergillus chevalieri var. chevalieri (L. Mangin) Thom & Church
- LV_084. Phyllosticta capitalensis Henn.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TAA | Tannic acid agar |
SmF | Submerged fermentation |
ITS | Internal transcribed spacer |
BLAST | Basic local alignment search tool |
CTAB | Cetrimonium bromide |
References
- Hawar, S.N. Extracellular enzyme of endophytic fungi isolated from Ziziphus spina leaves as medicinal plant. Int. J. Biomater. 2022, 2022, 2135927. [Google Scholar] [CrossRef] [PubMed]
- Shankar Naik, B. Functional roles of fungal endophytes in host fitness during stress conditions. Symbiosis 2019, 79, 99–115. [Google Scholar] [CrossRef]
- Sonawane, H.; Borde, M.; Nikalje, G.; Terkar, A.; Math, S. HR-LC-MS based metabolic profiling of Fusarium solani a fungal endophyte associated with Avicennia officinalis. Curr. Res. Environ. Appl. Mycol. 2020, 10, 262–273. [Google Scholar] [CrossRef]
- Kushwaha, V.; Yadav, L.S. Endophytic fungi from mangrove plant Avicennia marina and their enzyme cellulase activity. Int. J. Sci. Math. Technol. Learn. 2023, 30, 117–130. [Google Scholar]
- Paliga, L.R.; Bonatto, C.; Camargo, A.F.; Cadamuro, R.D.; da Silveira Bastos, I.M.A.; de Freitas, A.C.O.; da Silva Rosa, M.; Silva, I.T.; Robl, D.; Stoco, P.H.; et al. Extraction of enzymes produced by endophytic fungi isolated from mangroves. J. Chem. Technol. Biotechnol. 2024, 99, 695–703. [Google Scholar] [CrossRef]
- Sopalun, K.; Iamtham, S. Isolation and screening of extracellular enzymatic activity of endophytic fungi isolated from Thai orchids. S. Afr. J. Bot. 2020, 134, 273–279. [Google Scholar] [CrossRef]
- De Paula, N.M.; da Silva, K.; Brugnari, T.; Haminiuk, C.W.I.; Maciel, G.M. Biotechnological potential of fungi from a mangrove ecosystem: Enzymes, salt tolerance and decolorization of a real textile effluent. Microbiol. Res. 2022, 254, 126899. [Google Scholar] [CrossRef]
- Bhat, T.K.; Singh, B.; Sharma, O.P. Microbial degradation of tannins—A current perspective. Biodegradation 1998, 9, 343–357. [Google Scholar] [CrossRef]
- Putra, I.P.Y.A.; Utami, K.S.; Hardini, J.; Wirasuta, I.M.A.G.; Ujam, N.T.; Ariantari, N.P. Fermentation, bioactivity and molecular identification of endophytic fungi isolated from mangrove Ceriops tagal. Biodiversitas 2023, 24, 3091–3098. [Google Scholar] [CrossRef]
- Prigione, V.; Trocini, B.; Spina, F.; Poli, A.; Romanisio, D.; Giovando, S.; Varese, G.C. Fungi from industrial tannins: Potential application in biotransformation and bioremediation of tannery wastewaters. Appl. Microbiol. Biotechnol. 2018, 102, 4203–4216. [Google Scholar] [CrossRef]
- Ahmed, A.I.; Abou-Taleb, K. Implementation of different fermentation techniques for induction of tannase and gallic acid using agro-residues substrates. Egypt. J. Microbiol. 2019, 54, 39–54. [Google Scholar] [CrossRef]
- Batra, A.; Saxena, R.K. Potential tannase producers from the genera Aspergillus and Penicillium. Process Biochem. 2005, 40, 1553–1557. [Google Scholar] [CrossRef]
- Farag, A.M.; Hassan, S.W.; El-Says, A.M.; Ghanem, K.M. Purification, Characterization and Application of Tannase Enzyme Isolated from Marine Aspergillus nomius GWA5. J. Pure Appl. Microbiol. 2018, 12, 1939–1949. [Google Scholar] [CrossRef]
- Saad, M.M.; Saad, A.M.; Hassan, H.M.; Ibrahim, E.I.; Abdelraof, M.; Ali, B.A. Optimization of tannase production by Aspergillus glaucus in solid-state fermentation of black tea waste. Bioresour. Bioprocess. 2023, 10, 73. [Google Scholar] [CrossRef]
- Guo, L.D.; Hyde, K.D.; Liew, E.C.Y. Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytol. 2000, 147, 617–630. [Google Scholar] [CrossRef]
- Raper, K.B.; Fennell, D.I. The Genus Aspergillus; The Williams and Wilkins Company: Baltimore, MD, USA, 1965; p. 612. [Google Scholar]
- Ellis, M.B. Dematiaceous Hyphomycetes; Commonwealth Mycological Institute: Kew, UK, 1971. [Google Scholar]
- Barnett, H.L.; Hunter, B.B. Illustrated Genera of Imperfect Fungi; Minneapolis, Burgess Publishing Company: Minneapolis, MN, USA, 1972. [Google Scholar]
- Von Arx, J.A. On Thielavia and some similar genera of Ascomycetes. Stud. Mycol. 1975, 8, 1–29. [Google Scholar]
- Ellis, M.B. More Dematiaceous Hyphomycetes; Commonwealth Mycological Institute: Kew, UK, 1976. [Google Scholar]
- Barron, G.L. The Nematode-Destroying Fungi; Canadian Biological Publications Ltd.: Guelph, ON, Canada, 1977; p. 140. [Google Scholar]
- Pitt, J.I. The Genus Penicillium and Its Teleomorphic States Eupenicillium and Talaromyces; Academic Press Inc. Ltd.: London, UK, 1979; p. 634. [Google Scholar]
- Carmichael, J.W.; Kendrick, B.; Conners, I.L.; Sigler, L. Genera of Hyphomycetes; University of Alberta Press: Edmonton, AB, Canada, 1980. [Google Scholar]
- Sutton, B.C. The Coelomycetes, Fungi Imperfecti with Pycnidia, Acervuli and Stromata; Commonwealth Mycological Institute: Kew, UK, 1980. [Google Scholar]
- Domsch, K.H.; Gams, W.; Anderson, T.H. Compendium of Soil Fungi; Academic Press: London, UK, 1980; Volume 1–2. [Google Scholar]
- Kirk, P.M.; Cannon, P.F.; Minter, D.W.; Stalpers, J.A. Dictionary of the Fungi, 10th ed.; CAB International: Wallingford, UK, 2008. [Google Scholar]
- Pinto, G.A.; Leite, S.G.; Terzi, S.C.; Couri, S. Selection of tannase-producing Aspergillus niger strains. Braz. J. Microbiol. 2001, 32, 24–26. [Google Scholar] [CrossRef]
- Sharma, S.; Bhat, T.K.; Dawra, R.K. A spectrophotometric method for assay of tannase using rhodamine. Anal. Biochem. 2000, 279, 85–89. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Manjit; Yadav, A.; Aggarwal, N.K.; Kumar, K.; Kumar, A. Tannase production by Aspergillus fumigatus MA under solid-state fermentation. World J. Microbiol. Biotechnol. 2008, 24, 3023–3030. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.J.W.T.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: Cambridge, MA, USA, 1990; Volume 18, pp. 315–322. [Google Scholar]
- Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef]
- Bradoo, S.; Gupta, R.; Saxena, R.K. Screening of extracellular tannase producing fungi: Development of a rapid and simple plate assay. J. Gen. Appl. Microbiol. 1996, 42, 325–329. [Google Scholar] [CrossRef]
- Dreyfuss, M.M.; Chapela, I.H. Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals. In Discovery of Novel Natural Products with Therapeutic Potential; Gullo, V.P., Ed.; Newnes: Bathurst, Australia, 1994; pp. 49–80. [Google Scholar]
- Du, W.; Yao, Z.; Li, J.; Sun, C.; Xia, J.; Wang, B.; Shi, D.; Ren, L. Diversity and antimicrobial activity of endophytic fungi isolated from Securinega suffruticosa in the Yellow River Delta. PLoS ONE 2020, 15, e0229589. [Google Scholar] [CrossRef]
- Mishra, V.K.; Singh, G.; Passari, A.K.; Yadav, M.K.; Gupta, V.K.; Singh, B.P. Distribution and antimicrobial potential of endophytic fungi associated with ethnomedicinal plant Melastoma malabathricum L. J. Environ. Biol. 2016, 37, 229. [Google Scholar]
- Pecoraro, L.; Caruso, T.; Cai, L.; Gupta, V.K.; Liu, Z.J. Fungal networks and orchid distribution: New insights from above-and below-ground analyses of fungal communities. IMA Fungus 2018, 9, 1–11. [Google Scholar] [CrossRef]
- Dos Reis, J.B.A.; Lorenzi, A.S.; do Vale, H.M.M. Methods used for the study of endophytic fungi: A review on methodologies and challenges, and associated tips. Arch. Microbiol. 2022, 204, 675. [Google Scholar] [CrossRef] [PubMed]
- Kumaresan, V.; Suryanarayanan, T.S.; Johnson, J.A. Ecology of mangrove endophytes. In Fungi in Marine Environments; Fungal Diversity Research Series; Fungal Diversity Press: Hong Kong, 2002; pp. 145–166. [Google Scholar]
- George, D.S.; Ong, C.B. Improvement of tannase production under submerged fermentation by Aspergillus niger FBT1 isolated from a mangrove forest. BioTechnologia. J. Biotechnol. Comput. Biol. Bionanotechnol. 2013, 94, 451–456. [Google Scholar] [CrossRef]
- Neethu, R.S.; Pradeep, S. Isolation and characterization of potential tannase producing fungi from mangroves and tanneries. Indian J. Appl. Microbiol. 2018, 21, 1–13. [Google Scholar] [CrossRef]
- Ahmed, A.I.; Abou-Taleb, K.A.; Abd-Elhalim, B.T. Characterization and application of tannase and gallic acid produced by co-fungi of Aspergillus niger and Trichoderma viride utilizing agro-residues substrates. Sci. Rep. 2023, 13, 16755. [Google Scholar] [CrossRef] [PubMed]
- Malgireddy, N.R.; Nimma, L.N.R. Optimal conditions for production of tannase from newly isolated Aspergillus terrus under solidstate fermentation. Eur. J. Biotechnol. Biosci. 2015, 3, 56–64. [Google Scholar]
- Cruz, R.; de Lima, J.S.; Fonseca, J.C.; Gomes, J.E.G.; Silva, J.I.D.S., Jr.; Moreira, K.A.; de Souza-Motta, C.M. Promising substrates to increase the production of tannase under solid state fermentation (SSF) by Penicillium spp. Afr. J. Biotechnol. 2017, 16, 2121–2126. [Google Scholar]
- Dhiman, S.; Mukherjee, G.; Singh, A.K. Recent trends and advancements in microbial tannase-catalyzed biotransformation of tannins: A review. Int. Microbiol. 2018, 21, 175–195. [Google Scholar] [CrossRef]
- Andrade, P.M.; Baptista, L.; Bezerra, C.O.; Peralta, R.M.; Góes-Neto, A.; Uetanabaro, A.P.; Costa, A.M. Immobilization and characterization of tannase from Penicillium rolfsii CCMB 714 and its efficiency in apple juice clarification. J. Food Meas. Charact. 2021, 15, 1005–1013. [Google Scholar] [CrossRef]
- D’Souza, P.S.; Mansy, T.K.; Preethi, T.C.; Gunashree, B.S. Tamarindus indica seed induced tannase production from Aspergillus niger. Biomedicine 2022, 42, 752–756. [Google Scholar]
- Gayen, S.; Ghosh, U. Purification and characterization of tannin acyl hydrolase produced by mixed solid-state fermentation of wheat bran and marigold flower by Penicillium notatum NCIM 923. BioMed Res. Int. 2013, 2013, 596380. [Google Scholar] [CrossRef]
- Sivashanmugam, K.; Jayaraman, G. Production and partial purification of extracellular tannase by Klebsiella pneumoniae MTCC 7162 isolated from tannery effluent. Afr. J. Biotechnol. 2011, 10, 1364–1374. [Google Scholar]
- Albuquerque, K.K.; Albuquerque, W.W.; Costa, R.M.; Batista, J.M.S.; Marques, D.A.; Bezerra, R.P.; Herculano, P.N.; Porto, A.L. Biotechnological potential of a novel tannase-acyl hydrolase from Aspergillus sydowii using waste coir residue: Aqueous two-phase system and chromatographic techniques. Biocatal. Agric. Biotechnol. 2020, 23, 101453. [Google Scholar] [CrossRef]
Sr. No | Isolate No. | 1% Tannic Acid Medium | Enzymatic Index After 72 h | Enzymatic Index After 120 h |
---|---|---|---|---|
1 | LV_001 | + | 0.48 | 1.12 |
2 | LV_002 | + | 2.28 | * |
3 | LV_004 | + | 0.57 | 0.78 |
4 | LV_010 | + | 0.34 | 0.66 |
5 | LV_019 | + | 0.73 | 1.34 |
6 | LV_022 | + | 1.18 | * |
7 | LV_038 | + | 1.20 | * |
8 | LV_042 | + | 0.68 | 1.10 |
9 | LV_047 | + | 0.91 | 1.54 |
10 | LV_053 | + | 0.12 | 0.35 |
11 | LV_016 | + | 0.41 | * |
12 | LV_074 | + | 2.10 | * |
13 | LV_084 | + | 0.30 | 1.45 |
Sr. No. | Isolate Code | Host Plants | Identified Fungal Species | Accession No. |
---|---|---|---|---|
1 | LV_001 | Avicennia marina Vierh. | Penicillium sp. | NFCCI 5608 |
2 | LV_002 | Avicennia marina Vierh. | Chaetomium sp. | NFCCI 5505 |
3 | LV_004 | Avicennia marina Vierh. | Chaetomium sp. | NFCCI 5507 |
4 | LV_010 | Acanthus ilicifolius L. | Aspergillus flavus gr. | NFCCI 5508 |
5 | LV_019 | Suaeda maritima (L.) Dumort. | Curvularia brachyspora Boedijn | NFCCI 5510 |
6 | LV_022 | Suaeda maritima (L.) Dumort. | Alternaria tenuissima (Kunze) Wiltshire | NFCCI 5511 |
7 | LV_038 | Avicennia marina Vierh. | Chaetomium globosum var. globosum Kunze | CHMCC012 |
8 | LV_042 | Acanthus ilicifolius L. | Corynespora cassiicola (Berk. & M.A. Curtis) C.T. Wei | NFCCI 5513 |
9 | LV_047 | Salvodora persica L. | Cladosporium sp. | NFCCI 5616 |
10 | LV_053 | Avicennia marina Vierh. | Curvularia lunata (Wakker) Boedijn | NFCCI 5516 |
11 | LV_016 | Derris trifoliata Lour. | Aspergillus sp. | CHMCC003 |
12 | LV_074 | Avicennia marina Vierh. | Aspergillus chevalieri var. chevalieri (L. Mangin) Thom & Church | NFCCI 5827 |
13 | LV_084 | Avicennia marina Vierh. | Phyllosticta capitalensis Henn. | NFCCI 5828 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kushwaha, V.; Patil, J.R.; Nikalje, G.C.; Yadav, L.S. Exploration of Mangrove Endophytes as Novel Sources of Tannase Producing Fungi. J. Fungi 2025, 11, 366. https://doi.org/10.3390/jof11050366
Kushwaha V, Patil JR, Nikalje GC, Yadav LS. Exploration of Mangrove Endophytes as Novel Sources of Tannase Producing Fungi. Journal of Fungi. 2025; 11(5):366. https://doi.org/10.3390/jof11050366
Chicago/Turabian StyleKushwaha, Vinodkumar, Jitendra R. Patil, Ganesh Chandrakant Nikalje, and Lal Sahab Yadav. 2025. "Exploration of Mangrove Endophytes as Novel Sources of Tannase Producing Fungi" Journal of Fungi 11, no. 5: 366. https://doi.org/10.3390/jof11050366
APA StyleKushwaha, V., Patil, J. R., Nikalje, G. C., & Yadav, L. S. (2025). Exploration of Mangrove Endophytes as Novel Sources of Tannase Producing Fungi. Journal of Fungi, 11(5), 366. https://doi.org/10.3390/jof11050366