Optimizing Mycoprotein Production by Aspergillus oryzae Using Soy Whey as a Substrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Media and Reagents
2.2. Microorganism Maintenance and Media Preparation
2.3. Optimization of Cultivation Conditions for Mycelial Biomass in Soy Whey Media
2.4. Experimental Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Optimized Cultivation Conditions for A. oryzae Biomass Production in Soy Whey
3.1.1. Effect of Substrate Concentration and Incubation Time
3.1.2. Effect of Initial pH
3.1.3. Effect of Nitrogen and/or Mineral Supplementation
3.1.4. Biomass Yield After Optimization of Cultivation Conditions
3.2. Protein Content and Yield of A. oryzae Biomass After Optimization of Cultivation Conditions
3.3. COD Removal from Soy Whey by A. oryzae
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COD | chemical oxygen demand |
DW | dry weight |
Nit | nitrogen addition |
Salt | minerals addition |
References
- Nunes, E.A.; Colenso-Semple, L.; McKellar, S.R.; Yau, T.; Ali, M.U.; Fitzpatrick-Lewis, D.; Sherifali, D.; Gaudichon, C.; Tomé, D.; Atherton, P.J.; et al. Systematic Review and Meta-analysis of Protein Intake to Support Muscle Mass and Function in Healthy Adults. J. Cachexia Sarcopenia Muscle 2022, 13, 795–810. [Google Scholar] [CrossRef] [PubMed]
- Muth, A.-K.; Park, S.Q. The Impact of Dietary Macronutrient Intake on Cognitive Function and the Brain. Clin. Nutr. 2021, 40, 3999–4010. [Google Scholar] [CrossRef] [PubMed]
- Endrinikapoulos, A.; Afifah, D.N.; Mexitalia, M.; Andoyo, R.; Hatimah, I.; Nuryanto, N. Study of the Importance of Protein Needs for Catch-up Growth in Indonesian Stunted Children: A Narrative Review. SAGE Open Med. 2023, 11, 20503121231165562. [Google Scholar] [CrossRef] [PubMed]
- Kiani, A.K.; Dhuli, K.; Donato, K.; Aquilanti, B.; Velluti, V.; Matera, G.; Iaconelli, A.; Connelly, S.T.; Bellinato, F.; Gisondi, P.; et al. Main Nutritional Deficiencies. J. Prev. Med. Hyg. 2022, 63, E93. [Google Scholar] [CrossRef]
- Soliman, A.; De Sanctis, V.; Alaaraj, N.; Ahmed, S.; Alyafei, F.; Hamed, N. Early and Long-Term Consequences of Nutritional Stunting: From Childhood to Adulthood: Early and Long-Term Consequences of Nutritional Stunting. Acta Biomed. Atenei Parm. 2021, 92, 11346. [Google Scholar] [CrossRef]
- Saeed, F.; Afzaal, M.; Khalid, A.; Shah, Y.A.; Ateeq, H.; Islam, F.; Akram, N.; Ejaz, A.; Nayik, G.A.; Shah, M.A. Role of Mycoprotein as a Non-Meat Protein in Food Security and Sustainability: A Review. Int. J. Food Prop. 2023, 26, 683–695. [Google Scholar] [CrossRef]
- Parlasca, M.C.; Qaim, M. Meat Consumption and Sustainability. Annu. Rev. Resour. Econ. 2022, 14, 17–41. [Google Scholar] [CrossRef]
- Kumar, P.; Abubakar, A.A.; Verma, A.K.; Umaraw, P.; Adewale Ahmed, M.; Mehta, N.; Nizam Hayat, M.; Kaka, U.; Sazili, A.Q. New Insights in Improving Sustainability in Meat Production: Opportunities and Challenges. Crit. Rev. Food Sci. Nutr. 2023, 63, 11830–11858. [Google Scholar] [CrossRef]
- Haque, M.H.; Sarker, S.; Islam, M.S.; Islam, M.A.; Karim, M.R.; Kayesh, M.E.H.; Shiddiky, M.J.A.; Anwer, M.S. Sustainable Antibiotic-Free Broiler Meat Production: Current Trends, Challenges, and Possibilities in a Developing Country Perspective. Biology 2020, 9, 411. [Google Scholar] [CrossRef]
- Ederer, P.; Baltenweck, I.; Blignaut, J.N.; Moretti, C.; Tarawali, S. Affordability of Meat for Global Consumers and the Need to Sustain Investment Capacity for Livestock Farmers. Anim. Front. 2023, 13, 45–60. [Google Scholar] [CrossRef]
- Singh, M.; Trivedi, N.; Enamala, M.K.; Kuppam, C.; Parikh, P.; Nikolova, M.P.; Chavali, M. Plant-Based Meat Analogue (PBMA) as a Sustainable Food: A Concise Review. Eur. Food Res. Technol. 2021, 247, 2499–2526. [Google Scholar] [CrossRef]
- Smetana, S.; Ristic, D.; Pleissner, D.; Tuomisto, H.L.; Parniakov, O.; Heinz, V. Meat Substitutes: Resource Demands and Environmental Footprints. Resour. Conserv. Recycl. 2023, 190, 106831. [Google Scholar] [CrossRef] [PubMed]
- Coffey, A.A.; Lillywhite, R.; Oyebode, O. Meat versus Meat Alternatives: Which Is Better for the Environment and Health? A Nutritional and Environmental Analysis of Animal-based Products Compared with Their Plant-based Alternatives. J. Hum. Nutr. Diet. 2023, 36, 2147–2156. [Google Scholar] [CrossRef] [PubMed]
- Hadi, J.; Brightwell, G. Safety of Alternative Proteins: Technological, Environmental and Regulatory Aspects of Cultured Meat, Plant-Based Meat, Insect Protein and Single-Cell Protein. Foods 2021, 10, 1226. [Google Scholar] [CrossRef]
- Fatima, N.; Emambux, M.N.; Olaimat, A.N.; Stratakos, A.C.; Nawaz, A.; Wahyono, A.; Gul, K.; Park, J.; Shahbaz, H.M. Recent Advances in Microalgae, Insects, and Cultured Meat as Sustainable Alternative Protein Sources. Food Humanit. 2023, 1, 731–741. [Google Scholar] [CrossRef]
- Onyeaka, H.; Anumudu, C.K.; Okpe, C.; Okafor, A.; Ihenetu, F.; Miri, T.; Odeyemi, O.A.; Anyogu, A. Single Cell Protein for Foods and Feeds: A Review of Trends. Open Microbiol J. 2022, 16, e187428582206160. [Google Scholar] [CrossRef]
- Ahmad, M.I.; Farooq, S.; Alhamoud, Y.; Li, C.; Zhang, H. A Review on Mycoprotein: History, Nutritional Composition, Production Methods, and Health Benefits. Trends Food Sci. Technol. 2022, 121, 14–29. [Google Scholar] [CrossRef]
- Majumder, R.; Miatur, S.; Saha, A.; Hossain, S. Mycoprotein: Production and Nutritional Aspects: A Review. Sustain. Food Technol. 2024, 2, 81–91. [Google Scholar] [CrossRef]
- Derbyshire, E.; Ayoob, K.-T. Mycoprotein: Nutritional and Health Properties. Nutr. Today 2019, 54, 7–15. [Google Scholar] [CrossRef]
- Linder, T. What next for Mycoprotein? Curr. Opin. Food Sci. 2024, 58, 101199. [Google Scholar] [CrossRef]
- Ng, Z.Y.; Kee, P.E.; Abdullah, R.; Lan, J.C.-W.; Ling, T.C.; Jiang, J.-J.; Lim, J.W.; Khoo, K.S. Conversion of Lignocellulosic Biomass Waste into Mycoprotein: Current Status and Future Directions for Sustainable Protein Production. In Biomass Conversion and Biorefinery; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- Wang, X.; Pei, Y.; Wu, J.; Zhong, X.; Liu, H.; Xue, Y. Innovative Mycelium-based Food: Advancing One Health through Nutritional Insights and Environmental Sustainability. Comp. Rev. Food Sci. Food Safe 2025, 24, e70166. [Google Scholar] [CrossRef] [PubMed]
- Upcraft, T.; Johnson, R.; Finnigan, T.; Hallett, J.; Guo, M. Protein from Renewable Resources: Mycoprotein Production from Agricultural Residues. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2020; Volume 48, pp. 985–990. ISBN 978-0-12-823377-1. [Google Scholar]
- Souza Filho, P.F.; Nair, R.B.; Andersson, D.; Lennartsson, P.R.; Taherzadeh, M.J. Vegan-Mycoprotein Concentrate from Pea-Processing Industry Byproduct Using Edible Filamentous Fungi. Fungal. Biol. Biotechnol. 2018, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Sar, T.; Ferreira, J.A.; Taherzadeh, M.J. Conversion of Fish Processing Wastewater into Fish Feed Ingredients through Submerged Cultivation of Aspergillus oryzae. Syst. Microbiol. Biomanuf. 2021, 1, 100–110. [Google Scholar] [CrossRef]
- Asadollahzadeh, M.; Ghasemian, A.; Saraeian, A.; Resalati, H.; Lennartsson, P.R.; Taherzadeh, M.J. Using Spent Sulfite Liquor for Valuable Fungal Biomass Production by Aspergilus Oryzae. Nord. Pulp Pap. Res. J. 2017, 32, 630–638. [Google Scholar] [CrossRef]
- Allwood, J.G.; Wakeling, L.T.; Bean, D.C. Fermentation and the Microbial Community of Japanese Koji and Miso: A Review. J. Food Sci. 2021, 86, 2194–2207. [Google Scholar] [CrossRef]
- Devanthi, P.V.P.; Pratama, F.; Pramanda, I.T.; Bani, M.D.; Kadar, A.D.; Kho, K. Exploring the Potential of Aspergillus oryzae for Sustainable Mycoprotein Production Using Okara and Soy Whey as Cost-Effective Substrates. JoF 2024, 10, 555. [Google Scholar] [CrossRef]
- Dewi, P.S.; Ari, I.R.D.; Meidiana, C. Proses Produksi Tahu Di Desa Kalisari Kecamatan Cilongok Kabupaten Banyumas. Planing Urban Reg. Environ. J. 2023, 12, 57–64. [Google Scholar]
- Chua, J.-Y.; Liu, S.-Q. Soy Whey: More than Just Wastewater from Tofu and Soy Protein Isolate Industry. Trends Food Sci. Technol. 2019, 91, 24–32. [Google Scholar] [CrossRef]
- Liang, J.; Xu, N.; Nedele, A.-K.; Rigling, M.; Zhu, L.; Zhang, Y.; Stöppelmann, F.; Hannemann, L.; Heimbach, J.; Kohlus, R.; et al. Upcycling of Soy Whey with Ischnoderma Benzoinum toward Production of Bioflavors and Mycoprotein. J. Agric. Food Chem. 2023, 71, 9070–9079. [Google Scholar] [CrossRef]
- Rousta, N.; Hellwig, C.; Wainaina, S.; Lukitawesa, L.; Agnihotri, S.; Rousta, K.; Taherzadeh, M.J. Filamentous Fungus Aspergillus oryzae for Food: From Submerged Cultivation to Fungal Burgers and Their Sensory Evaluation—A Pilot Study. Foods 2021, 10, 2774. [Google Scholar] [CrossRef]
- Souza Filho, P.F.; Zamani, A.; Taherzadeh, M.J. Edible Protein Production by Filamentous Fungi Using Starch Plant Wastewater. Waste Biomass Valor. 2019, 10, 2487–2496. [Google Scholar] [CrossRef]
- Li, T.; Zhan, C.; Guo, G.; Liu, Z.; Hao, N.; Ouyang, P. Tofu Processing Wastewater as a Low-Cost Substrate for High Activity Nattokinase Production Using Bacillus Subtilis. BMC Biotechnol. 2021, 21, 57. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Liu, C.; Xu, X.; Kang, F.; Chen, Y.; Zhou, M. Components Analysis and Flour Preparation of Tofu Whey. AJFST 2016, 12, 574–578. [Google Scholar] [CrossRef]
- Uwineza, C.; Mahboubi, A.; Atmowidjojo, A.; Ramadhani, A.; Wainaina, S.; Millati, R.; Wikandari, R.; Niklasson, C.; Taherzadeh, M.J. Cultivation of Edible Filamentous Fungus Aspergillus oryzae on Volatile Fatty Acids Derived from Anaerobic Digestion of Food Waste and Cow Manure. Bioresour. Technol. 2021, 337, 125410. [Google Scholar] [CrossRef]
- Khan, A.R.; Ahmad, B.; Khan, M.; Khan, M.A.; Sultan, S.; Sultana, K.; Hassan, S. Production of Single Cell Protein (SCP) from the Peel Waste of Pea, Potato, and Banana by Aspergillus Flavus NRRL 21882 as an Efficient Organic Poultry Supplement. ACS Omega 2024, 9, 37763–37770. [Google Scholar] [CrossRef]
- Nair, R.B.; Taherzadeh, M.J. Valorization of Sugar-to-Ethanol Process Waste Vinasse: A Novel Biorefinery Approach Using Edible Ascomycetes Filamentous Fungi. Bioresour. Technol. 2016, 221, 469–476. [Google Scholar] [CrossRef]
- Braho, V.; Sar, T.; Taherzadeh, M.J. Cultivation of Edible Filamentous Fungi on Pomegranate By-Products as Feedstocks to Produce Mycoprotein. Syst. Microbiol. Biomanuf. 2024, 4, 675–686. [Google Scholar] [CrossRef]
- Sar, T.; Larsson, K.; Fristedt, R.; Undeland, I.; Taherzadeh, M.J. Demo-Scale Production of Protein-Rich Fungal Biomass from Potato Protein Liquor for Use as Innovative Food and Feed Products. Food Biosci. 2022, 47, 101637. [Google Scholar] [CrossRef]
- Chourasia, R.; Phukon, L.C.; Abedin, M.M.; Padhi, S.; Singh, S.P.; Rai, A.K. Whey Valorization by Microbial and Enzymatic Bioprocesses for the Production of Nutraceuticals and Value-Added Products. Bioresour. Technol. Rep. 2022, 19, 101144. [Google Scholar] [CrossRef]
- Burchacka, E.; Pięta, P.; Łupicka-Słowik, A. Recent Advances in Fungal Serine Protease Inhibitors. Biomed. Pharmacother. 2022, 146, 112523. [Google Scholar] [CrossRef]
- Sar, T.; Ozturk, M.; Taherzadeh, M.J.; Ferreira, J.A. New Insights on Protein Recovery from Olive Oil Mill Wastewater through Bioconversion with Edible Filamentous Fungi. Processes 2020, 8, 1210. [Google Scholar] [CrossRef]
- Wang, R.; Chau Sing Law, R.; Webb, C. Protease Production and Conidiation by Aspergillus oryzae in Flour Fermentation. Process Biochem. 2005, 40, 217–227. [Google Scholar] [CrossRef]
- Wikandari, R.; Tanugraha, D.R.; Yastanto, A.J.; Manikharda; Gmoser, R.; Teixeira, J.A. Development of Meat Substitutes from Filamentous Fungi Cultivated on Residual Water of Tempeh Factories. Molecules 2023, 28, 997. [Google Scholar] [CrossRef] [PubMed]
- Chancharoonpong, C.; Hsieh, P.-C.; Sheu, S.-C. Enzyme Production and Growth of Aspergillus oryzae S. on Soybean Koji Fermentation. APCBEE Procedia 2012, 2, 57–61. [Google Scholar] [CrossRef]
- Kövilein, A.; Zadravec, L.; Hohmann, S.; Umpfenbach, J.; Ochsenreither, K. Effect of Process Mode, Nitrogen Source and Temperature on L-Malic Acid Production with Aspergillus oryzae DSM 1863 Using Acetate as Carbon Source. Front. Bioeng. Biotechnol. 2022, 10, 1033777. [Google Scholar] [CrossRef]
- Gamarra-Castillo, O.; Echeverry-Montaña, N.; Marbello-Santrich, A.; Hernández-Carrión, M.; Restrepo, S. Meat Substitute Development from Fungal Protein (Aspergillus oryzae). Foods 2022, 11, 2940. [Google Scholar] [CrossRef]
- Reihani, S.F.S.; Khosravi-Darani, K. Influencing Factors on Single-Cell Protein Production by Submerged Fermentation: A Review. Electron. J. Biotechnol. 2019, 37, 34–40. [Google Scholar] [CrossRef]
- Li, J.-S.; Chew, Y.-M.; Lin, M.-C.; Lau, Y.-Q.; Chen, C.-S. Enhanced Glucosamine Production from Aspergillus oryzae NCH-42 via Acidic Stress under Submerged Fermentation. CyTA—J. Food 2021, 19, 614–624. [Google Scholar] [CrossRef]
- Corzo-Martinez, M.; Luscher, A.; De Las Rivas, B.; Muñoz, R.; Moreno, F.J. Valorization of Cheese and Tofu Whey through Enzymatic Synthesis of Lactosucrose. PLoS ONE 2015, 10, e0139035. [Google Scholar] [CrossRef]
- Daba, G.M.; Mostafa, F.A.; Elkhateeb, W.A. The Ancient Koji Mold (Aspergillus oryzae) as a Modern Biotechnological Tool. Bioresour. Bioprocess. 2021, 8, 52. [Google Scholar] [CrossRef]
- Mahboubi, A.; Ferreira, J.; Taherzadeh, M.; Lennartsson, P. Production of Fungal Biomass for Feed, Fatty Acids, and Glycerol by Aspergillus oryzae from Fat-Rich Dairy Substrates. Fermentation 2017, 3, 48. [Google Scholar] [CrossRef]
- Chutrakul, C.; Panchanawaporn, S.; Vorapreeda, T.; Jeennor, S.; Anantayanon, J.; Laoteng, K. The Exploring Functional Role of Ammonium Transporters of Aspergillus oryzae in Nitrogen Metabolism: Challenges towards Cell Biomass Production. Int. J. Mol. Sci. 2022, 23, 7567. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.A.; Mahboubi, A.; Lennartsson, P.R.; Taherzadeh, M.J. Waste Biorefineries Using Filamentous Ascomycetes Fungi: Present Status and Future Prospects. Bioresour. Technol. 2016, 215, 334–345. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-J.; Xu, Z.-R.; Zhao, S.-H.; Sun, J.-Y.; Yang, X. Development of a Microbial Fermentation Process for Detoxification of Gossypol in Cottonseed Meal. Anim. Feed Sci. Technol. 2007, 135, 176–186. [Google Scholar] [CrossRef]
- Fadel, M.; AbdEl-Halim, S.; Sharada, H.; Yehia, A.; Ammar, M. Production of Glucoamylase, α-Amylase and Cellulase by Aspergillus oryzae F-923 Cultivated on Wheat Bran under Solid State Fermentation. J. Adv. Biol. Biotechnol. 2020, 23, 8–22. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Sridevi, A.; Narasimha, G. Production of β-Galactosidase by Aspergillus oryzae in Solid-State Fermentation. Afr. J. Biotechnol. 2008, 7, 1096–1100. [Google Scholar] [CrossRef]
- Sues, A.; Millati, R.; Edebo, L.; Taherzadeh, M. Ethanol Production from Hexoses, Pentoses, and Dilute-Acid Hydrolyzate By. FEMS Yeast Res. 2005, 5, 669–676. [Google Scholar] [CrossRef]
- Nair, R.B.; Lennartsson, P.R.; Taherzadeh, M.J. Mycelial Pellet Formation by Edible Ascomycete Filamentous Fungi, Neurospora Intermedia. AMB Expr. 2016, 6, 31. [Google Scholar] [CrossRef]
- Cao, L.; Barzee, T.J.; El Mashad, H.M.; Pan, Z.; Zhang, R. Potential of Utilizing Almond Hull Extract for Filamentous Fungi Production by Submerged Cultivation. Food Bioeng. 2024, 3, 3–13. [Google Scholar] [CrossRef]
- Karimi, S.; Mahboobi Soofiani, N.; Lundh, T.; Mahboubi, A.; Kiessling, A.; Taherzadeh, M.J. Evaluation of Filamentous Fungal Biomass Cultivated on Vinasse as an Alternative Nutrient Source of Fish Feed: Protein, Lipid, and Mineral Composition. Fermentation 2019, 5, 99. [Google Scholar] [CrossRef]
- Liao, W.; Liu, Y.; Chen, S. Studying Pellet Formation of a Filamentous Fungus Rhizopus Oryzae to Enhance Organic Acid Production. Appl. Biochem. Biotechnol. 2007, 137–140, 689–701. [Google Scholar] [CrossRef]
- Wang, S.; Cao, J.; Liu, X.; Hu, H.; Shi, J.; Zhang, S.; Keller, N.P.; Lu, L. Putative Calcium Channels CchA and MidA Play the Important Roles in Conidiation, Hyphal Polarity and Cell Wall Components in Aspergillus Nidulans. PLoS ONE 2012, 7, e46564. [Google Scholar] [CrossRef] [PubMed]
- Tung, T.Q.; Miyata, N.; Iwahori, K. Growth of Aspergillus oryzae during Treatment of Cassava Starch Processing Wastewater with High Content of Suspended Solids. J. Biosci. Bioeng. 2004, 97, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Germec, M.; Karahalil, E.; Yatmaz, E.; Tari, C.; Turhan, I. Effect of Process Parameters and Microparticle Addition on Polygalacturonase Activity and Fungal Morphology of Aspergillus Sojae. Biomass Conv. Bioref. 2022, 12, 5329–5344. [Google Scholar] [CrossRef]
- Kurakake, M.; Hirotsu, S.; Shibata, M. Relationship between Pellet Formation by Aspergillus oryzae Strain KB and the Production of β-Fructofuranosidase with High Transfructosylation Activity. Fungal Biol. 2020, 124, 708–713. [Google Scholar] [CrossRef]
- Gmoser, R.; Fristedt, R.; Larsson, K.; Undeland, I.; Taherzadeh, M.J.; Lennartsson, P.R. From Stale Bread and Brewers Spent Grain to a New Food Source Using Edible Filamentous Fungi. Bioengineered 2020, 11, 582–598. [Google Scholar] [CrossRef]
- Widyarani; Butar Butar, E.S.; Dara, F.; Hamidah, U.; Sriwuryandari, L.; Hariyadi, H.R.; Sintawardani, N. Distribution of Protein Fractions in Tofu Whey Wastewater and Its Potential Influence on Anaerobic Digestion. IOP Conf. Ser. Earth Environ. Sci. 2019, 277, 012012. [Google Scholar] [CrossRef]
- Wang, Y.; Serventi, L. Sustainability of Dairy and Soy Processing: A Review on Wastewater Recycling. J. Clean. Prod. 2019, 237, 117821. [Google Scholar] [CrossRef]
- Wresta, A.; Sintawardani, N.; Adisasmito, S.; Kurniawan, T.A.; Setiadi, T. Characteristics of Tofu Whey Degradation during Self-Sustaining Batch Anaerobic Process for Methane Production. J. Environ. Chem. Eng. 2021, 9, 106359. [Google Scholar] [CrossRef]
- Rusydi, R.; Yakupitiyage, A. Potential of Tofu Wastewater as a Medium in Cyanobacteria Nostocmuscorum Culture for Its Biomass and Lipid Production. IOP Conf. Ser. Earth Environ. Sci. 2019, 348, 012087. [Google Scholar] [CrossRef]
- Fang, C.; He, J.; Achal, V.; Plaza, G. Tofu Wastewater as Efficient Nutritional Source in Biocementation for Improved Mechanical Strength of Cement Mortars. Geomicrobiol. J. 2019, 36, 515–521. [Google Scholar] [CrossRef]
- Hardyanti, N.; Susanto, H.; Budihardjo, M.A.; Purwono, P.; Saputra, A.T. Characteristics of Tofu Wastewater from Different Soybeans and Wastewater at Each Stage of Tofu Production. Ecol. Eng. Environ. Technol. 2023, 24, 54–63. [Google Scholar] [CrossRef]
- Utami, A.; Fadhilah, G.; Lukito, H. Wastewater Treatment for Tofu Industry Using Anaerobic Microorganism in Biofilter with Flow Rate Variation. In Proceedings of the 5th International Conference on Earth Science, Minerals, and Energy (ICEMINE), Yogyakarta, Indonesia, 10 November 2022; p. 030002. [Google Scholar] [CrossRef]
- Murwanto, B.; Sutopo, A.; Yushananta, P. Coagulation and Filtration Methods on Tofu Wastewater Treatment. J. Aisyah J. Ilmu Kesehat. 2021, 6, 285–292. [Google Scholar] [CrossRef]
- Hashemi, S.S.; Karimi, K.; Taherzadeh, M.J. Valorization of Vinasse and Whey to Protein and Biogas through an Environmental Fungi-Based Biorefinery. J. Environ. Manag. 2022, 303, 114138. [Google Scholar] [CrossRef]
COD Concentration (mg/L) | ||
---|---|---|
Sample | Day 0 | Day 3 |
100% soy whey | 8400 ± 81.7 a | 5233 ± 125 b |
100% soy whey + nitrogen + minerals (pH 5) | 8100 ± 163 a | 3267 ± 419 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pratama, F.; Rahardja, R.T.; Rachmadi, A.R.; Salam, W.Q.; Kho, K.; Adelie, A.; Devanthi, P.V.P. Optimizing Mycoprotein Production by Aspergillus oryzae Using Soy Whey as a Substrate. J. Fungi 2025, 11, 349. https://doi.org/10.3390/jof11050349
Pratama F, Rahardja RT, Rachmadi AR, Salam WQ, Kho K, Adelie A, Devanthi PVP. Optimizing Mycoprotein Production by Aspergillus oryzae Using Soy Whey as a Substrate. Journal of Fungi. 2025; 11(5):349. https://doi.org/10.3390/jof11050349
Chicago/Turabian StylePratama, Ferren, Richelle Tirta Rahardja, Angellique Regina Rachmadi, Wildan Qoharisma Salam, Katherine Kho, Aivyanca Adelie, and Putu Virgina Partha Devanthi. 2025. "Optimizing Mycoprotein Production by Aspergillus oryzae Using Soy Whey as a Substrate" Journal of Fungi 11, no. 5: 349. https://doi.org/10.3390/jof11050349
APA StylePratama, F., Rahardja, R. T., Rachmadi, A. R., Salam, W. Q., Kho, K., Adelie, A., & Devanthi, P. V. P. (2025). Optimizing Mycoprotein Production by Aspergillus oryzae Using Soy Whey as a Substrate. Journal of Fungi, 11(5), 349. https://doi.org/10.3390/jof11050349