Feeding Thai Native Sheep Molasses Either Alone or in Combination with Urea-Fermented Sugarcane Bagasse: The Effects on Nutrient Digestibility, Rumen Fermentation, and Hematological Parameters
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Fermented Sugarcane Bagasse
2.2. Animals and Experimental Design
2.3. Chemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Chemical Content in FSB
3.2. Feed Intake and Nutrient Digestibility
3.3. Blood Parameters and Ruminal Fermentation Characteristics
4. Discussion
4.1. Improvement of Chemical Content in the FSB
4.2. Impact on Feed Intake and Nutrients Digestibility
4.3. FSB Affected Blood Parameters and Ruminal Fermentation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salem, H.B.; Smith, T. Feeding strategies to increase small ruminant production in dry environments. Small Rumin. Res. 2008, 77, 174–194. [Google Scholar] [CrossRef]
- Broderick, G.A. Optimizing ruminant conversion of feed protein to human food protein. Animal 2018, 12, 1722–1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamidi, A.A.; Ologbose, F.I. Dry season feeds and feeding: A threat to sustainable ruminant animal production in Nigeria. J. Agr. Soc. Res. 2014, 14, 17–30. [Google Scholar]
- Pipitpukdee, S.; Attavanich, W.; Bejranonda, S. Climate change impacts on sugarcane production in Thailand. Atmosphere 2020, 11, 408. [Google Scholar] [CrossRef] [Green Version]
- USDA. Sugar: World Markets and Trade. 2021. Available online: https://apps.fas.usda.gov/psdonline/circulars/sugar.pdf (accessed on 20 April 2022).
- Gunun, N.; Wanapat, M.; Gunun, P.; Cherdthong, A.; Khejornsart, P.; Kang, S. Effect of treating sugarcane bagasse with urea and calcium hydroxide on feed intake, digestibility, and rumen fermentation in beef cattle. Trop. Anim. Health Prod. 2016, 48, 1123–1128. [Google Scholar] [CrossRef]
- So, S.; Cherdthong, A.; Wanapat, M. Improving sugarcane bagasse quality as ruminant feed with Lactobacillus, cellulase, and molasses. J. Anim. Sci. Technol. 2020, 62, 648–658. [Google Scholar] [CrossRef]
- Mordenti, A.L.; Giaretta, E.; Campidonico, L.; Parazza, P.; Formigoni, A. A review regarding the use of molasses in animal nutrition. Animals 2021, 11, 115. [Google Scholar] [CrossRef]
- Wang, J.; Chen, L.; Yuan, X.; Guo, G.; Li, J.; Bai, Y.; Shao, T. Effects of molasses on the fermentation characteristics of mixed silage prepared with rice straw, local vegetable by-products and alfalfa in Southeast China. J. Integr. Agric. 2017, 16, 664–670. [Google Scholar] [CrossRef] [Green Version]
- Arbabi, S.; Ghoorchi, T. The effect of different levels of molasses as silage additives on fermentation quality of foxtail millet (Setaria italica) silage. Asian J. Anim. Sci. 2008, 2, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.; Liang, Y.; Bai, S.; He, Y.; Muhammad, A.U.R.; Su, H.; Cao, B. Effects of harvest time and added molasses on nutritional content, ensiling characteristics and in vitro degradation of whole crop wheat. Asian-Australas. J. Anim. Sci. 2018, 31, 354–362. [Google Scholar] [CrossRef] [Green Version]
- So, S.; Cherdthong, A.; Wanapat, M. Growth performances, nutrient digestibility, ruminal fermentation and energy partition of Thai native steers fed exclusive rice straw and fermented sugarcane bagasse with Lactobacillus, cellulase and molasses. J. Anim. Physiol. Anim. Nutr. 2022, 106, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Gunun, P.; Wanapat, M.; Anantasook, N. Effects of physical form and urea treatment of rice straw on rumen fermentation, microbial protein synthesis and nutrient digestibility in dairy steers. Asian-Australas. J. Anim. Sci. 2013, 26, 1689–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniel, H.; Zietek, T. Taste and move: Glucose and peptide transporters in the gastrointestinal tract. Exp. Physiol. 2015, 100, 1441–1450. [Google Scholar] [CrossRef] [PubMed]
- Harun, A.Y.; Sali, K. Factors affecting rumen microbial protein synthesis: A review. Vet. Med. Open J. 2019, 4, 27–35. [Google Scholar] [CrossRef]
- Carvalho, G.G.P.; Freitas, P.M.D.; Santos, E.M.; Araujo, G.G.L.; Oliveira, J.S.; Pires, A.J.V.; Maranhao, C.M.A.; Rodrigues, T.C.G.C.; Freitas Junior, J.E.; Rufino, L.M.A.; et al. Effect of pearl millet silage ammoniated with urea on lamb production and metabolic performance. Grass Forage Sci. 2018, 73, 685–693. [Google Scholar] [CrossRef]
- Pires, A.J.V.; Garcia, R.; Souza, A.D.; Silva, F.F.; Veloso, C.M.; Cardoso, G.C.; Silva, P.A. Sorghum silage treated with anhydrous ammonia and, or, sodium sulfide added to the diet for ¾ Indubrazil/Holstein steers. R. Bras. Zootec. 2003, 32, 1525–1531. [Google Scholar] [CrossRef] [Green Version]
- Lunsin, R.; Duanyai, S.; Pilajun, R.; Duanyai, S.; Sombatsri, P. Effect of urea- and molasses-treated sugarcane bagasse on nutrient composition and in vitro rumen fermentation in dairy cows. Agr. Nat. Resour. 2018, 52, 622–627. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements’ of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; NRC: Washington, DC, USA, 2007; 384p. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods of dietary fiber, neutral detergent fiber and non-starch polysaccharide in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Kaewpila, C.; Khota, W.; Gunun, P.; Kesorn, P.; Cherdthong, A. Strategic addition of different additives to improve silage fermentation, aerobic stability and in vitro digestibility of Napier grasses at late maturity stage. Agriculture 2020, 10, 262. [Google Scholar] [CrossRef]
- Keskin, B.; Yilmaz, I.H.; Karsli, M.A.; Nursoy, H. Effects of urea or urea plus molasses supplementation to silages with different sorghum varieties harvested at the milk stage on the quality and in vitro dry matter digestibility of silages. Turk. J. Vet. Anim. Sci. 2005, 29, 1143–1147. [Google Scholar]
- Kang, S.; Wanapat, M.; Nunoi, A. Effect of urea and molasses supplementation on quality of cassava top silage. J. Anim. Feed Sci. 2018, 27, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.H.; Babiker, S.A.; Fadel Elseed, M.A.; Mohammed, A.M. Effect of urea treatment on nutritive value of sugarcane bagasse. ARPN J. Sci. Technol. 2013, 3, 834–838. [Google Scholar]
- Zahoor; Wang, W.; Tan, X.; Guo, Y.; Zhang, B.; Chen, X.; Yu, Q.; Zhuang, X.; Yuan, Z. Mild urea/KOH pretreatment to enhance enzymatic hydrolysis of corn stover with liquid waste recovery for plant growth. J. Clean. Prod. 2021, 284, 125392. [Google Scholar] [CrossRef]
- Ni, K.; Wang, F.; Zhu, B.; Yang, J.; Zhou, G.; Pan, Y.; Tao, Y.; Zhong, J. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour. Technol. 2017, 238, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Bao, J.; Li, W.; Sun, Z.; Gao, R.; Wu, Z.; Yu, Z. Effects of applying lactic acid bacteria and molasses on the fermentation quality, protein fractions and in vitro digestibility of baled alfalfa silage. Agronomy 2021, 11, 91. [Google Scholar] [CrossRef]
- Dos Santos, R.D.; Neves, A.L.A.; Pereira, L.G.R.; Sollenberger, L.E.; Rodrigues, J.A.S.; Tabosa, J.N.; Verneque, R.S.; Oliveira, G.F.; Jayme, D.G.; Goncalves, L.C. Agronomic traits, ensilability and nutritive value of five pearl millet cultivars grown in a Brazilian semi-arid region. J. Agric. Sci. 2016, 154, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Gunun, N.; Gunun, P.; Wanapat, M.; Cherdthong, A.; Kang, S.; Polyorach, S. Improving the quality of sugarcane bagasse by urea and calcium hydroxide on gas production, degradability and rumen fermentation characteristics. J. Anim. Plant Sci. 2017, 27, 1758–1765. [Google Scholar]
- Broer, S.; Fairweather, S.J. Amino acid transport across the mammalian intestine. Compr. Physiol. 2019, 9, 343–373. [Google Scholar] [CrossRef]
- Dixon, R.M.; Karda, W.; Hosking, B.J.; Egan, A.R. Effects of oilseed meals and grain–urea supplements fed infrequently on digestion in sheep: 2. Cereal straw diets. Anim. Feed Sci. Technol. 2003, 110, 95–110. [Google Scholar] [CrossRef]
- Khattab, I.M.; Salem, A.Z.M.; Abdel-Wahed, A.M.; Kewan, K.Z. Effects of urea supplementation on nutrient digestibility, nitrogen utilisation and rumen fermentation in sheep fed diets containing dates. Livest. Sci. 2013, 155, 223–229. [Google Scholar] [CrossRef]
- Radostits, O.M.; Gay, C.C.; Blood, D.C.; Hinchcliffe, K.W. Appendix 3 Laboratory Reference Values: Biochemistry Clinical Examination of Farm Animals. In Veterinary Medicine a Textbook of the Diseases of Cattle, Sheep, Pigs, Goats and Horses, 9th ed.; Peter, G.G.J., Peter, D.C., Eds.; W.B. Saunders Ltd.: London, UK, 2000; pp. 1819–1822. [Google Scholar]
- Van Soest, P.J. Nutritional Ecology of the Ruminant; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Abdoun, K.; Stumpff, F.; Martens, H. Ammonia and urea transport across the rumen epithelium: A review. Anim. Health Res. Rev. 2006, 7, 43–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Li, Z.; Moraes, L.E.; Shen, J.; Yu, Z.; Zhu, W. Effects of incremental urea supplementation on rumen fermentation, nutrient digestion, plasma metabolites, and growth performance in fattening lambs. Animals 2019, 9, 652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sano, H.; Shibasaki, S. Effects of urea and soybean meal supplementation on rates of plasma leucine turnover and protein synthesis in sheep fed concentrate-based diets. J. Appl. Anim. Res. 2011, 39, 239–244. [Google Scholar] [CrossRef]
- Baytok, E.; Aksu, T.; Karsli, M.A.; Muruz, H. The effects of formic acid, molasses and inoculant as silage additives on corn silage composition and ruminal fermentation characteristics in sheep. Turk. J. Vet. Anim. Sci. 2005, 29, 469–474. [Google Scholar]
- So, S.; Cherdthong, A.; Wanapat, M.; Uriyapongson, S. Fermented sugarcane bagasse with Lactobacillus combined with cellulase and molasses promotes in vitro gas kinetics, degradability, and ruminal fermentation patterns compared to rice straw. Anim. Biotechnol. 2022, 33, 116–127. [Google Scholar] [CrossRef]
- Lunsin, R.; Pilajun, R.; Cherdthong, A.; Wanapat, M.; Duanyai, S.; Sombatsri, P. Influence of fibrolytic enzymes in total mixed ration containing urea-molasses-treated sugarcane bagasse on the performance of lactating Holstein–Friesian crossbred cows. Anim. Sci. J. 2021, 92, e13652. [Google Scholar] [CrossRef]
- So, S.; Wanapat, M.; Cherdthong, A. Effect of sugarcane bagasse as industrial by-products treated Lactobacillus casei TH14, cellulase, and molasses on feed utilization, ruminal ecology and milk production of mid-lactating Holstein Friesian cows. J. Sci. Food Agri. 2021, 101, 4481–4489. [Google Scholar] [CrossRef]
- Miller, W.F.; Titgemeyer, E.C.; Nagaraja, T.G.; Watanabe, D.H.M.; Felizari, L.D.; Millen, D.D.; Smith, Z.K.; Johnson, B.J. Influence of cane molasses inclusion to dairy cow diets during the transition period on rumen epithelial development. Animals 2021, 11, 1230. [Google Scholar] [CrossRef]
- Lesmeister, K.E.; Heinrichs, A.J. Effects of adding extra molasses to a texturized calf starter on rumen development, growth characteristics, and blood parameters in neonatal dairy calves. J. Dairy Sci. 2005, 88, 411–418. [Google Scholar] [CrossRef]
Item | Concentrate Diet | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|
Chemical composition | |||||
DM, % | 88.04 | 34.39 | 37.84 | 37.61 | 35.27 |
OM, % DM | 96.66 | 97.23 | 95.87 | 93.02 | 94.37 |
CP, % DM | 13.66 | 3.32 | 4.09 | 5.46 | 10.07 |
NDF, % DM | 39.64 | 91.32 | 84.22 | 75.16 | 72.34 |
ADF, % DM | 24.87 | 56.03 | 54.54 | 47.75 | 45.89 |
ADL, % DM | 6.67 | 9.90 | 9.98 | 9.17 | 8.61 |
pH | 4.40 | 3.84 | 3.92 | 3.94 | |
Lactic acid bacteria (cfu/g FM) | <10 | 2.4 × 105 | 1.2 × 105 | 9.7 × 105 |
Item | T1 | T2 | T3 | T4 | SEM | p-Value |
---|---|---|---|---|---|---|
Total DM intake, kg/d | 0.77 | 0.79 | 0.82 | 0.84 | 5.24 | 0.90 |
DM intake, % BW | 3.55 | 3.66 | 3.86 | 3.84 | 0.16 | 0.67 |
DM intake, g/kg BW0.75 | 76.28 | 78.69 | 83.74 | 82.28 | 3.38 | 0.62 |
Apparent digestibility, % | ||||||
DM | 60.18 | 69.59 | 63.33 | 66.11 | 3.56 | 0.85 |
OM | 70.25 | 71.52 | 72.10 | 73.25 | 2.50 | 0.49 |
CP | 64.56 c | 69.22 b | 68.85 b | 65.56 a | 0.56 | 0.55 |
NDF | 48.67 | 60.34 | 55.79 | 50.53 | 4.95 | 0.11 |
ADF | 40.24 | 57.34 | 53.79 | 50.53 | 4.95 | 0.23 |
ADL | 78.56 | 80.75 | 78.79 | 79.20 | 2.84 | 0.98 |
Item | T1 | T2 | T3 | T4 | SEM | p-Value |
---|---|---|---|---|---|---|
PUN, mg/dL | ||||||
0 h before feeding | 15.01 | 14.37 | 15.84 | 18.64 | 4.42 | 0.16 |
4 h after feeding | 16.47 b | 14.98 b | 16.21 b | 22.48 a | 0.65 | 0.04 |
Blood glucose, mg/dL | ||||||
0 h before feeding | 64.25 | 70.00 | 62.00 | 63.75 | 7.81 | 0.85 |
4 h after feeding | 63.50 | 67.50 | 65.50 | 69.00 | 4.47 | 0.87 |
PCV, % | ||||||
0 h before feeding | 32.75 | 33.25 | 32.00 | 31.00 | 4.04 | 0.99 |
4 h after feeding | 31.25 | 31.50 | 31.00 | 29.50 | 4.18 | 0.75 |
Item | T1 | T2 | T3 | T4 | SEM | p-Value |
---|---|---|---|---|---|---|
Ruminal pH | ||||||
0 h before feeding | 7.43 | 7.35 | 7.45 | 7.27 | 0.21 | 0.75 |
4 h after feeding | 6.55 | 6.25 | 6.26 | 6.45 | 0.22 | 0.07 |
NH3–N concentration, mg/dL | ||||||
0 h before feeding | 4.60 | 4.46 | 4.67 | 5.26 | 2.39 | 0.08 |
4 h after feeding | 13.32 | 11.86 | 14.89 | 16.50 | 1.85 | 0.14 |
Total VFA, mmol/L | ||||||
0 h before feeding | 68.13 | 65.99 | 61.90 | 60.54 | 2.80 | 0.43 |
4 h after feeding | 75.13 | 76.35 | 79.13 | 79.81 | 1.81 | 0.50 |
Acetic acid, % | ||||||
0 h before feeding | 76.89 | 70.49 | 70.42 | 74.63 | 1.82 | 0.39 |
4 h after feeding | 66.08 | 66.88 | 67.85 | 68.72 | 2.15 | 0.43 |
Propionic acid, % | ||||||
0 h before feeding | 16.11 | 20.83 | 16.23 | 22.78 | 0.12 | 0.06 |
4 h after feeding | 26.37 | 23.58 | 21.65 | 22.81 | 1.39 | 0.18 |
Butyric acid, % | ||||||
0 h before feeding | 7.00 | 8.68 | 6.80 | 9.14 | 0.65 | 0.36 |
4 h after feeding | 7.55 d | 9.54 b | 10.50 a | 8.47 c | 0.12 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraiprom, T.; Jantarat, S.; Yaemkong, S.; Cherdthong, A.; Incharoen, T. Feeding Thai Native Sheep Molasses Either Alone or in Combination with Urea-Fermented Sugarcane Bagasse: The Effects on Nutrient Digestibility, Rumen Fermentation, and Hematological Parameters. Vet. Sci. 2022, 9, 415. https://doi.org/10.3390/vetsci9080415
Kraiprom T, Jantarat S, Yaemkong S, Cherdthong A, Incharoen T. Feeding Thai Native Sheep Molasses Either Alone or in Combination with Urea-Fermented Sugarcane Bagasse: The Effects on Nutrient Digestibility, Rumen Fermentation, and Hematological Parameters. Veterinary Sciences. 2022; 9(8):415. https://doi.org/10.3390/vetsci9080415
Chicago/Turabian StyleKraiprom, Thaintip, Sitthisak Jantarat, Suphawadee Yaemkong, Anusorn Cherdthong, and Tossaporn Incharoen. 2022. "Feeding Thai Native Sheep Molasses Either Alone or in Combination with Urea-Fermented Sugarcane Bagasse: The Effects on Nutrient Digestibility, Rumen Fermentation, and Hematological Parameters" Veterinary Sciences 9, no. 8: 415. https://doi.org/10.3390/vetsci9080415