The Impact of Anticoagulation Agent on the Composition and Phenotype of Blood Leukocytes in Dromedary Camels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blood Sampling and Cell Separation
2.2. Analysis of Cell Necrosis and Apoptosis
2.3. Monoclonal Antibodies
2.4. Membrane Immunofluorescence
2.5. Statistical Analyses
3. Results
3.1. The Impact of Anticoagulant on the Camel Leukogram
3.2. Lymphocyte Composition Differs between Blood Collected in EDTA and Lithium Heparin Tubes
3.3. The Influence of Anticoagulation Agent on the Expression of Several Myeloid Markers on Camel Monocytes and Neutrophils
3.4. The Influence of Anticoagulation Agent on the Expression Pattern of Several Cell Surface Adhesion Molecules on Camel Leukocytes
3.5. The Influence of Anticoagulation Agent on the Vitality of Camel Leukocytes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Van Dongen, J.J.; Lhermitte, L.; Bottcher, S.; Almeida, J.; van der Velden, V.H.; Flores-Montero, J.; Rawstron, A.; Asnafi, V.; Lecrevisse, Q.; Lucio, P.; et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012, 26, 1908–1975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farschtschi, S.; Mattes, M.; Hildebrandt, A.; Chiang, D.; Kirchner, B.; Kliem, H.; Pfaffl, M.W. Development of an advanced flow cytometry based high-resolution immunophenotyping method to benchmark early immune response in dairy cows. Sci. Rep. 2021, 11, 22896. [Google Scholar] [CrossRef] [PubMed]
- Braun, U.; Gerspach, C.; Riond, B.; Oschlies, C.; Corti, S.; Bleul, U. Haematological findings in 158 cows with acute toxic mastitis with a focus on the leukogram. Acta Vet. Scand. 2021, 63, 11. [Google Scholar] [CrossRef] [PubMed]
- Gauger, P.C.; Lager, K.M.; Vincent, A.L.; Opriessnig, T.; Cheung, A.K.; Butler, J.E.; Kehrli, M.E., Jr. Leukogram abnormalities in gnotobiotic pigs infected with porcine circovirus type 2. Vet. Microbiol. 2011, 154, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Papakonstantinou, S.; Berzina, I.; Lawlor, A.; O’Neill, J.E.; O’Brien, J.P. Rapid, effective and user-friendly immunophenotyping of canine lymphoma using a personal flow cytometer. Ir. Vet. J. 2013, 66, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussen, J.; Schuberth, H.J. Recent Advances in Camel Immunology. Front. Immunol. 2020, 11, 614150. [Google Scholar] [CrossRef]
- Li, J.C.; Funahashi, H. Effect of blood serum, caffeine and heparin on in vitro phagocytosis of frozen-thawed bull sperm by neutrophils derived from the peripheral blood of cows. Theriogenology 2010, 74, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Baien, S.H.; Langer, M.N.; Heppelmann, M.; von Kockritz-Blickwede, M.; de Buhr, N. Comparison Between K3EDTA and Lithium Heparin as Anticoagulant to Isolate Bovine Granulocytes from Blood. Front. Immunol. 2018, 9, 1570. [Google Scholar] [CrossRef] [Green Version]
- Gray, E.; Hogwood, J.; Mulloy, B. The anticoagulant and antithrombotic mechanisms of heparin. Handb. Exp. Pharm. 2012, 43–61. [Google Scholar] [CrossRef]
- Jin, L.; Abrahams, J.P.; Skinner, R.; Petitou, M.; Pike, R.N.; Carrell, R.W. The anticoagulant activation of antithrombin by heparin. Proc. Natl. Acad. Sci. USA 1997, 94, 14683–14688. [Google Scholar] [CrossRef] [Green Version]
- Ibeagha-Awemu, E.M.; Ibeagha, A.E.; Zhao, X. The influence of different anticoagulants and sample preparation methods on measurement of mCD14 on bovine monocytes and polymorphonuclear neutrophil leukocytes. BMC Res. Notes 2012, 5, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walencik, J.; Witeska, M. The effects of anticoagulants on hematological indices and blood cell morphology of common carp (Cyprinus carpio L.). Comp. Biochem. Physiol. C Toxicol. Pharm. 2007, 146, 331–335. [Google Scholar] [CrossRef]
- Freitas, M.; Porto, G.; Lima, J.L.; Fernandes, E. Isolation and activation of human neutrophils in vitro. The importance of the anticoagulant used during blood collection. Clin. Biochem. 2008, 41, 570–575. [Google Scholar] [CrossRef]
- Strobel, L.; Johswich, K.O. Anticoagulants impact on innate immune responses and bacterial survival in whole blood models of Neisseria meningitidis infection. Sci. Rep. 2018, 8, 10225. [Google Scholar] [CrossRef]
- El Habbal, M.H.; Smith, L.; Elliott, M.J.; Strobel, S. Effect of heparin anticoagulation on neutrophil adhesion molecules and release of IL8: C3 is not essential. Cardiovasc. Res. 1995, 30, 676–681. [Google Scholar] [CrossRef]
- Shalekoff, S.; Page-Shipp, L.; Tiemessen, C.T. Effects of anticoagulants and temperature on expression of activation markers CD11b and HLA-DR on human leukocytes. Clin. Diagn. Lab. Immunol. 1998, 5, 695–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manaster, J.; Chezar, J.; Shurtz-Swirski, R.; Shapiro, G.; Tendler, Y.; Kristal, B.; Shasha, S.M.; Sela, S. Heparin induces apoptosis in human peripheral blood neutrophils. Br. J. Haematol. 1996, 94, 48–52. [Google Scholar] [CrossRef]
- Nunes, P.; Demaurex, N. The role of calcium signaling in phagocytosis. J. Leukoc. Biol. 2010, 88, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Friedmann, K.S.; Bozem, M.; Hoth, M. Calcium signal dynamics in T lymphocytes: Comparing in vivo and in vitro measurements. Semin. Cell Dev. Biol. 2019, 94, 84–93. [Google Scholar] [CrossRef]
- Nawrocki, M.; Lory, N.; Bedke, T.; Stumme, F.; Diercks, B.P.; Guse, A.H.; Meier, C.; Gagliani, N.; Mittrucker, H.W.; Huber, S. Trans-Ned 19-Mediated Antagonism of Nicotinic Acid Adenine Nucleotide-Mediated Calcium Signaling Regulates Th17 Cell Plasticity in Mice. Cells 2021, 10, 3039. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, C.; Marchi, S.; Pinton, P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Biol. 2018, 19, 713–730. [Google Scholar] [CrossRef] [PubMed]
- Crowley, L.C.; Scott, A.P.; Marfell, B.J.; Boughaba, J.A.; Chojnowski, G.; Waterhouse, N.J. Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry. Cold Spring Harb. Protoc. 2016, 2016, pdb-prot087163. [Google Scholar] [CrossRef] [PubMed]
- Wolosin, J.M.; Zamudio, A.; Wang, Z. Application of JC1 for non-toxic isolation of cells with MDR transporter activity by flow cytometry. PLoS ONE 2017, 12, e0174905. [Google Scholar] [CrossRef] [PubMed]
- Lugli, E.; Troiano, L.; Ferraresi, R.; Roat, E.; Prada, N.; Nasi, M.; Pinti, M.; Cooper, E.L.; Cossarizza, A. Characterization of cells with different mitochondrial membrane potential during apoptosis. Cytom. A 2005, 68, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Mosaad, A.A.; Elbagory, A.R.; Khalid, A.M.; Waters, W.; Tibary, A.; Hamilton, M.J.; Davis, W.C. Identification of monoclonal antibody reagents for use in the study of the immune response to infectious agents in camel and water buffalo. J. Camel Pract. Res. 2006, 13, 91–101. [Google Scholar]
- Al-Mubarak, A.I.A. Differential expression of the coronavirus (Mers-cov) Receptor, Dipeptidyl Peptidase 4, on normal and stimulated leukocytes of dromedary camels. J. Camel Pract. Res. 2018, 25, 249. [Google Scholar] [CrossRef]
- Hussen, J.; Shawaf, T.; Al-herz, A.I.; Alturaifi, H.R.; Al khamees, M.; Alluwaimi, A.M. Expression Patterns of Cell Adhesion Molecules on CD4+ T Cells and WC1+ T Cells in the Peripheral Blood of Dromedary Camels. Pak. Vet. J. 2018, 38, 231–236. [Google Scholar] [CrossRef]
- Hussen, J.; Shawaf, T.; Al-herz, A.I.; Alturaifi, H.R.; Alluwaimi, A.M. Reactivity of commercially available monoclonal antibodies to human CD antigens with peripheral blood leucocytes of dromedary camels (Camelus dromedarius). Open Vet. J. 2017, 7, 150–156. [Google Scholar] [CrossRef] [Green Version]
- Hussen, J.; Shawaf, T.; Al-Mubarak, A.I.A.; Al Humam, N.A.; Almathen, F.; Schuberth, H.J. Dromedary camel CD14(high) MHCII(high) monocytes display inflammatory properties and are reduced in newborn camel calves. BMC Vet. Res. 2020, 16, 62. [Google Scholar] [CrossRef] [Green Version]
- Eger, M.; Hussen, J.; Drong, C.; Meyer, U.; von Soosten, D.; Frahm, J.; Daenicke, S.; Breves, G.; Schuberth, H.J. Impacts of parturition and body condition score on glucose uptake capacity of bovine monocyte subsets. Vet. Immunol. Immunopathol. 2015, 166, 33–42. [Google Scholar] [CrossRef]
- Olsen, A.K.; Bladbjerg, E.M.; Jensen, A.L.; Hansen, A.K. Effect of pre-analytical handling on haematological variables in minipigs. Lab. Anim. 2001, 35, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Icel, E.; Ucak, T.; Karakurt, Y.; Yilmaz, H.; Tasli, N.G.; Turk, A. The Relation of Neutrophil to Lymphocyte Ratio and Platelet to Lymphocyte Ratio with High Axial Myopia. Ocul. Immunol. Inflamm. 2019, 28, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Alan, S.; Tuna, S.; Turkoglu, E.B. The relation of neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and mean platelet volume with the presence and severity of Behcet’s syndrome. Kaohsiung J. Med. Sci. 2015, 31, 626–631. [Google Scholar] [CrossRef] [Green Version]
- Sari, I.; Sunbul, M.; Mammadov, C.; Durmus, E.; Bozbay, M.; Kivrak, T.; Gerin, F. Relation of neutrophil-to-lymphocyte and platelet-to-lymphocyte ratio with coronary artery disease severity in patients undergoing coronary angiography. Kardiol. Pol. 2015, 73, 1310–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Kalhor, N.; Hu, J.; Wang, B.; Chu, H.; Zhang, B.; Guan, Y.; Wu, Y. Pretreatment Neutrophil to Lymphocyte Ratio Is Associated with Poor Survival in Patients with Stage I-III Non-Small Cell Lung Cancer. PLoS ONE 2016, 11, e0163397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faria, S.S.; Fernandes, P.C., Jr.; Silva, M.J.; Lima, V.C.; Fontes, W.; Freitas-Junior, R.; Eterovic, A.K.; Forget, P. The neutrophil-to-lymphocyte ratio: A narrative review. Ecancermedicalscience 2016, 10, 702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaushik, R.; Gupta, M.; Sharma, M.; Jash, D.; Jain, N.; Sinha, N.; Chaudhry, A.; Chaudhry, D. Diagnostic and Prognostic Role of Neutrophil-to-Lymphocyte Ratio in Early and Late Phase of Sepsis. Indian J. Crit Care Med. 2018, 22, 660–663. [Google Scholar] [CrossRef]
- Hussen, J. Changes in Cell Vitality, Phenotype, and Function of Dromedary Camel Leukocytes After Whole Blood Exposure to Heat Stress in vitro. Front. Vet. Sci. 2021, 8, 182. [Google Scholar] [CrossRef]
- Payne, N.R.; Frestedt, J.; Hunkeler, N.; Gehrz, R. Cell-surface expression of immunoglobulin G receptors on the polymorphonuclear leukocytes and monocytes of extremely premature infants. Pediatr. Res. 1993, 33, 452–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van de Vijver, E.; Maddalena, A.; Sanal, O.; Holland, S.M.; Uzel, G.; Madkaikar, M.; de Boer, M.; van Leeuwen, K.; Koker, M.Y.; Parvaneh, N.; et al. Hematologically important mutations: Leukocyte adhesion deficiency (first update). Blood Cells Mol. Dis. 2012, 48, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Roos, D.; Law, S.K. Hematologically important mutations: Leukocyte adhesion deficiency. Blood Cells Mol. Dis. 2001, 27, 1000–1004. [Google Scholar] [CrossRef] [PubMed]
- Senbanjo, L.T.; Chellaiah, M.A. CD44: A Multifunctional Cell Surface Adhesion Receptor Is a Regulator of Progression and Metastasis of Cancer Cells. Front. Cell Dev. Biol. 2017, 5, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Teder, P.; Judd, N.P.; Noble, P.W.; Doerschuk, C.M. CD44 deficiency leads to enhanced neutrophil migration and lung injury in Escherichia coli pneumonia in mice. Am. J. Pathol. 2002, 161, 2219–2228. [Google Scholar] [CrossRef] [Green Version]
- Hussen, J.; Duvel, A.; Sandra, O.; Smith, D.; Sheldon, I.M.; Zieger, P.; Schuberth, H.J. Phenotypic and functional heterogeneity of bovine blood monocytes. PLoS ONE 2013, 8, e71502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Antigen | Antibody Clone | Labeling | Source | Isotype |
---|---|---|---|---|
CD14 | CAM36A | - | Kingfisher | Mouse IgG1 |
MHCII | TH81A5 | - | Kingfisher | Mouse IgG2a |
CD172a | DH59b | Kingfisher | Mouse IgG1 | |
CD163 | LND68A | - | Kingfisher | Mouse IgG1 |
CD4 | GC50A1 | - | Xceltis | Mouse IgM |
WC1 | BAQ128A | - | Xceltis | Mouse IgG1 |
CD11a | HUH73A | - | Kingfisher | Mouse IgG1 |
CD18 | 6.7 | FITC | BD | Mouse IgG2a |
CD44 | LT41A | - | Kingfisher | Mouse IgG2a |
CD45 | LT12A | - | Kingfisher | Mouse IgG2a |
Mouse IgM | poly | APC | Thermofisher | Goat IgG |
Mouse IgG1 | poly | FITC | Thermofisher | Goat IgG |
Mouse IgG2a | poly | PE | Thermofisher | Goat IgG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussen, J.; Shawaf, T.; Alhojaily, S.M. The Impact of Anticoagulation Agent on the Composition and Phenotype of Blood Leukocytes in Dromedary Camels. Vet. Sci. 2022, 9, 78. https://doi.org/10.3390/vetsci9020078
Hussen J, Shawaf T, Alhojaily SM. The Impact of Anticoagulation Agent on the Composition and Phenotype of Blood Leukocytes in Dromedary Camels. Veterinary Sciences. 2022; 9(2):78. https://doi.org/10.3390/vetsci9020078
Chicago/Turabian StyleHussen, Jamal, Turke Shawaf, and Sameer M. Alhojaily. 2022. "The Impact of Anticoagulation Agent on the Composition and Phenotype of Blood Leukocytes in Dromedary Camels" Veterinary Sciences 9, no. 2: 78. https://doi.org/10.3390/vetsci9020078