Improvement of the Enterotoxigenic Escherichia coli Infection Model for Post-Weaning Diarrhea by Controlling for Bacterial Adhesion, Pig Breed and MUC4 Genotype
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Preparation of DNA Template and PCR Amplification
2.3. Animals
2.4. Porcine Intestinal Epitheliocyte (PIE) Cell Line
2.5. Bacterial Adherence Assays
2.6. DNA Marker-Based Test
2.7. Bacterial Culture and Infection
2.8. Diarrhea Evaluation
2.9. Bacterial Shedding
2.10. Statistical Analyses
3. Results
3.1. Detection of Fimbriae and Enterotoxins Genes
3.2. Bacterial Cell Adhesion Test
3.3. Susceptibility to PWD in Pigs with Different MUC4 Genotypes Inoculated with Differentially Adherent F4 ETEC Strains
3.4. Differences in Susceptibility to PWD in Various RS-Type Pig Breeds Inoculated with Highly Adherent F4 ETEC
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dubreuil, J.D.; Isaacson, R.E.; Schifferli, D.M. Animal Enterotoxigenic Escherichia coli. EcoSal Plus 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Cox, E.; Loos, M.; Coddens, A.; Devriendt, B.; Melkebeek, V.; Vanrompay, D.; Goddeeris, B.M. Post-Weaning E. coli Infections in Pigs and Importance of the Immune System; Actes des Journées AFMVP: Maisons-Alfort, France, 2012. [Google Scholar]
- Fairbrother, J.M.; Nadeau, É.; Gyles, C.L. Escherichia coli in postweaning diarrhea in pigs: An update on bacterial types, pathogenesis, and prevention strategies. Anim. Health. Res. Rev. 2005, 6, 17–39. [Google Scholar] [CrossRef] [Green Version]
- Alexa, P.; Štouračová, K.; Hamřík, J.; Rychlík, I. Gene typing of the colonisation factors K88 (F4) in enterotoxigenic Escherichia coli strains isolated from diarrhoeic piglets. Vet. Med. 2001, 46, 46–49. [Google Scholar] [CrossRef] [Green Version]
- Cheng, D.; Sun, H.; Xu, J.; Gao, S. Prevalence of fimbial colonization factors F18ab and F18ac in Escherichia coli isolates from weaned piglets with edema and/or diarrhea in China. Vet. Microbiol. 2005, 110, 35–39. [Google Scholar] [CrossRef]
- Fontanesi, L.; Bertolini, F.; Dall’Olio, S.; Buttazzoni, L.; Gallo, M.; Russo, V. Analysis of Association between the MUC4 g.8227C>G Polymorphism and Production Traits in Italian Heavy Pigs Using a Selective Genotyping Approach. Anim. Biotechnol. 2012, 23, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Samantha, O.S.; Danica, J.E.; Josephine, P.M.; Julie, C.S.; Sahibzada, S.A.; Mark, O.; David, W.M.; Jae, C.K.; John, R.P. Effect of mucin 4 allele on susceptibility to experimental infection with enterotoxigenic F4 Escherichia coli in pigs fed experimental diets. J. Anim. Sci. Biotechnol. 2019, 10, 56. [Google Scholar] [CrossRef] [Green Version]
- Sterndale, S.O.; Miller, D.W.; Mansfield, J.P.; Kim, J.C.; Pluske, J.R. Technical note: Novel delivery methods for an enterotoxigenic Escherichia coli infection model in MUC4-locus sequenced weaner pigs. J. Anim. Sci. 2019, 97, 4503–4508. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, C.B.; Cirera, S.; Archibald, A.; Andersson, L.; Fredholm, M.; Edfors-Lilia, I. Porcine Polymorphisms and Methods for Detecting Them. U.S. Patent 20,060,275,763A1, 15 July 2004. [Google Scholar]
- Jensen, G.M.; Frydendahl, K.; Svendsen, O.; Jørgensen, C.B.; Cirera, S.; Fredholm, M.; Nielsen, J.P.; Møller, K. Experimental infection with Escherichia coli O149:F4ac in weaned piglets. Vet. Microbiol. 2006, 115, 243–249. [Google Scholar] [CrossRef]
- Roubos-van den Hil, P.J.; Litjens, R.; Oudshoorn, A.-K.; Resink, J.W.; Smits, C.H.M. New perspectives to the enterotoxigenic E. coli F4 porcine infection model: Susceptibility genotypes in relation to performance, diarrhoea and bacterial shedding. Vet. Microbiol. 2017, 202, 58–63. [Google Scholar] [CrossRef]
- Luise, D.; Motta, V.; Bertocchi, M.; Salvarani, C.; Clavenzani, P.; Fanelli, F.; Pagotto, U.; Bosi, P.; Trevisi, P. Effect of Mucine 4 and Fucosyltransferase 1 genetic variants on gut homoeostasis of growing healthy pigs. J. Anim. Physiol. Anim. Nutr. 2019, 103, 801–812. [Google Scholar] [CrossRef]
- Luppi, A.; Bonilauri, P.; Dottori, M.; Gherpelli, Y.; Biasi, G.; Merialdi, G.; Maioli, G.; Martelli, P. Antimicrobial Resistance of F4+ Escherichia coli Isolated from Swine in Italy. Transbound. Emerg. Dis. 2015, 62, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Abraham, S.; Jordan, D.; Wong, H.S.; Johnson, J.R.; Toleman, M.A.; Wakeham, D.L.; Gordon, D.M.; Turnidge, J.D.; Mollinger, J.L.; Gibson, J.S.; et al. First detection of extended-spectrum cephalosporin- and fluoroquinolone-resistant Escherichia coli in Australian food-producing animals. J. Glob. Antimicrob. Resist. 2015, 3, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Abraham, S.; Trott, D.J.; Jordan, D.; Gordon, D.M.; Groves, M.D.; Fairbrother, J.M.; Smith, M.G.; Zhang, R.; Chapman, T.A. Phylogenetic and molecular insights into the evolution of multidrug-resistant porcine enterotoxigenic Escherichia coli in Australia. Int. J. Antimicrob. Agents 2014, 44, 105–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, R.; Sahoo, N.R.; Kumar, P.; Qureshi, S.; Kumar, A.; Ravikumar, G.V.P.P.S.; Bhushana, B. Comparative jejunal expression of MUC 13 in Indian native pigs differentially adhesive to diarrhoeagenic E. coli. J. Appl. Anim. Res. 2018, 46, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Moue, M.; Tohno, M.; Shimazu, T.; Kido, T.; Aso, H.; Saito, T.; Kitazawa, H. Toll-like receptor 4 and cytokine expression involved in functional immune response in an originally established porcine intestinal epitheliocyte cell line. Biochim. Biophys. Acta 2008, 1780, 134–144. [Google Scholar] [CrossRef]
- Ikwap, K.; Larsson, J.; Jacobson, M.; Owiny, D.O.; Nasinyama, G.W.; Nabukenya, I.; Mattsson, S.; Aspan, A.; Erume, J. Prevalence of adhesin and toxin genes in E. coli strains isolated from diarrheic and non-diarrheic pigs from smallholder herds in northern and eastern Uganda. BMC Microbiol. 2016, 16, 178. [Google Scholar] [CrossRef] [Green Version]
- Katsuda, K.; Kohmoto, M.; Kawashima, K.; Tsunemitsu, H. Frequency of enteropathogen detection in suckling and weaned pigs with diarrhea in Japan. J. Vet. Diagn. Investig. 2006, 18, 350–354. [Google Scholar] [CrossRef]
- Hur, J.; Lee, K.; Lee, J. Age-dependent competition of porcine enterotoxigenic E. coli (ETEC) with different fimbria genes—Short communication. Acta Vet. Hung. 2011, 59, 411–417. [Google Scholar] [CrossRef]
- Luppi, A.; Gibellini, M.; Gin, T.; Vangroenweghe, F.; Vandenbroucke, V.; Bauerfeind, R.; Bonilauri, P.; Labarque, G.; Hidalgo, Á. Prevalence of virulence factors in enterotoxigenic Escherichia coli isolated from pigs with post-weaning diarrhoea in Europe. Porc. Heal. Manag. 2016, 2, 20. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Rausch, D.; Zhang, W. Little heterogeneity among genes encoding heat-labile and heat-stable toxins of enterotoxigenic Escherichia coli strains isolated from diarrheal pigs. Appl. Environ. Microbiol. 2009, 75, 6402–6405. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Berberov, E.M.; Freeling, J.; He, D.; Moxley, R.A.; Francis, D.H. Significance of heat-stable and heat-labile enterotoxins in porcine colibacillosis in an additive model for pathogenicity studies. Infect. Immun. 2006, 74, 3107–3114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, G.B.; Takeda, Y. The heat-stable enterotoxins. Microb. Pathog. 1998, 24, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Nagy, B.; Casey, T.A.; Whipp, S.C.; Moon, H.W. Susceptibility of porcine intestine to pilus-mediated adhesion by some isolates of piliated enterotoxigenic Escherichia coli increases with age. Infect. Immun. 1992, 60, 1285–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fairbrother, J.M.; Nadeau, É. Colibacillosis. In Diseases of Swine; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Zhang, J., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 807–834. [Google Scholar]
- Kaevska, M.; Lorencova, A.; Videnska, P.; Sedlar, K.; Provaznik, I.; Trckova, M. Effect of sodium humate and zinc oxide used in prophylaxis of post-weaning diarrhoea on faecal microbiota composition in weaned piglets. Vet. Med. 2016, 61, 328–336. [Google Scholar] [CrossRef] [Green Version]
- Goetstouwers, T.; Van Poucke, M.; Coppieters, W.; Nguyen, V.U.; Melkebeek, V.; Coddens, A.; Van Steendam, K.; Deforce, D.; Cox, E.; Peelman, L.J. Refined candidate region for F4ab/ac enterotoxigenic Escherichia coli susceptibility situated proximal to MUC13 in pigs. PLoS ONE 2014, 9, e105013. [Google Scholar] [CrossRef] [Green Version]
- Opriessnig, T.; Patterson, A.R.; Madson, D.M.; Pal, N.; Rothschild, M.; Kuhar, D.; Lunney, J.K.; Juhan, N.M.; Meng, X.J.; Halbur, P.G. Difference in severity of porcine circovirus type two-induced pathological lesions between Landrace and Pietrain pigs. J. Anim. Sci. 2009, 87, 1582–1590. [Google Scholar] [CrossRef]
- Liang, W.; Ji, L.; Zhang, Y.; Zhen, Y.; Zhang, Q.; Xu, X.; Liu, B. Transcriptome differences in Porcine Alveolar Macrophages from Tongcheng and large white pigs in response to highly pathogenic porcine reproductive and respiratory syndrome virus (PRRSV) infection. Int. J. Mol. Sci. 2017, 18, 1475. [Google Scholar] [CrossRef] [Green Version]
Target Gene | Primer Sequence (5’ to 3’) | Product Size (bp) | Reference |
---|---|---|---|
F4 | F:GGTGATTTCAATGGTTCGGTC | 704 | [16] |
R:ATTGCTACGTTCAGCGGAGCG | |||
F5 | F:TGCGACTACCAATGCTTCTG | 450 | [16] |
R:TATCCACCATTAGACGGAGC | |||
F6 | F:TCTGCTCTTAAAGCTACTGG | 333 | [16] |
R:AACTCCACCGTTTGTATCAG | |||
F18 | F:GTGAAAAGACTAGTGTTTATTTC | 510 | [17] |
R:CTTGTAAGTAACCGCGTAAGC | |||
F41 | F:GAGGGACTTTCATCTTTTAG | 431 | [16] |
R:AGTCCATTCCATTTATAGGC | |||
LT | F:ATTTACGGCGTTACTATCCTC | 280 | [16] |
R:TTTTGGTCTCGGTCAGATATG | |||
STa | F:TCCGTGAAACAACATGACGG | 244 | [16] |
R:ATAACATCCAGCACAGGCAG | |||
STb | F:GCCTATGCATCTACACAATC | 278 | [16] |
R:TGAGAAATGGACAATGTCCG | |||
muc4 | F:GTGCCTTGGGTGAGAGGTTA | 367 | [9] |
R:CACTCTGCCGTTCTCTTTCC |
Fimbriae Gene | Enterotoxin Genes | Number of Strains | ||
---|---|---|---|---|
LT | Sta | STb | ||
F4 | + | + | + | 77 |
+ | − | + | 6 | |
F18 | + | + | + | 9 |
+ | + | − | 3 | |
+ | − | − | 1 | |
F_UT | + | + | + | 3 |
+ | + | − | 1 |
Fimbriae Gene | Range of Bacterial Adherence (log10 CFU/mL) | Number of Strains |
---|---|---|
F4 | 6.0–6.4 | 17 |
5.0–5.9 | 51 | |
4.0–4.9 | 9 | |
F18 | 4.0–4.9 | 5 |
3.0–3.9 | 4 | |
F_UT | 4.0–4.9 | 2 |
3.0–3.9 | 1 |
Challenged Strains | HAEC (1) | LAEC (2) | ||||
---|---|---|---|---|---|---|
Infectious Bacterial Load (CFU/pig) | 1010 | 108 | 1010 | |||
Pig’s Genotyped of MUC4 | SS | RS | RR | RS | SS | RS |
n | 4 | 8 | 4 | 4 | 4 | 4 |
Mean body weight (kg) | ||||||
Initial | 6.93 ± 0.49 | 6.51 ± 0.51 | 5.88 ± 0.13 | 6.00 ± 0.64 | 5.93 ± 0.47 | 6.30 ± 0.48 |
Final (3) | 6.75 ± 0.43 | 6.88 ± 0.54 | 6.75 ± 0.32 | 7.13 ± 0.72 | 6.25 ± 0.78 | 7.00 ± 0.54 |
Average daily gain (g) | −21.9 ± 16.4 | 19.3 ± 54.8 | 109.4 ± 29.9 | 140.6 ± 12.9 | −53.1 ± 188.8 | 87.5 ± 38.5 |
Mean fecal score | ||||||
1–3 dpi | 2.00 ± 0.28 a,b,c | 1.83 ± 0.25 d,e,f | 0.25 ± 0.18 a,d | 0.50 ± 0.29 b,e | 1.22 ± 0.43 | 0.50 ± 0.29 c,f |
4–7 dpi | 0.88 ± 0.27 | 0.43 ± 0.14 | 0 | 0.38 ± 0.20 a | 0.25 ± 0.25 | 0 |
Diarrhea incidence (%) | ||||||
1–3 dpi | 100 | 100 g | 25 g | 50 | 50 | 50 |
4–7 dpi | 75 | 71.4 h,i | 0 h | 25 | 50 | 0 i |
Duration of diarrhea (day) | 4.8 ± 0.9 | 3.4 ± 0.7 | 0.5 ± 0.5 | 1.5 ± 01.2 | 2.0 ± 2.0 | 0.8 ± 0.5 |
Mortality (%) | 0 | 12.5 | 0 | 0 | 50 | 0 |
Pigs Breed (1) | WL | LW | LL | WW | LWD |
---|---|---|---|---|---|
n | 5 | 5 | 12 | 10 | 5 |
Mean body weight (kg) | |||||
Initial | 6.44 ± 0.22 | 6.34 ± 0.20 | 6.03 ± 0.25 | 6.44 ± 0.36 | 6.66 ± 0.22 |
Final (2) | 6.70 ± 0.41 | 6.70 ± 0.25 | 5.67 ± 0.31 | 6.30 ± 0.37 | 6.60 ± 0.24 |
Average daily gain (g) | −25.8 ± 94.7 | 45.0 ± 20.0 | −150.0 ± 54.1 | −20.2 ± 29.8 | −19.5 ± 43.0 |
Mean fecal score | |||||
1–3 dpi | 1.82 ± 0.26 a,b | 1.50 ± 0.24 c,d | 2.76 ± 0.09 a,c | 2.47 ± 0.12 d | 2.75 ± 0.26 b |
4–7 dpi | 0.25 ± 0.13 e1 | 0.25 ± 0.12 f1 | 1.58 ± 0.34 e,f,g | 0.71 ± 0.17 g | 1.00 ± 0.27b |
Diarrhea incidence (%) | |||||
1–3 dpi | 100 | 100 | 100 | 100 | 100 |
4–7 dpi | 33.3 | 40.0 | 100 | 80.0 | 100 |
Duration of diarrhea (day) | 4.0 ± 1.0 | 3.8 ± 0.6 | 5.0 ± 0.6 | 4.3 ± 0.3 | 5.5 ± 1.0 |
Mortality (%) | 40.0 | 0 | 75.0 | 10.0 | 20.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsumoto, H.; Miyagawa, M.; Takahashi, S.; Shima, R.; Oosumi, T. Improvement of the Enterotoxigenic Escherichia coli Infection Model for Post-Weaning Diarrhea by Controlling for Bacterial Adhesion, Pig Breed and MUC4 Genotype. Vet. Sci. 2020, 7, 106. https://doi.org/10.3390/vetsci7030106
Matsumoto H, Miyagawa M, Takahashi S, Shima R, Oosumi T. Improvement of the Enterotoxigenic Escherichia coli Infection Model for Post-Weaning Diarrhea by Controlling for Bacterial Adhesion, Pig Breed and MUC4 Genotype. Veterinary Sciences. 2020; 7(3):106. https://doi.org/10.3390/vetsci7030106
Chicago/Turabian StyleMatsumoto, Hiroki, Masashi Miyagawa, Sayaka Takahashi, Ryouichi Shima, and Takayuki Oosumi. 2020. "Improvement of the Enterotoxigenic Escherichia coli Infection Model for Post-Weaning Diarrhea by Controlling for Bacterial Adhesion, Pig Breed and MUC4 Genotype" Veterinary Sciences 7, no. 3: 106. https://doi.org/10.3390/vetsci7030106
APA StyleMatsumoto, H., Miyagawa, M., Takahashi, S., Shima, R., & Oosumi, T. (2020). Improvement of the Enterotoxigenic Escherichia coli Infection Model for Post-Weaning Diarrhea by Controlling for Bacterial Adhesion, Pig Breed and MUC4 Genotype. Veterinary Sciences, 7(3), 106. https://doi.org/10.3390/vetsci7030106