Chemical Characterization of Opuntia ficus-indica (L.) Mill. Hydroalcoholic Extract and Its Efficiency against Gastrointestinal Nematodes of Sheep
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Preparation of the Hydroalcoholic Extract of the Cladode Peels of O. ficus-indica
2.2. Total Carbohydrate Content
2.3. Total Protein Content
2.4. Total Phenolic Content
2.5. Condensed Ttannins Content
2.6. Liquid Chromatography Coupled to Mass Spectrometry/Electron Spray Ionization (LC-MS/ESI)
2.7. Fecal Sample Collection and Eggs Retrieval
2.8. Egg Hatch Test (EHT)
2.9. Larval Migration Test (LMT) and Extract-Drug Interaction
2.10. Statistical Analysis
3. Results and Discussion
3.1. Colorimetric Dosages of the OFIEOH of Cladode Peels from O. ficus-indica
3.2. Characterization of Phenolic Profile of OFIEOH Extracted by LC-MS/ESI
3.3. Egg Hatch Test (EHT) and Larval Migration Test (LMT)
3.4. Larval Migration Test (LMT) and Extract-Drug Interaction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marinho, M.L.; Alves, M.S.; Rodrigues, M.L.C.; Rotondano, T.E.F.; Vidal, I.F.; Silva, W.W.; Athayde, A.C.R. A utilização de plantas medicinais em medicina veterinária: Um resgate do saber popular. Rev. Bras. Plant. Med. 2007, 9, 64–69. [Google Scholar]
- Soldera-Silva, A.; Seyfried, M.; Campestrini, L.H.; Minho, A.P.; Zawadzki-Baggio, S.F.; Molento, M.; Maurer, J.B.B. Assessment of anthelmintic activity and bio-guided chemical analysis of Persea americana seed extracts. Vet. Parasitol. 2018, 251, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, V.M.; Santos, A.J.; Nascimento, I.R.; Oliveira, M.A.S.; Rocha, S.S.; Cabral, E.S.S. Perspectivas da fitoterapia veterinária: Plantas potenciais na terapia dos animais de produção. Cad. Agroecol. 2014, 9, 1–5. [Google Scholar]
- Sprenger, L.K.; Giese, E.; Santos, J.N.; Molento, M.B. Atividade antimicrobiana do extrato hidroalcóolico de Ficus carica e Polygala spectabilis. Arch. Vet. Sci. 2017, 22, 1–7. [Google Scholar] [CrossRef]
- Stintzing, F.C.; Carle, R. Cactus stems (Opuntia spp.): A review on their chemistry, technology, and uses. Mol. Nutr. Food Res. 2005, 49, 175–194. [Google Scholar] [CrossRef] [PubMed]
- Feugang, J.M.; Konarski, P.; Zou, D.; Stintzing, F.C.; Zou, C. Medicinal use of cactus pear (Opuntia spp.) cladodes and fruits. Front. Biosci. 2006, 11, 2574–2589. [Google Scholar] [CrossRef] [PubMed]
- Griffith, M.P. The origins of an important cactus crop, Opuntia ficus-indica (Cactaceae): New molecular evidence. Am. J. Bot. 2004, 91, 1915–1921. [Google Scholar] [CrossRef] [PubMed]
- Wanderley, W.L.; Ferreira, M.A.; Batista, A.M.V.; Véras, A.S.; Bispo, S.V.; Silva, F.M.; Santos, V.L.F. Consumo, digestibilidade e parâmetros ruminais em ovinos recebendo silagens e fenos em associação à palma forrageira. Rev. Bras. Saúde Prod. Anim. 2012, 13, 444–456. [Google Scholar] [CrossRef] [Green Version]
- Rangel, A.H.N.; Lima Junior, D.M.; Braga, A.P.; Simplício, A.A.; Aguiar, E.M. Suprimento e demanda de nutrientes em sistemas em não equilíbrio. Rev. Verde 2009, 4, 14–30. [Google Scholar]
- Viegi, L.; Pieroni, A.; Guarrera, P.M.; Vangelisti, R. A review of plants used in folk veterinary medicine in Italy as basis for a databank. J. Ethnopharmacol. 2003, 89, 221–244. [Google Scholar] [CrossRef] [PubMed]
- Féboli, A.; Laurentiz, A.C.; Soares, S.C.; Augusto, J.G.; Anjos, L.A.; Magalhães, L.G.; Filardi, R.S.; Laurentiz, R.S. Ovicidal and larvicidal activity of extracts of Opuntia ficus-indica against gastrointestinal nematodes of naturally infected sheep. Vet. Parasitol. 2016, 226, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Shedbalkar, U.U.; Adki, V.S.; Jadhav, J.P.; Bapat, V.A. Opuntia and other cacti: Applications and biotechnological insights. Trop. Plant Biol. 2010, 3, 136–150. [Google Scholar] [CrossRef]
- Ginestra, G.; Parker, M.L.; Bennett, R.N.; Robertson, J.; Mandalari, G.; Narbad, A.; Curto, R.B.L.; Bisignano, G.; Faulds, C.B.; Waldron, K.W. Anatomical, chemical, and biochemical characterization of cladodes from prickly pear [Opuntia ficus-indica (L.) Mill.]. J. Agric. Food Chem. 2009, 57, 10323–10330. [Google Scholar] [CrossRef] [PubMed]
- Cardador-Martínez, A.; Jiménez-Martínez, C.; Sandoval, G. Revalorization of cactus pear (Opuntia spp.) wastes as a source of antioxidants. Food Sci. Technol. 2011, 31, 782–788. [Google Scholar]
- Fox, J.D.; Robyt, J.F. Miniaturization of three carbohydrate analysis using a micro sample plate reader. Anal. Biochem. 1991, 195, 93–96. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Morais, S.A.L.; Aquino, F.J.T.; Nascimento, P.M.; Nascimento, E.A.; Chang, R. Compostos bioativos e atividade antioxidante do café conilon submetido a diferentes graus de torra. Quim. Nova 2009, 32, 327–331. [Google Scholar] [CrossRef] [Green Version]
- Queiroz, C.R.A.A.; Morais, S.A.L.; Nascimento, E.A. Caracterização dos taninos da aroeira-preta. Soc. Invest. Flor. 2002, 26, 485–492. [Google Scholar]
- Yamassaki, F.T.; Campestrini, L.H.; Zawadzki-Baggio, S.F.; Maurer, J.B.B. Avocado leaves: Influence of drying process, thermal incubation, and storage conditions on preservation of polyphenolic compounds and antioxidant activity. Int. J. Food Prop. 2017, 20, 2280–2293. [Google Scholar] [CrossRef]
- Coles, G.C.; Jackson, F.; Pomroy, W.E.; Prichard, K.; Von Samson-Himmelstjerna, G.; Silvestre, A.; Taylor, M.A.; Vercruysse, J. The detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 2006, 136, 167–185. [Google Scholar] [CrossRef] [PubMed]
- D’Assonville, J.A.; Janovsky, E.; Verster, A. In vitro screening of Haemonchus contortus third stage larvae for ivermectin resistance. Vet. Parasitol. 1996, 61, 73–80. [Google Scholar] [CrossRef]
- Molento, M.B.; Prichard, R.K. Effect of multidrug resistance modulators on the activity of ivermectin and moxidectin against selected strains of Haemonchus contortus infective larvae. Pesqui. Vet. Bras. 2001, 21, 117–121. [Google Scholar] [CrossRef]
- Alves, F.A.L.; Andrade, A.P.; Bruno, R.L.A.; Silva, M.G.V.; De Souza, M.F.V.; Santos, D.C. Seasonal variability of phenolic compounds and antioxidant activity in prickly pear cladodes of Opuntia and Nopalea genres. Food Sci. Technol. 2017, 37, 536–543. [Google Scholar] [CrossRef]
- Lee, E.B.; Hyun, J.E.; Li, D.W.; Moon, Y.I. Effects of Opuntia ficus-indica var. saboten stem on gastric damage in rats. Arch. Pharm. Res. 2002, 25, 67–70. [Google Scholar]
- Jorge, A.J.; De La Garza, T.H.; Alejandro, Z.; Ruth, B.C.; Noé, A.C. The optimization of phenolic compounds extraction from cactus pear (Opuntia ficus-indica) skin in a reflux system using response surface methodology. Asian Pac. J. Trop. Biomed. 2013, 3, 436–442. [Google Scholar] [CrossRef]
- Horai, H.; Arita, M.; Kanaya, S.; Nihei, Y.; Ikeda, T.; Suwa, K.; Ojima, Y.; Tanaka, K.; Tanaka, S.; Aoshima, K.; et al. MassBank: A public repository for sharing mass spectral data for life sciences. J. Mass Spectrom. 2010, 45, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Pérez, M.G.; Pérez-Ramírez, I.F.; Paredes-López, O.; Mondragón-Jacobo, C.; Reynoso-Camacho, R. Phytochemical composition and in vitro analysis of nopal (O. ficus-indica) cladodes at different stages of maturity. Int. J. Food Prop. 2018, 21, 1728–1742. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, T.B.; Yang, H.; Sung, H.S. Phenolic compounds isolated from Opuntia ficus-indica fruits. Nat. Prod. Sci. 2016, 22, 117–121. [Google Scholar] [CrossRef]
- Allai, L.; Karym, E.M.; Amiri, B.E.; Nasser, B.; Essamad, A.; Terzioğlu, P.; Ertas, A.; Öztürk, M. Evaluation of antioxidant activity and phenolic composition of Opuntia ficus-indica cladodes collected from Moroccan settat region. Eur. J. Anal. Chem. 2017, 12, 105–117. [Google Scholar] [CrossRef]
- De Leo, M.; Bruzual de Abreu, M.; Pawlowska, A.M.; Cioni, P.L.; Braca, A. Profiling the chemical content of Opuntia ficus-indica flowers by HPLC–PDA-ESI-MS and GC/EIMS analyses. Phytochem. Lett. 2010, 3, 48–52. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Extraction and analysis of phenolics in food. J. Chromatogr. A 2004, 1054, 95–111. [Google Scholar] [CrossRef]
- Russo, M.; Spagnuolo, C.; Tedesco, I.; Bilotto, S.; Russo, G.L. The flavonoid quercetin in disease prevention and therapy: Facts and fancies. Biochem. Pharmacol. 2012, 83, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ortíz-De-Montellano, C.; Vargas-Magaña, J.J.; Canul-Ku, H.L.; Miranda-Soberanis, R.; Capetillo-Leal, C.; Sandoval-Castro, C.A.; Hoste, H.; Torres-Acosta, J.F.J. Effect of a tropical tannin-rich plant Lysiloma latisiliquum on adult populations of Haemonchus contortus in sheep. Vet. Parasitol. 2010, 172, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.L.; Russo, M.; Spagnuolo, C. The pleiotropic flavonoid quercetin: From its metabolism to the inhibition of protein kinases in chronic lymphocytic leukemia. Food Funct. 2014, 5, 2393–2401. [Google Scholar] [CrossRef] [PubMed]
- Hoste, H.; Martinez-Ortiz-de-Montellano, C.; Manolaraki, F.; Brunet, S.; Ojeda-Robertos, N.; Fourquaux, I.; Torres-Acosta, J.F.F.; Sandoval-Castro, C.A. Direct and indirect effects of bioactive tannin-rich tropical and temperate legumes against nematode infections. Vet. Parasitol. 2012, 186, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Akkari, H.; Rtibi, K.; B’chir, F.; Rekik, M.; Darghouth, M.A.; Gharbi, M. In vitro evidence that the pastoral Artemisia campestris species exerts an anthelmintic effect on Haemonchus contortus from sheep. Vet. Res. Commun. 2014, 38, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Lasisi, A.A.; Kareem, S.O. Evaluation of anthelmintic activity of the stem bark extract and chemical constituents of Bridelia ferruginae (Benth) Euphorbiaceae. Afr. J. Plant Sci. 2011, 5, 469–474. [Google Scholar]
- Klongsiriwet, C.; Quijada, J.; Williams, A.R.; Mueller-Harvey, I.; Williamson, E.M.; Hoste, H. Synergistic inhibition of Haemonchus contortus exsheathment by flavonoid monomers and condensed tannins. Int. J. Parasitol. Drugs Drug Resist. 2015, 5, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Molento, M.B. Parasite control in the age of drug resistance and changing agricultural practices. Vet. Parasitol. 2009, 163, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Molento, M.B.; Fortes, F.S.; Pondelek, D.A.S.; Borges, F.A.; Chagas, A.C.; Torres-Acosta, J.F.J.; Geldhof, P. Challenges of nematode control in ruminants: Focus on Latin America. Vet. Parasitol. 2011, 180, 126–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geary, T.G.; Hosking, B.C.; Skuce, P.J.; Samson-Himmelstjerna, G.; Maeder, S.; Holdsworth, P.; Pomroy, W.; Vercruysse, J. World association for the advancement of veterinary parasitology (W.A.A.V.P.) guideline: Anthelmintic combination products targeting nematode infections of ruminants and horses. Vet. Parasitol. 2012, 190, 306–316. [Google Scholar] [CrossRef] [Green Version]
- Canton, C.; Ceballos, L.; Fiel, C.; Moreno, L.; Yagüez, P.D.; Bernat, G.; Lanusse, C.; Alvarez, L. Resistant nematodes in cattle: Pharmaco-therapeutic assessment of the ivermectin-ricobendazole combination. Vet. Parasitol. 2017, 234, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Fugh-Berman, A. Herb-drug interactions. Lancet 2000, 355, 134–138. [Google Scholar] [CrossRef]
- Sunada, N.S.; Orrico Junior, M.P.; Orrico, A.C.A.; Oliveira, A.M.; Centurion, S.R.; Lima, S.R.N.; Fernandes, R.M.; Vargas Junior, F.M. Parasite control using levamisol, ivermectin and dried garlic (Allium sativum) in Santa Inês sheep. Rev. Agric. 2011, 4, 140–145. [Google Scholar]
- Borges, F.A.; Rossini, J.B.; Velludo, P.P.; Buzzulini, C.B.; Costa, G.H.; Molento, M.B.; Costa, A.J. Weak phenotypic reversion of ivermectin resistance in a field resistant isolate of Haemonchus contortus by verapamil. Pesqui. Vet. Bras. 2011, 31, 731–736. [Google Scholar] [CrossRef]
Peak | Rt (min) | [M − H]− (m/z) | Identified and Suggested Compounds |
---|---|---|---|
5 | 4.4 | 447 | mono-glycosylated kaempferol |
14 | 20.1 | 300 | quercetin |
16 | 21.5 | 739 | tri-glycoslylated kaempferol |
17 | 21.7 | 769 | tri-glycosylated methyl-quercetin derivative I |
18 | 21.9 | 769 | tri-glycosylated methyl-quercetin derivative II |
19 | 22.0 | 769 | tri-glycosylated methyl-quercetin derivative III |
20 | 22.2 | 755 | tri-glycosylated quercetin I |
21 | 22.4 | 755 | tri-glycosylated quercetin II |
22 | 23.0 | 609 | di-glycosylated quercetin (Rutin) |
23 | 23.7 | 593 | di-glycosylated kaempferol |
24 | 23.9 | 623 | di-glycosylated methyl-quercetin I |
25 | 24.1 | 623 | di-glycosylated methyl-quercetin II |
26 | 28.8 | 315 | methyl-quercetin |
29 | 31.6 | 299 | kaempferide (Kaempferol 4’-methyl ether) |
30 | 32.3 | 297 | mono-glycosylated acetyl phenyl derivative |
OFIEOH (mg/mL) | Inhibition of Egg Hatch (%) |
---|---|
100 | 90.00 ± 3.04 |
50 | 80.67 ± 0.96 |
25 | 70.67 ± 3.94 |
12.5 | 61.00 ± 9.39 |
6.25 | 33.67 ± 11.92 |
3.125 | 19.33 ± 2.74 |
H2O | 5.33 ± 2.98 |
ivermectin (114.3 µM) | 90.67 ± 3.63 |
IC50 | 11.15 mg/mL |
OFIEOH (mg/mL) | Inhibition of Larval Migration |
---|---|
200 | 77.26 ± 0.66 |
150 | 59.21 ± 1.77 |
100 | 49.57 ± 4.22 |
50 | 25.63 ± 2.88 |
25 | 8.66 ± 3.11 |
12.5 | 5.78 ± 5.33 |
H2O | 1.08 ± 4.44 |
ivermectin (114.3 µM) | 87.00 ± 4.66 |
IC50 | 82.79 mg/mL |
Concentration of IVM (µM) + OFIEOH (mg/mL) | Inhibition (%) |
---|---|
57.1 + 82.80 | 73.78 ± 6.11 |
47.7 + 82.80 | 53.85 ± 4.11 |
34.3 + 82.80 | 42.66 ± 5.53 |
22.8 + 82.80 | 38.11 ± 6.68 |
11.4 + 82.80 | 16.08 ± 1.33 |
H2O/Control | 0.70 ± 2.22 |
IC50 IVM | 25.75 µg/mL |
Concentration of OFIEOH (mg/mL) + IVM (µM) | Inhibition (%) |
---|---|
200 + 25.7 | 62.49 ± 2.11 |
150 + 25.7 | 45.82 ± 4.22 |
100 + 25.7 | 37.48 ± 1.33 |
50 + 25.7 | 9.35 ± 5.33 |
25 + 25.7 | 3.09 ± 7.33 |
12.5 + 25.7 | 1.53 ± 4.11 |
H2O/Control | 0.35 ± 3.33 |
IC50 OFIEOH | 82.79 mg/mL |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, C.; Campestrini, L.H.; Vieira, D.L.; Pritsch, I.; Yamassaki, F.T.; Zawadzki-Baggio, S.F.; Maurer, J.B.B.; Molento, M.B. Chemical Characterization of Opuntia ficus-indica (L.) Mill. Hydroalcoholic Extract and Its Efficiency against Gastrointestinal Nematodes of Sheep. Vet. Sci. 2018, 5, 80. https://doi.org/10.3390/vetsci5030080
Santos C, Campestrini LH, Vieira DL, Pritsch I, Yamassaki FT, Zawadzki-Baggio SF, Maurer JBB, Molento MB. Chemical Characterization of Opuntia ficus-indica (L.) Mill. Hydroalcoholic Extract and Its Efficiency against Gastrointestinal Nematodes of Sheep. Veterinary Sciences. 2018; 5(3):80. https://doi.org/10.3390/vetsci5030080
Chicago/Turabian StyleSantos, Carolina, Luciano Henrique Campestrini, Douglas Luis Vieira, Izanara Pritsch, Fábio Tomio Yamassaki, Selma Faria Zawadzki-Baggio, Juliana Bello Baron Maurer, and Marcelo Beltrão Molento. 2018. "Chemical Characterization of Opuntia ficus-indica (L.) Mill. Hydroalcoholic Extract and Its Efficiency against Gastrointestinal Nematodes of Sheep" Veterinary Sciences 5, no. 3: 80. https://doi.org/10.3390/vetsci5030080
APA StyleSantos, C., Campestrini, L. H., Vieira, D. L., Pritsch, I., Yamassaki, F. T., Zawadzki-Baggio, S. F., Maurer, J. B. B., & Molento, M. B. (2018). Chemical Characterization of Opuntia ficus-indica (L.) Mill. Hydroalcoholic Extract and Its Efficiency against Gastrointestinal Nematodes of Sheep. Veterinary Sciences, 5(3), 80. https://doi.org/10.3390/vetsci5030080