Association between the Microsatellite Ap243, AC117 and SV185 Polymorphisms and Nosema Disease in the Dark Forest Bee Apis mellifera mellifera
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bee Samples
2.2. Study Design
2.3. Experimental Procedures
2.4. Estimation of the Nosemosis Level
2.5. Statistical Analysis
3. Results
3.1. Genetic Diversity of the A. m. mellifera Honey Bees in Siberia on the Microsatellite Loci
3.2. Comparative Characteristics of the Genetic Diversity of A. m. mellifera Bees from Different Infectious Categories
3.3. Assessment of Associations of Genetic Markers with Nosema Infection/Resistance in the Dark Forest Bee A. m. mellifera
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chauzat, M.P.; Jacques, A.; Laurent, M.; Bougeard, S.; Hendrikx, P.; Ribière-Chabert, M.; EPILOBEE Consortium. Risk indi-cators affecting honey bee colony survival in Europe: One year of surveillance. Apidologie 2016, 47, 348–378. [Google Scholar] [CrossRef] [Green Version]
- Vanengelsdorp, D.; Meixner, M.D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 2010, 103, S80–S95. [Google Scholar] [CrossRef] [PubMed]
- Gomes, T.; Feás, X.; Iglesias, A.; Estevinho, L.M. Study of Organic Honey from the Northeast of Portugal. Molecules 2011, 16, 5374–5386. [Google Scholar] [CrossRef] [PubMed]
- Higes, M.; Meana, A.; Bartolomé, C.; Botías, C.; Martín-Hernández, R. Nosema ceranae (Microsporidia), a controversial 21st century honey bee pathogen: N. ceranae an emergent pathogen for beekeeping. Environ. Microbiol. Rep. 2013, 5, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Goulson, D.; Nicholls, E.; Botías, C.; Rotheray, E.L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 2015, 347, 1255957. [Google Scholar] [CrossRef] [PubMed]
- Bilodeau, L.; Sylvester, A.; Danka, R.; Rinderer, T. Comparison of microsatellite DNA diversity among commercial queen breeder stocks of Italian honey bees in the United States and Italy. J. Apic. Res. 2008, 47, 93–98. [Google Scholar] [CrossRef]
- Bilodeau, L.; Rinderer, T.E.; Sylvester, H.A.; Holloway, B.; Oldroyd, B.P. Patterns of Apis mellifera infestation by Nosema ceranae support the parasite hypothesis for the evolution of extreme polyandry in eusocial insects. Apidologie 2012, 43, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Bilodeau, L.; Villa, J.D.; Holloway, B.; Danka, R.G.; Rinderer, T.E. Molecular genetic analysis of tracheal mite resistance in honey bees. J. Apic. Res. 2015, 54, 1–7. [Google Scholar] [CrossRef]
- Büchler, R.; Berg, S.; Le Conte, Y. Breeding for resistance to Varroa destructor in Europe. Apidologie 2010, 41, 393–408. [Google Scholar] [CrossRef] [Green Version]
- Spötter, A.; Gupta, P.; Nürnberg, G.; Reinsch, N.; Bienefeld, K. Development of a 44K SNP assay focussing on the analysis of a Varroa-specific defence behaviour in honey bees (Apis mellifera carnica). Mol. Ecol. Resour. 2011, 12, 323–332. [Google Scholar] [CrossRef]
- Bixby, M.; Baylis, K.; Hoover, S.E.; Currie, R.W.; Melathopoulos, A.P.; Pernal, S.F.; Foster, L.J.; Guarna, M.M. A Bio-Economic Case Study of Canadian Honey Bee (Hymenoptera: Apidae) Colonies: Marker-Assisted Selection (MAS) in Queen Breeding Affects Beekeeper Profits. J. Econ. Èntomol. 2017, 110, 816–825. [Google Scholar] [CrossRef] [PubMed]
- Yunusbaev, U.B.; Kaskinova, M.D.; Ilyasov, R.A.; Gaifullina, L.R.; Saltykova, E.S.; Nikolenko, A.G. The Role of Whole-Genome Studies in the Investigation of Honey Bee Biology. Russ. J. Genet. 2019, 55, 815–824. [Google Scholar] [CrossRef]
- Maucourt, S.; Fortin, F.; Robert, C.; Giovenazzo, P. Genetic parameters of honey bee colonies traits in a Canadian Selection Program. Insects 2020, 11, 587. [Google Scholar] [CrossRef] [PubMed]
- Spötter, A.; Gupta, P.; Mayer, M.; Reinsch, N.; Bienefeld, K. Genome-Wide Association Study of a Varroa-Specific Defense Behavior in Honeybees (Apis mellifera). J. Hered. 2016, 107, 220–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broeckx, B.J.G.; De Smet, L.; Blacquière, T.; Maebe, K.; Khalenkow, M.; Van Poucke, M.; Dahle, B.; Neumann, P.; Nguyen, K.B.; Smagghe, G.; et al. Honey bee predisposition of resistance to ubiquitous mite infestations. Sci. Rep. 2019, 9, 7794. [Google Scholar] [CrossRef] [Green Version]
- Graham, A.M.; Munday, M.D.; Kaftanoglu, O.; Page, R.E., Jr.; Amdam, G.V.; Rueppell, O. Support for the reproductive ground plan hypothesis of social evolution and major QTL for ovary traits of Africanized worker honey bees (Apis mellifera L.). BMC Evol. Biol. 2011, 11, 95. [Google Scholar] [CrossRef] [Green Version]
- Rueppell, O.; Metheny, J.D.; Linksvayer, T.; Fondrk, M.K.; Page, R.E., Jr.; Amdam, G.V. Genetic architecture of ovary size and asymmetry in European honeybee workers. Heredity 2011, 106, 894–903. [Google Scholar] [CrossRef] [Green Version]
- Holloway, B.; Sylvester, H.A.; Bourgeois, L.; Rinderer, T.E. Association of single nucleotide polymorphisms to resistance to chalkbrood in Apis mellifera. J. Apic. Res. 2012, 51, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Holloway, B.; Tarver, M.R.; Rinderer, T.E. Fine mapping identifies significantly associating markers for resistance to the honey bee brood fungal disease, Chalkbrood. J. Apic. Res. 2013, 52, 134–140. [Google Scholar] [CrossRef]
- Behrens, D.; Huang, Q.; Geßner, C.; Rosenkranz, P.; Frey, E.; Locke, B.; Moritz, R.F.A.; Kraus, F.B. Three QTL in the honey bee Apis mellifera L. suppress reproduction of the parasitic mite Varroa destructor. Ecol. Evol. 2011, 1, 451–458. [Google Scholar] [CrossRef]
- Tsuruda, J.M.; Harris, J.W.; Bourgeois, L.; Danka, R.G.; Hunt, G.J. High-Resolution Linkage Analyses to Identify Genes That Influence Varroa Sensitive Hygiene Behavior in Honey Bees. PLoS ONE 2012, 7, e48276. [Google Scholar] [CrossRef] [Green Version]
- Lapidge, K.L.; Oldroyd, B.P.; Spivak, M. Seven suggestive quantitative trait loci influence hygienic behavior of honey bees. Naturwissenschaften 2002, 89, 565–568. [Google Scholar] [CrossRef] [PubMed]
- Rüppell, O.; Pankiw, T.; Page, R.E., Jr. Pleiotropy, epistasis and new QTL: The genetic architecture of honey bee foraging behavior. J. Hered. 2004, 95, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Shorter, J.R.; Arechavaleta-Velasco, M.; Robles-Rios, C.; Hunt, G.J. A Genetic Analysis of the Stinging and Guarding Behaviors of the Honey Bee. Behav. Genet. 2012, 42, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Wilson-Rich, N.; Spivak, M.; Fefferman, N.H.; Starks, P.T. Genetic, individual, and group facilitation of disease resistance in insect societies. Annu. Rev. Entomol. 2007, 54, 405–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locke, B.; Forsgren, E.; De Miranda, J.R. Increased tolerance and resistance to virus infections: A possible factor in the survival of Varroa destructor resistant honey bees (Apis mellifera). PLoS ONE 2014, 9, e99998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Toufailia, H.; Evison, S.E.F.; Hughes, W.O.H.; Ratnieks, F.L.W. Both hygienic and non-hygienic honeybee, Apis mellifera, colonies remove dead and diseased larvae from open brood cells. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170201. [Google Scholar] [CrossRef] [Green Version]
- Rosenkranz, P.; Aumeier, P.; Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 2010, 103, S96–S119. [Google Scholar] [CrossRef]
- Nazzi, F.; Brown, S.P.; Annoscia, D.; Del Piccolo, F.; Di Prisco, G.; Varricchio, P.; Della Vedova, G.; Cattonaro, F.; Caprio, E.; Pennacchio, F. Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLoS Pathog. 2012, 8, e1002735. [Google Scholar] [CrossRef] [Green Version]
- Wagoner, K.M.; Spivak, M.; Rueppell, O. Brood Affects Hygienic Behavior in the Honey Bee (Hymenoptera: Apidae). J. Econ. Èntomol. 2018, 111, 2520–2530. [Google Scholar] [CrossRef] [Green Version]
- Oxley, P.R.; Spivak, M.; Oldroyd, B.P. Six quantitative trait loci influence task thresholds for hygienic behaviour in honeybees (Apis mellifera). Mol. Ecol. 2010, 19, 1452–1461. [Google Scholar] [CrossRef] [PubMed]
- Higes, M.; Martín-Hernández, R.; Garrido-Bailon, E.; Gonzalez-Porto, A.V.; Garcia-Palencia, P.; Meana, A.; Del Nozal, M.J.; Mayo, R.; Bernal, J.L. Honeybee colony collapse due to Nosema ceranae in professional apiaries. Environ. Microbiol. Rep. 2009, 1, 110–113. [Google Scholar] [CrossRef] [PubMed]
- Vanengelsdorp, D.; Evans, J.D.; Saegerman, C.; Mullin, C.; Haubruge, E.; Nguyen, B.K.; Frazier, M.; Frazier, J.; Cox-Foster, D.; Chen, Y.; et al. Colony Collapse Disorder: A Descriptive Study. PLoS ONE 2009, 4, e6481. [Google Scholar] [CrossRef] [PubMed]
- Goblirsch, M. Nosema ceranae disease of the honey bee (Apis mellifera). Apidologie 2017, 49, 131–150. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Kryger, P.; Le Conte, Y.; Lattorff, H.M.G.; Kraus, F.B.; Moritz, R.F.A.; Lattorff, M. Four quantitative trait loci associated with low Nosema ceranae (Microsporidia) spore load in the honeybee Apis mellifera. Apidologie 2013, 45, 248–256. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Chen, Y.; Wang, R.W.; Schwarz, R.S.; Evans, J.D. Honey bee microRNAs respond to infection by the microsporidian parasite Nosema ceranae. Sci. Rep. 2015, 5, 17494. [Google Scholar] [CrossRef]
- Fries, I. Nosema apis—A Parasite in the Honey Bee Colony. Bee World 1993, 74, 5–19. [Google Scholar] [CrossRef]
- Higes, M.; Martín, R.; Meana, A. Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J. Invertebr. Pathol. 2006, 92, 93–95. [Google Scholar] [CrossRef]
- Fries, I.; Chauzat, M.-P.; Chen, Y.P.; Doublet, V.; Genersch, E.; Gisder, S.; Higes, M.; McMahon, D.P.; Martín-Hernández, R.; Natsopoulou, M.; et al. Standard methods for Nosema research. J. Apic. Res. 2013, 52, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Zander, E. Tierische Parasiten als Krankheitserreger bei der Biene. Münchener Bienenztg. 1909, 31, 196–204. [Google Scholar]
- Klee, J.; Besana, A.M.; Genersch, E.; Gisder, S.; Nanetti, A.; Tam, D.Q.; Chinh, T.X.; Puerta, F.; Ruz, J.M.; Kryger, P.; et al. Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J. Invertebr. Pathol. 2007, 96, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Martín-Hernández, R.; Meana, A.; Prieto, L.; Salvador, A.M.; Garrido-Bailoón, E.; Higes, M. Outcome of Colonization of Apis mellifera by Nosema ceranae. Appl. Environ. Microbiol. 2007, 73, 6331–6338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Evans, J.D.; Smith, I.B.; Pettis, J.S. Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States. J. Invertebr. Pathol. 2008, 97, 186–188. [Google Scholar] [CrossRef] [PubMed]
- Fries, I.; Feng, F.; Da Silva, A.; Slemenda, S.B.; Pieniazek, N.J. Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur. J. Protistol. 1996, 32, 356–365. [Google Scholar] [CrossRef]
- Fries, I.; Martin, R.; Meana, A.; García-Palencia, P.; Higes, M. Natural infections of Nosema ceranae in European honey bees. J. Apic. Res. 2006, 47, 230–233. [Google Scholar] [CrossRef]
- Fries, I. Nosema ceranae in European honey bees (Apis mellifera). J. Invertebr. Pathol. 2010, 103, S73–S79. [Google Scholar] [CrossRef]
- Williams, G.R.; Shafer, A.B.; Rogers, R.E.; Shutler, D.; Stewart, D.T. First detection of Nosema ceranae, a microsporidian parasite of European honey bees (Apis mellifera), in Canada and central USA. J. Invertebr. Pathol. 2008, 97, 189–192. [Google Scholar] [CrossRef]
- Giersch, T.; Berg, T.; Galea, F.; Hornitzky, M. Nosema ceranae infects honey bees (Apis mellifera) and contaminates honey in Australia. Apidologie 2009, 40, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.P.; Huang, Z.Y. Nosema ceranae, a newly identified pathogen of Apis mellifera in the USA and Asia. Apidologie 2010, 41, 364–374. [Google Scholar] [CrossRef] [Green Version]
- Gisder, S.; Schüler, V.; Horchler, L.L.; Groth, D.; Genersch, E. Long-term temporal trends of Nosema spp. infection prevalence in northeast Germany: Continuous spread of Nosema ceranae, an emerging pathogen of honey bees (Apis mellifera), but no general replacement of Nosema apis. Front. Cell. Infect. Microbiol. 2017, 7, 301. [Google Scholar] [CrossRef] [Green Version]
- Ostroverkhova, N.; Kucher, A.; Golubeva, E.; Rosseykina, S.; Konusova, O. Study of Nosema spp. in the Tomsk region, Siberia: Co-infection is widespread in honeybee colonies. Far East. Èntomol. 2019, 378, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Ostroverkhova, N.V. Prevalence of Nosema ceranae (Microsporidia) in the Apis mellifera mellifera bee colonies from long time isolated apiaries of Siberia. Far East. Èntomol. 2020, 407, 8–20. [Google Scholar] [CrossRef]
- Ostroverkhova, N.V.; Konusova, O.L.; Kucher, A.N.; Sharakhov, I.V. A comprehensive characterization of the honeybees in Siberia (Russia). In Beekeeping and Bee Conservation—Advances in Research; Chambo, D.E., Ed.; InTech: Rijeka, Croatia, 2016; pp. 1–37. [Google Scholar]
- Ostroverkhova, N.V.; Konusova, O.L.; Kucher, A.N.; Kireeva, T.N.; Rosseykina, S.A. Prevalence of the Microsporidian Nosema spp. in Honey Bee Populations (Apis mellifera) in Some Ecological Regions of North Asia. Vet. Sci. 2020, 7, 111. [Google Scholar] [CrossRef]
- Higes, M.; Martín-Hernández, R.; Martínez-Salvador, A.; Garrido-Bailón, E.; González-Porto, A.V.; Meana, A.; Bernal, J.L.; Del Nozal, M.J. A preliminary study of the epidemiological factors related to honey bee colony loss in Spain. Environ. Microbiol. Rep. 2010, 2, 243–250. [Google Scholar] [CrossRef]
- Bacandritsos, N.; Granato, A.; Budge, G.; Papanastasiou, I.; Roinioti, E.; Caldon, M.; Falcaro, C.; Gallina, A.; Mutinelli, F. Sudden deaths and colony population decline in Greek honey bee colonies. J. Invertebr. Pathol. 2010, 105, 335–340. [Google Scholar] [CrossRef]
- Soroker, V.; Hetzroni, A.; Yakobson, B.; David, D.; David, A.; Voet, H.; Slabezki, Y.; Efrat, H.; Levski, S.; Kamer, Y.; et al. Evaluation of colony losses in Israel in relation to the incidence of pathogens and pests. Apidologie 2011, 42, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Martín-Hernández, R.; Bartolomé, C.; Chejanovsky, N.; Le Conte, Y.; Dalmon, A.; Dussaubat, C.; García-Palencia, P.; Meana, A.; Pinto, M.A.; Soroker, V.; et al. Nosema ceranae in Apis mellifera: A 12 years post-detection perspective. Environ. Microbiol. 2018, 20, 1302–1329. [Google Scholar] [CrossRef] [Green Version]
- Traynor, K. Bee breeding around the world. Am. Bee J. 2008, 148, 135–139. [Google Scholar]
- Huang, Q.; Kryger, P.; Le Conte, Y.; Moritz, R.F.A. Survival and immune response of drones of a Nosemosis tolerant honey bee strain towards N. ceranae infections. J. Invertebr. Pathol. 2012, 109, 297–302. [Google Scholar] [CrossRef]
- Ellis, J. Stocks of bees in the United State. Am. Bee J. 2015, 1, 141–148. [Google Scholar]
- Masterman, R.; Ross, R.; Mesce, K.; Spivak, M. Olfactory and behavioral response thresholds to odors of diseased brood differ between hygienic and non-hygienic honey bees (Apis mellifera L.). J. Comp. Physiol. A 2001, 187, 441–452. [Google Scholar]
- Gerdts, J.; Dewar, R.L.; Simone-Finstrom, M.D.; Edwards, T.; Angove, M. Hygienic behaviour selection via freeze-killed honey bee brood not associated with chalkbrood resistance in eastern Australia. PLoS ONE 2018, 13, e0203969. [Google Scholar] [CrossRef] [Green Version]
- Leclercq, G.; Francis, F.; Gengler, N.; Blacquière, T. Bioassays to Quantify Hygienic Behavior in Honey Bee (Apis mellifera L.) Colonies: A Review. J. Apic. Res. 2018, 57, 663–673. [Google Scholar] [CrossRef]
- Guichard, M.; Neuditschko, M.; Soland, G.; Fried, P.; Grandjean, M.; Gerster, S.; Dainat, B.; Bijma, P.; Brascamp, E.W. Estimates of genetic parameters for production, behaviour, and health traits in two Swiss honey bee populations. Apidologie 2020, 1–16. [Google Scholar] [CrossRef]
- Rothenbuhler, W.C. Behavior genetics of nest cleaning in honey bees. IV. Responses of F1 and backcross generations to disease-killed brood. Am. Zool. 1964, 4, 111–123. [Google Scholar] [CrossRef] [Green Version]
- Gilliam, M.; Taber, S.; Richardson, G.V. Hygienic behavior of honey bees in relation to chalk brood disease. Apidologie 1983, 14, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Spivak, M.; Gilliam, M. Facultative expression of hygienic behavior of honey bees in relation to disease resistance. J. Apic. Res. 1993, 32, 147–157. [Google Scholar] [CrossRef]
- Arechavaleta-Velasco, M.E.; Guzman-Novoa, E. Relative effect of four characteristics that restrain the population growth of the mite Varroa destructor in honey bee (Apis mellifera) colonies. Apidologie 2001, 32, 157–174. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, A.; Spivak, M. The relationship between hygienic behavior and suppression of mite reproduction as honey bee (Apis mellifera) mechanisms of resistance to Varroa destructor. Apidologie 2005, 37, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Locke, B. Natural Varroa mite-surviving Apis mellifera honeybee populations. Apidologie 2016, 47, 467–482. [Google Scholar] [CrossRef] [Green Version]
- Valizadeh, P.; Guzman-Novoa, E.; Goodwin, P.H. Effect of Immune Inducers on Nosema ceranae Multiplication and Their Impact on Honey Bee (Apis mellifera L.) Survivorship and Behaviors. Insects 2020, 11, 572. [Google Scholar] [CrossRef] [PubMed]
- Ostroverkhova, N.V.; Kucher, A.N.; Konusova, O.L.; Kireeva, T.N.; Rosseykina, S.A.; Yartsev, V.V.; Pogorelov, Y.L. Genetic diversity of honey bee Apis mellifera in Siberia. In Phylogenetics of Bees; Ilyasov, R.A., Kwon, H.W., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 97–126. [Google Scholar]
- Ostroverkhova, N.V.; Kucher, A.N.; Konusova, O.L.; Gushchina, E.S.; Yartsev, V.V.; Pogorelov, Y.L. Dark-colored forest bee Apis mellifera in Siberia, Russia: Current state and conservation of populations. In Selected Studies in Biodiversity; IntechOpen: London, UK, 2018; pp. 157–180. [Google Scholar]
- Solignac, M.; Vautrin, D.; Loiseau, A.; Mougel, F.; Baudry, E. Five hundred and fifty microsatellite markers for the study of the honey bee (Apis mellifera L.) genome. Mol. Ecol. Notes 2003, 3, 307–311. [Google Scholar] [CrossRef]
- Raymond, M.; Rousset, F. GENEPOP (Version 1.2): Population Genetics Software for Exact Tests and Ecumenicism. J. Hered. 1995, 86, 248–249. [Google Scholar] [CrossRef]
- Morris, J.A.; Gardner, M.J. Statistics in Medicine: Calculating confidence intervals for relative risks (odds ratios) and standardised ratios and rates. BMJ 1988, 296, 1313–1316. [Google Scholar] [CrossRef] [Green Version]
- Ostroverkhova, N.V.; Kireeva, T.N. Genetic diversity of Apis mellifera carpathica honey bee subspecies. Far East. Èntomol. In Preparation.
- Muli, E.; Patch, H.; Frazier, M.; Frazier, J.; Torto, B.; Baumgarten, T.; Kilonzo, J.; Kimani, J.N.; Mumoki, F.; Masiga, D.; et al. Evaluation of the Distribution and Impacts of Parasites, Pathogens, and Pesticides on Honey Bee (Apis mellifera) Populations in East Africa. PLoS ONE 2014, 9, e94459. [Google Scholar] [CrossRef]
- Fleming, J.C.; Schmehl, D.R.; Ellis, J.D. Characterizing the Impact of Commercial Pollen Substitute Diets on the Level of Nosema spp. in Honey Bees (Apis mellifera L.). PLoS ONE 2015, 10, e0132014. [Google Scholar] [CrossRef] [Green Version]
- Azzouz-Olden, F.; Hunt, A.G.; DeGrandi-Hoffman, G. Transcriptional response of honey bee (Apis mellifera) to differential nutritional status and Nosema infection. BMC Genom. 2018, 19, 628. [Google Scholar] [CrossRef]
- Mendoza, Y.; Tomasco, I.; Antúnez, K.; Castelli, L.; Branchiccela, B.; Santos, E.; Invernizzi, C. Unraveling Honey Bee–Varroa destructor Interaction: Multiple Factors Involved in Differential Resistance between Two Uruguayan Populations. Vet. Sci. 2020, 7, 116. [Google Scholar] [CrossRef]
- Bhutani, N.; Venkatraman, P.; Goldberg, A.L. Puromycin-sensitive aminopeptidase is the major peptidase responsible for digesting polyglutamine sequences released by proteasomes during protein degradation. EMBO J. 2007, 26, 1385–1396. [Google Scholar] [CrossRef] [Green Version]
- Ren, B.; Liu, M.; Ni, J.; Tian, J. Role of Selenoprotein F in Protein Folding and Secretion: Potential Involvement in Human Disease. Nutrients 2018, 10, 1619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davì, V.; Tanimoto, H.; Ershov, D.; Haupt, A.; De Belly, H.; Le Borgne, R.; Couturier, E.; Boudaoud, A.; Minc, N. Mechanosensation dynamically coordinates polar growth and cell wall assembly to promote cell survival. Dev. Cell 2018, 45, 170–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Locus | Genotype | Allele | Infection Categories of Honey Bees | |||||
---|---|---|---|---|---|---|---|---|
Nosema-Negative | Nosema-Positive Low | Nosema-Positive High | ||||||
Genotype | Allele | Genotype | Allele | Genotype | Allele | |||
AC117 | 173–173 | 173 | 0.037 | 0.074 ± 0.036 | 0.024 | 0.079 ± 0.017 | 0.057 ± 0.021 | |
173–181 | 177 | 0.074 | 0.148 ± 0.048 | 0.110 | 0.075 ± 0.017 | 0.115 | 0.025 ± 0.014 | |
177–177 | 181 | 0.037 | 0.296 ± 0.062 | 0.008 | 0.260 ± 0.028 | 0.533 ± 0.045 | ||
177–181 | 185 | 0.482 ± 0.068 | 0.039 | 0.587 ± 0.031 | 0.385 ± 0.044 | |||
177–185 | 0.222 | 0.094 | 0.049 | |||||
181–181 | 0.259 | 0.142 | 0.475 | |||||
181–185 | 0.087 | |||||||
185–185 | 0.370 | 0.496 | 0.361 | |||||
Ho/He | 0.296 ± 0.088 **/0.653 ± 0.040 | 0.331 ± 0.042 **/0.577 ± 0.025 | 0.164 ± 0.047 **/0.564 ± 0.025 | |||||
N | 27 | 127 | 61 | |||||
A113 | 210–218 | 210 | 0.016 | 0.008 ± 0.006 | ||||
212–212 | 212 | 0.107 ± 0.041 | 0.063 | 0.152 ± 0.023 | 0.016 | 0.063 ± 0.021 | ||
212–214 | 214 | 0.036 | 0.018 ± 0.018 | 0.008 | 0.008 ± 0.006 | |||
212–218 | 218 | 0.143 | 0.518 ± 0.067 | 0.125 | 0.598 ± 0.031 | 0.094 | 0.719 ± 0.040 | |
212–220 | 220 | 0.036 | 0.339 ± 0.063 | 0.023 | 0.207 ± 0.025 | 0.219 ± 0.037 | ||
212–222 | 222 | 0.008 | 0.008 ± 0.006 | |||||
212–226 | 226 | 0.016 | 0.020 ± 0.009 | |||||
214–226 | 228 | 0.018 ± 0.018 | 0.008 | |||||
218–218 | 0.286 | 0.438 | 0.609 | |||||
218–220 | 0.321 | 0.172 | 0.125 | |||||
218–222 | 0.008 | |||||||
220–220 | 0.143 | 0.109 | 0.156 | |||||
220–228 | 0.036 | |||||||
226–226 | 0.008 | |||||||
Ho/He | 0.571 ± 0.094/0.605 ± 0.041 | 0.383 ± 0.043 **/0.577 ± 0.027 | 0.219 ± 0.052 */0.432 ± 0.043 | |||||
N | 28 | 128 | 64 | |||||
Ap243 | 253–260 | 253 | 0.043 | 0.022 ± 0.022 | 0.074 | 0.037 ± 0.026 | ||
256–256 | 256 | 0.305 | 0.413 ± 0.073 | 0.284 | 0.419 ± 0.035 | 0.519 | 0.593 ± 0.067 | |
256–263 | 260 | 0.218 | 0.109 ± 0.046 | 0.233 | 0.111 ± 0.022 | 0.074 | 0.167 ± 0.051 | |
256–266 | 263 | 0.239 ± 0.063 | 0.283 ± 0.032 | 0.074 | 0.056 ± 0.031 | |||
256–269 | 266 | 0.022 ± 0.022 | 0.030 | 0.010 ± 0.007 | 0.037 ± 0.026 | |||
256–272 | 269 | 0.109 ± 0.046 | 0.010 | 0.096 ± 0.021 | 0.037 ± 0.026 | |||
260–260 | 272 | 0.043 | 0.022 ± 0.022 | 0.081 | 0.035 ± 0.013 | 0.111 | 0.056 ± 0.031 | |
260–263 | 275 | 0.043 | 0.065 ± 0.036 | 0.010 | 0.046 ± 0.015 | 0.019 ± 0.018 | ||
260–266 | 0.043 | 0.020 | ||||||
260–269 | 0.030 | 0.037 | ||||||
263–263 | 0.043 | 0.132 | ||||||
263–269 | 0.043 | 0.030 | ||||||
263–272 | 0.087 | 0.010 | 0.037 | |||||
263–275 | 0.020 | |||||||
269–269 | 0.043 | 0.020 | ||||||
269–272 | 0.020 | 0.037 | ||||||
269–275 | 0.087 | 0.040 | ||||||
272–275 | 0.030 | 0.037 | ||||||
Ho/He | 0.565 ± 0.103/0.743 ± 0.043 | 0.485 ± 0.050 **/0.719 ± 0.020 | 0.370 ± 0.093 */0.610 ± 0.067 | |||||
N | 23 | 99 | 27 | |||||
A024 | 92–92 | 92 | 0.500 | 0.712 ± 0.063 | 0.446 | 0.654 ± 0.030 | 0.313 | 0.578 ± 0.044 |
92–100 | 96 | 0.231 | 0.177 | 0.008 ± 0.005 | 0.219 | |||
92–106 | 100 | 0.192 | 0.154 ± 0.050 | 0.238 | 0.181 ± 0.024 | 0.313 | 0.266 ± 0.039 | |
96–96 | 102 | 0.008 | 0.008 ± 0.005 | |||||
100–100 | 106 | 0.038 | 0.135 ± 0.047 | 0.077 | 0.150 ± 0.022 | 0.156 | 0.156 ± 0.032 | |
100–102 | 0.015 | |||||||
100–106 | 0.015 | |||||||
106–106 | 0.038 | 0.023 | ||||||
Ho/He | 0.423 ± 0.097/0.452 ± 0.070 | 0.446 ± 0.044/0.517 ± 0.029 | 0.531 ± 0.062/0.571 ± 0.032 | |||||
N | 26 | 130 | 64 | |||||
A007 | 104–108 | 104 | 0.185 | 0.093 ± 0.039 | 0.224 | 0.121 ± 0.021 | 0.364 | 0.182 ± 0.041 |
104–113 | 108 | 0.815 ± 0.053 | 0.017 | 0.797 ± 0.026 | 0.818 ± 0.041 | |||
108–108 | 113 | 0.704 | 0.093 ± 0.039 | 0.655 | 0.082 ± 0.018 | 0.636 | ||
108–113 | 0.037 | 0.060 | ||||||
113–113 | 0.074 | 0.043 | ||||||
Ho/He | 0.222 ± 0.080/0.319 ± 0.075 | 0.302 ± 0.043/0.343 ± 0.036 | 0.364 ± 0.073/0.298 ± 0.052 | |||||
N | 27 | 116 | 44 | |||||
Ap049 | 120–120 | 120 | 0.036 | 0.161 ± 0.049 | 0.017 | 0.121 ± 0.021 | 0.057 ± 0.022 | |
120–127 | 127 | 0.250 | 0.714 ± 0.060 | 0.200 | 0.646 ± 0.031 | 0.113 | 0.745 ± 0.042 | |
120–130 | 130 | 0.054 ± 0.030 | 0.008 | 0.175 ± 0.025 | 0.085 ± 0.027 | |||
127–127 | 139 | 0.536 | 0.071 ± 0.034 | 0.425 | 0.046 ± 0.014 | 0.585 | 0.085 ± 0.027 | |
127–130 | 152 | 0.036 | 0.192 | 0.013 ± 0.007 | 0.094 | 0.028 ± 0.016 | ||
127–139 | 0.071 | 0.050 | 0.113 | |||||
130–130 | 0.036 | 0.067 | 0.019 | |||||
130–139 | 0.019 | |||||||
130–152 | 0.017 | 0.019 | ||||||
139–139 | 0.036 | 0.017 | 0.019 | |||||
139–152 | 0.008 | |||||||
152–152 | 0.019 | |||||||
Ho/He | 0.357 ± 0.091/0.456 ± 0.071 | 0.475 ± 0.046/0.535 ± 0.032 | 0.359 ± 0.066/0.426 ± 0.057 | |||||
N | 28 | 120 | 53 | |||||
SV185 | 253–253 | 253 | 0.009 | 0.022 ± 0.010 | ||||
253–272 | 263 | 0.241 ± 0.058 | 0.027 | 0.313 ± 0.031 | 0.385 ± 0.050 | |||
263–263 | 266 | 0.037 | 0.093 ± 0.039 | 0.134 | 0.094 ± 0.020 | 0.146 | 0.146 ± 0.036 | |
263–266 | 269 | 0.667 ± 0.064 | 0.045 | 0.549 ± 0.033 | 0.125 | 0.469 ± 0.051 | ||
263–269 | 272 | 0.407 | 0.304 | 0.023 ± 0.010 | 0.354 | |||
263–272 | 0.009 | |||||||
266–266 | 0.074 | 0.045 | ||||||
266–269 | 0.037 | 0.054 | 0.167 | |||||
269–269 | 0.444 | 0.366 | 0.208 | |||||
269–272 | 0.009 | |||||||
Ho/He | 0.444 ± 0.096/0.489 ± 0.061 | 0.446 ± 0.047 */0.591 ± 0.023 | 0.646 ± 0.069/0.611 ± 0.023 | |||||
N | 27 | 112 | 48 |
Locus | Compared Alleles/Genotypes | Parameters | Compared Honey Bee Groups | ||
---|---|---|---|---|---|
Nosema-Negative–Nosema-Positive Low | Nosema-Negative–Nosema-Positive High | Nosema-Positive Low–Nosema-Positive High | |||
AC117 | Allele 177 vs. others | OR | 0.46 | 0.16 | 0.35 |
95% CI | 0.18–1.24 | 0.04–0.58 | 0.11–1.13 | ||
χ2/p | 2.15/0.17 | 7.76/0.005 | 2.92/0.09 | ||
Homo- and heterozygous genotypes with an allele 177 vs. others | OR | 0.47 | 0.16 | 0.35 | |
95% CI | 0.16–1.43 | 0.04–0.64 | 0.11–1.16 | ||
χ2/p | 1.48/0.22 | 6.25/0.01 | 2.69/0.10 | ||
A113 | Allele 218 vs. others | OR | 1.38 | 2.38 | 1.72 |
95% CI | 0.74–2.57 | 1.18–4.80 | 1.04–1.39 | ||
χ2/p | 0.90/0.34 | 6.12/0.01 | 4.91/0.03 | ||
Ap243 | Allele 263 vs. others | OR | 1.25 | 0.21 | 0.17 |
95% CI | 0.27–2.83 | 0.06–0.75 | 0.06–0.53 | ||
χ2/p | 0.17/0.68 | 5.51/0.02 | 10.99/0.0009 | ||
Homo- and heterozygous genotypes with an allele 263 vs. others | OR | 1.00 | 0.18 | 0.19 | |
95% CI | 0.37–2.74 | 0.05–0.73 | 0.06–0.51 | ||
χ2/p | 0.05/0.82 | 5.19/0.02 | 8.22/0.004 | ||
A024 | Allele 92 vs. others | OR | 0.77 | 0.56 | 0.73 |
95% CI | 0.38–1.53 | 0.26–1.17 | 0.46–1.15 | ||
χ2/p | 0.41/0.52 | 2.25/0.13 | 1.80/0.18 | ||
Allele 100 vs. others | OR | 1.21 | 1.99 | 1.64 | |
95% CI | 0.51–3.00 | 0.80–5.10 | 0.96–2.16 | ||
χ2/p | 0.07/0.79 | 2.00/0.16 | 3.24/0.07 | ||
A007 | Allele 104 vs. others | OR | 1.35 | 2.18 | 1.62 |
95% CI | 0.46–4.19 | 0.69–7.32 | 0.78–3.32 | ||
χ2/p | 0.12/0.73 | 1.47/0.23 | 1.53/0.22 | ||
Ap049 | Allele 120 vs. others | OR | 0.72 | 0.31 | 0.44 |
95% CI | 0.30–1.76 | 0.09–1.04 | 0.16–1.15 | ||
χ2/p | 0.34/0.56 | 3.57/0.06 | 2.67/0.10 | ||
SV185 | Allele 269 vs. others | OR | 0.61 | 0.44 | 0.72 |
95% CI | 0.31–1.18 | 0.21–0.93 | 0.44–1.20 | ||
χ2/p | 2.00/0.16 | 4.68/0.03 | 1.43/0.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostroverkhova, N.V. Association between the Microsatellite Ap243, AC117 and SV185 Polymorphisms and Nosema Disease in the Dark Forest Bee Apis mellifera mellifera. Vet. Sci. 2021, 8, 2. https://doi.org/10.3390/vetsci8010002
Ostroverkhova NV. Association between the Microsatellite Ap243, AC117 and SV185 Polymorphisms and Nosema Disease in the Dark Forest Bee Apis mellifera mellifera. Veterinary Sciences. 2021; 8(1):2. https://doi.org/10.3390/vetsci8010002
Chicago/Turabian StyleOstroverkhova, Nadezhda V. 2021. "Association between the Microsatellite Ap243, AC117 and SV185 Polymorphisms and Nosema Disease in the Dark Forest Bee Apis mellifera mellifera" Veterinary Sciences 8, no. 1: 2. https://doi.org/10.3390/vetsci8010002
APA StyleOstroverkhova, N. V. (2021). Association between the Microsatellite Ap243, AC117 and SV185 Polymorphisms and Nosema Disease in the Dark Forest Bee Apis mellifera mellifera. Veterinary Sciences, 8(1), 2. https://doi.org/10.3390/vetsci8010002