The Effect of a Subsequent Dose of Dexmedetomidine or Other Sedatives following an Initial Dose of Dexmedetomidine on Electrolytes, Acid–Base Balance, Creatinine, Glucose, and Cardiac Troponin I in Cats: Part II
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Heart Rate (HR) and Respiratory rate (RR)
3.2. Creatinine and Cardiac Troponin I
3.3. pH, pO2, and pCO2
3.4. Glucose
3.5. Na+ and Κ+
3.6. Haematocrit and Haemoglobin
4. Discussion
4.1. Creatinine, Cardiac Troponin I, and Heart Rate (HR)
4.2. pH, pO2, pCO2, and Respiratory Rate (RR)
4.3. Glucose
4.4. Na+ and K+
4.5. Haematocrit and Haemoglobin
4.6. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Granholm, M.; McKusick, B.C.; Westerholm, F.C.; Aspegrén, J.C. Evaluation of the clinical efficacy and safety of dexmedetomidine or medetomidine in cats and their reversal with atipamezole. Vet. Anaesth. Analg. 2006, 33, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Selmi, A.L.; Mendes, G.M.; Lins, B.T.; Figueiredo, J.P.; Barbudo-Selmi, G.R. Evaluation of the sedative and cardiorespiratory effects of dexmedetomidine, dexmedetomidine-butorphanol, and dexmedetomidine-ketamine in cats. J. Am. Vet. Med. Assoc. 2003, 222, 37–41. [Google Scholar] [CrossRef]
- McSweeney, P.M.; Martin, D.D.; Ramsey, D.S.; McKusick, B.C. Clinical efficacy and safety of dexmedetomidine used as a preanesthetic prior to general anesthesia in cats. J. Am. Vet. Med. Assoc. 2012, 240, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Robertson, S.; Taylor, P. Pain management in cats—Past, present and future. Part 2. Treatment of pain—Clinical pharmacology. J. Feline Med. Surg. 2004, 6, 321–333. [Google Scholar] [CrossRef]
- Akkerdaas, L.C.; Minch, P.; Sap, P.; Hellebrekers, L.J. Anaesthesiology: Cardiopulmonary effects of three different anaesthesia protocols in cats. Vet. Q. 2001, 23, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Ansah, O.B.; Raekallio, M.; Vainio, O. Comparison of three doses of dexmedetomidine with medetomidine in cats following intramuscular administration. J. Vet. Pharmacol. Ther. 1998, 21, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Green, R.; Musulin, S.E.; Baja, A.J.; Hansen, B.D. Case report: Low dose dexmedetomidine infusion for the management of hypoglycemia in a dog with an insulinoma. Front. Vet. Sci. 2023, 10, 1161002. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, J.; Duke, T.; Focken, A.P.; Snead, E.C.; Cosford, K.L. Effects of dexmedetomidine on glucose homeostasis in healthy cats. J. Feline Med. Surg. 2020, 22, 344–349. [Google Scholar] [CrossRef]
- Flaherty, D. Alpha2-adrenoceptor agonists in small animal practice 1. Why they do what they do. In Practice 2013, 35, 524–530. [Google Scholar] [CrossRef]
- Dart, C. Advantages and disadvantages of using alpha2 agonists in veterinary practice. Aust. Vet. J. 1999, 77, 720–722. [Google Scholar] [CrossRef]
- Slingsby, L.S.; Murrell, J.C.; Taylor, P.M. Combination of dexmedetomidine with buprenorphine enhances the antinociceptive effect to a thermal stimulus in the cat compared with either agent alone. Vet. Anaesth. Analg. 2010, 37, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Pypendop, B.H.; Barter, L.S.; Stanley, S.D.; Ilkiw, J.E. Hemodynamic effects of dexmedetomidine in isoflurane-anesthetized cats. Vet. Anaesth. Analg. 2011, 38, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, K.; Kutter, A.P.; Schefer, R.J.; Marly-Voquer, C.; Sigrist, N. Determination of reference intervals and comparison of venous blood gas parameters using standard and non-standard collection methods in 24 cats. J. Feline Med. Surg. 2017, 19, 831–840. [Google Scholar] [CrossRef] [PubMed]
- McGrotty, Y.; Brown, A. Blood gases, electrolytes and interpretation 1. Blood gases. In Pract. 2013, 35, 59–65. [Google Scholar] [CrossRef]
- Bateman, S.W. Making sense of blood gas results. Vet. Clin. N. Am. 2008, 38, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Day, T.K. Blood gas analysis. Vet. Clin. N. Am. 2002, 32, 1031–1048. [Google Scholar] [CrossRef]
- McGrotty, Y.; Bilbrough, G. Blood gases, electrolytes and interpretation 2. Electrolytes. In Pract. 2013, 35, 115–121. [Google Scholar] [CrossRef]
- DiBartola, S.P.; De Morais, H.A. Disorders of Potassium. In Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice, 3rd ed.; Elsevier Health Sciences: St. Louis, MO, USA, 2012; pp. 92–119. [Google Scholar]
- Kanda, T.; Hikasa, Y. Neurohormonal and metabolic effects of medetomidine compared with xylazine in healthy cats. Can. J. Vet. Res. 2008, 72, 278. [Google Scholar]
- Kodera, S.Y.; Yoshida, M.; Dezaki, K.; Yada, T.; Murayama, T.; Kawakami, M.; Kakei, M. Inhibition of insulin secretion from rat pancreatic islets by dexmedetomidine and medetomidine, two sedatives frequently used in clinical settings. Endocr. J. 2013, 60, 337–346. [Google Scholar] [CrossRef]
- Biermann, K.; Hungerbühler, S.; Mischke, R.; Kästner, S.B.R. Sedative, cardiovascular, haematologic and biochemical effects of four different drug combinations administered intramuscularly in cats. Vet. Anaesth. Analg. 2012, 39, 137–150. [Google Scholar] [CrossRef]
- Braun, J.; Lefebvre, H.; Watson, A. Creatinine in the dog: A review. Vet. Clin. Pathol. 2003, 32, 162–179. [Google Scholar] [CrossRef] [PubMed]
- Murahata, Y.; Hikasa, Y. Comparison of the diuretic effects of medetomidine hydrochloride and xylazine hydrochloride in healthy cats. Am. J. Vet. Res. 2012, 73, 1871–1880. [Google Scholar] [CrossRef] [PubMed]
- Saleh, N.; Aoki, M.; Shimada, T.; Akiyoshi, H.; Hassanin, A.; Ohashi, F. Renal effects of medetomidine in isoflurane-anesthetized dogs with special reference to its diuretic action. J. Vet. Med. Sci. 2005, 67, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Brans, M.; Daminet, S.; Mortier, F.; Duchateau, L.; Lefebvre, H.P.; Paepe, D. Plasma symmetric dimethylarginine and creatinine concentrations and glomerular filtration rate in cats with normal and decreased renal function. J. Vet. Intern. Med. 2021, 35, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Heidari, F.; Javdani, M.; Bigham Sadegh, A.; Nikouseft, Z. Does ketamine-midazolam combination act as a routine and safe chemical restraint in cats? Clinical and hemato-biochemical evaluation. Comp. Clin. Pathol. 2017, 26, 793–797. [Google Scholar] [CrossRef]
- Adin, D.B.; Milner, R.J.; Berger, K.D.; Engel, C.; Salute, M. Cardiac troponin I concentrations in normal dogs and cats using a bedside analyzer. J. Vet. Cardiol. 2005, 7, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Langhorn, R.; Willesen, J.L. Cardiac Troponins in Dogs and Cats. J. Vet. Intern. Med. 2016, 30, 36–50. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, P.J.; Dameron, G.W.; Beck, M.L.; Kang, Y.J.; Erickson, B.K.; Di Battista, T.H.I.; Miller, K.E.; Jackson, K.N.; Mittelstadt, S. Cardiac Troponin T is a Sensitive, Specific Biomarker of Cardiac Injury in Laboratory Animals. Comp. Med. 2006, 47, 486–495. [Google Scholar] [CrossRef]
- Diggelmann, A.-L.R.; Baron Toaldo, M.; Bektas, R.N.; Furthner, E.; Reichler, I.M.; Kutter, A.P.N. Atipamezole Reverses Cardiovascular Changes Induced by High-Dose Medetomidine in Cats Undergoing Sedation for Semen Collection. Animals 2023, 13, 1909. [Google Scholar] [CrossRef]
- Côté, E.; Zwicker, L.A.; Anderson, E.L.; Stryhn, H.; Yu, J.; Andersen, E. Effects of dexmedetomidine and its reversal with atipamezole on echocardiographic measurements and circulating cardiac biomarker concentrations in normal cats. J. Am. Vet. Med. Assoc. 2022, 260, 1–9. [Google Scholar] [CrossRef]
- Vasiljević, M.; Krstić, V.; Stanković, S.; Zrimšek, P.; Svete, A.N.; Seliškar, A. Cardiac troponin I in dogs anaesthetized with propofol and sevoflurane: The influence of medetomidine premedication and inspired oxygen fraction. Vet. Anaesth. Analg. 2018, 45, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, L.T.; Auckburally, A.; Santilli, J.; Vieira, B.H.B.; Garcia, D.O.; Honsho, C.S.; de Mattos-Junior, E. Effects of dexmedetomidine combined with commonly administered opioids on clinical variables in dogs. Am. J. Vet. Res. 2018, 79, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.M.; Auckburally, A.; Pawson, P.; Scott, E.M.; Flaherty, D. Two doses of dexmedetomidine in combination with buprenorphine for premedication in dogs; a comparison with acepromazine and buprenorphine. Vet. Anaesth. Analg. 2011, 38, 15–23. [Google Scholar] [CrossRef]
- Elliott, J.; Syme, H.M.; Reubens, E.; Markwell, P.J. Assessment of acid-base status of cats with naturally occurring chronic renal failure. J. Small Anim. Pract. 2003, 44, 65–70. [Google Scholar] [CrossRef]
- Spratt, D.P.; Mellanby, R.J.; Drury, N.; Archer, J. Cardiac troponin I: Evaluation of a biomarker for the diagnosis of heart disease in the dog. J. Small Anim. Pract. 2005, 46, 139–145. [Google Scholar] [CrossRef]
- Langhorn, R.; Tarnow, I.; Willesen, J.; Kjelgaard-Hansen, M.; Skovgaard, I.; Koch, J. Cardiac troponin I and T as prognostic markers in cats with hypertrophic cardiomyopathy. J. Vet. Intern. Med. 2014, 28, 1485–1491. [Google Scholar] [CrossRef] [PubMed]
- NOAH. Atipam 5.0 mg/mL Solution for Injection for Cats and Dogs. NOAH Compendium Datasheet. Available online: https://www.noahcompendium.co.uk/?id=-469254 (accessed on 28 September 2023).
- Lenhard, W.; Lenhard, A. Computation of Effect Sizes. Available online: https://www.researchgate.net/publication/336836189 (accessed on 31 August 2023).
- Parente, P.M.; Santos Silva, J.M. Quantile regression with clustered data. J. Econom. 2016, 5, 1–15. [Google Scholar] [CrossRef]
- Pal, D.; Saikia, B.; Sarma, K.; Konwar, B.; Lallinchhunga, M. Evaluation of Ketamine Hydrochloride in Combination with Midazolam, Dexmedetomidine and Butorphanol as Balanced Anaesthesia in Cats. Indian. J. Anim. Res. 2021, 1, 6. [Google Scholar] [CrossRef]
- Le Garreres, A.; Laroute, V.; De La Farge, F.; Boudet, K.G.; Lefebvre, H.P. Disposition of plasma creatinine in non-azotaemic and moderately azotaemic cats. J. Feline Med. Surg. 2007, 9, 89–96. [Google Scholar] [CrossRef]
- Prieto, J.M.; Carney, P.C.; Miller, M.L.; Rishniw, M.; Randolph, J.F.; Farace, G.; Bilbrough, G.; Yerramilli, M.; Peterson, M.E. Biologic variation of symmetric dimethylarginine and creatinine in clinically healthy cats. Vet. Clin. Pathol. 2020, 49, 401–406. [Google Scholar] [CrossRef]
- Sinclair, M.D. A review of the physiological effects of alpha2-agonists related to the clinical use of medetomidine in small animal practice. Can. Vet. J. 2003, 44, 885–897. [Google Scholar]
- Kuusela, E.; Raekallio, M.; Hietanen, H.; Huttula, J.; Vainio, O. 24-hour Holter-Monitoring in the Perianaesthetic Period in Dogs Premedicated with Dexmedetomidine. Vet. J. 2002, 164, 235–239. [Google Scholar] [CrossRef]
- Young, L.; Jones, R. Clinical observations on medetomidine/ketamine anaesthesia and its antagonism by atipamezole in the cat. J. Small Anim. Pract. 1990, 31, 221–224. [Google Scholar] [CrossRef]
- Zoetis I-STAT Alinity v Utilization Guide. Available online: https://www.zoetisus.com/content/_assets/docs/Diagnostics/operator_s-manual-guides/i-STAT-Alinity-v-Utilization-Guide-ABX-00075R1.pdf (accessed on 20 March 2022).
- Ebert, T.J.; Hall, J.E.; Barney, J.A.; Uhrich, T.D.; Colinco, M.D. The Effects of Increasing Plasma Concentrations of Dexmedetomidine in Humans. Anesthesiology 2000, 93, 382–394. [Google Scholar] [CrossRef]
- Hopper, K.; Epstein, S.E. Incidence, Nature, and Etiology of Metabolic Acidosis in Dogs and Cats. J. Vet. Intern. Med. 2012, 26, 1107–1114. [Google Scholar] [CrossRef]
- Teppema, L.J.; Nieuwenhuijs, D.; Olievier, C.N.; Dahan, A. Respiratory depression by tramadol in the cat: Involvement of opioid receptors. J. Am. Soc. Anesth. 2003, 98, 420–427. [Google Scholar]
- Sabbe, M.B.; Penning, J.P.; Ozaki, G.T.; Yaksh, T.L. Spinal and systemic action of the alpha 2 receptor agonist dexmedetomidine in dogs. Antinociception and carbon dioxide response. Anesthesiology 1994, 80, 1057–1072. [Google Scholar] [PubMed]
- Indrawirawan, Y.; McAlees, T. Tramadol toxicity in a cat: Case report and literature review of serotonin syndrome. J. Feline Med. Surg. 2014, 16, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.C.P.; Ludders, J.W.; Erb, H.N.; Basher, K.L.; Kirch, P.; Gleed, R.D. Sedative and cardiorespiratory effects of dexmedetomidine and buprenorphine administered to cats via oral transmucosal or intramuscular routes. Vet. Anaesth. Analg. 2010, 37, 417–424. [Google Scholar] [CrossRef]
- Porters, N.; Bosmans, T.; Debille, M.; de Rooster, H.; Duchateau, L.; Polis, I. Sedative and antinociceptive effects of dexmedetomidine and buprenorphine after oral transmucosal or intramuscular administration in cats. Vet. Anaesth. Analg. 2014, 41, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Möllenhoff, A.; Nolte, I.; Kramer, S. Anti-nociceptive Efficacy of Carprofen, Levomethadone and Buprenorphine for Pain Relief in Cats following Major Orthopaedic Surgery. J. Vet. Med. Sci. 2005, 52, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Gross, M.; Smith, J.A.; Tranquilli, W. Cardiorespiratory effects of combined midazolam and butorphanol in isoflurane-anesthetized cats. Vet. Surg. 1993, 22, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Mosallanejad, B.; Baniadam, A.; Avizeh, R.; Hamidanipour, R. Clinical evaluation of oral administration of ketamine with acepromazine or midazolam in cats: A preliminary study. Iran. J. Vet. Res. 2021, 17, 68–77. [Google Scholar] [CrossRef]
- Castro, M.L.; Cerqueira Câmara, B.M.; Oliveira Barreto, M.S.; Wenceslau, R.R.; Karollini e Silva, A.; Fagundes, N.; Silva, R.A.; Mariani Pimenta, E.L.; Beier, S.L. Effect of Dexmedetomidine Low Doses with or without Midazolam in Cats: Clinical, Hemodynamic, Blood Gas Analysis, and Echocardiographic Effects. Anesth. Res. Pract. 2022, 2022, 9613721. [Google Scholar] [CrossRef] [PubMed]
- Rand, J.S.; Kinnaird, E.; Baglioni, A.; Blackshaw, J.; Priest, J. Acute Stress Hyperglycemia in Cats Is Associated with Struggling and Increased Concentrations of Lactate and Norepinephrine. J. Vet. Intern. Med. 2002, 16, 123–132. [Google Scholar] [CrossRef]
- Takahashi, T.; Kawano, T.; Eguchi, S.; Chi, H.; Iwata, H.; Yokoyama, M. Effects of dexmedetomidine on insulin secretion from rat pancreatic β cells. J. Anesth. 2014, 29, 396–402. [Google Scholar] [CrossRef]
- Pypendop, B.H.; Ilkiw, J.E. Relationship between plasma dexmedetomidine concentration and sedation score and thermal threshold in cats. Am. J. Vet. Res. 2014, 75, 446–452. [Google Scholar] [CrossRef]
- Kelawala, N.; Parsania, R.; Patil, D. Hematological and biochemical studies on ketamine, propofol and propofol-ketamine as general anesthesia in diazepam premedicated goats (Capra hircus). Indian. J. Vet. Surg. 1991, 12, 17–20. [Google Scholar]
- Kanda, T.; Hikasa, Y. Effects of medetomidine and midazolam alone or in combination on the metabolic and neurohormonal responses in healthy cats. Can. J. Vet. Res. 2008, 72, 332–339. [Google Scholar]
- Pypendop, B.H.; Ilkiw, J.E. Pharmacokinetics of tramadol, and its metabolite O-desmethyl-tramadol, in cats. J. Vet. Pharmacol. Ther. 2008, 31, 52–59. [Google Scholar] [CrossRef]
- Nakhaee, S.; Brent, J.; Hoyte, C.; Farrokhfall, K.; Shirazi, F.M.; Askari, M.; Mehrpour, O. The effect of tramadol on blood glucose concentrations: A systematic review. Eur. J. Pharmacol. 2020, 13, 531–543. [Google Scholar] [CrossRef]
- Cheng, J.-T.; Liu, I.-M.; Chi, T.-C.; Tzeng, T.-F.; Lu, F.-H.; Chang, C.J. Plasma glucose–lowering effect of tramadol in streptozotocin-induced diabetic rats. Diabetes 2001, 50, 2815–2821. [Google Scholar] [CrossRef]
- Grandvuillemin, A.; Jolimoy, G.; Authier, F.; Dautriche, A.; Duhoux, F.; Sgro, C. Tramadol-induced hypoglycemia. 2 cases. Presse Med. 2006, 35, 1842–1844. [Google Scholar] [CrossRef]
- Yamada, J.; Sugimoto, Y.; Kimura, I.; Takeuchi, N.; Horisaka, K. Serotonin-induced hypoglycemia and increased serum insulin levels in mice. Life Sci. 1989, 45, 1931–1936. [Google Scholar] [CrossRef]
- Bascuñán Cuevas, A.B. Comparación de la Eficacia Analgésica Intra y Postquirúrgica de Metadona, Morfina y Tramadol en Gatas Sometidas a Ovariohisterectomía; Faculty of Veterinary and Livestock Sciences, University of Chile: Santiago, Chile, 2017. [Google Scholar]
- Martins, T.L.; Kahvegian, M.A.; Noel-Morgan, J.; Leon-Roman, M.A.; Otsuki, D.A.; Fantoni, D.T. Comparison of the effects of tramadol, codeine, and ketoprofen alone or in combination on postoperative pain and on concentrations of blood glucose, serum cortisol, and serum interleukin-6 in dogs undergoing maxillectomy or mandibulectomy. Am. J. Vet. Res. 2010, 71, 1019–1026. [Google Scholar] [CrossRef]
- Elyazji, N.R.; Abdel-Aziz, I.; Aldalou, A.; Shahwan, O. The effects of tramadol hydrochloride administration on the hematological and biochemical profiles of domestic male rabbits. J. Nat. Stud. 2015, 21, 51–56. [Google Scholar]
- Andurkar, S.V.; Gendler, L.; Gulati, A. Tramadol antinociception is potentiated by clonidine through α2-adrenergic and I2-imidazoline but not by endothelin ET (A) receptors in mice. Eur. J. Pharmacol. 2012, 683, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.; Mellor, D.J.; Ramsey, I.; Knottenbelt, C. Decreased sodium: Potassium ratios in cats: 49 cases. Vet. Clin. Pathol. 2005, 34, 110–114. [Google Scholar] [CrossRef]
- Tzamaloukas, A.H.; Ing, T.S.; Siamopoulos, K.C.; Raj, D.S.; Elisaf, M.S.; Rohrscheib, M.; Murata, G.H. Pathophysiology and Management of Fluid and Electrolyte Disturbances in Patients on Chronic Dialysis with Severe Hyperglycemia. Semin. Dial. 2008, 21, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.S.; Martyn, L.; Weaver, C.M. Potassium intake, bioavailability, hypertension, and glucose control. Nutr. J. 2016, 8, 444. [Google Scholar] [CrossRef]
- Phillips, S.L.; Polzin, D.J. Clinical disorders of potassium homeostasis: Hyperkalemia and hypokalemia. Vet. Clin. N. Am. 1998, 28, 545–564. [Google Scholar] [CrossRef] [PubMed]
- Ha, Y.S.; Hopper, K.; Epstein, S. Incidence, nature, and etiology of metabolic alkalosis in dogs and cats. J. Vet. Intern. Med. 2013, 27, 847–853. [Google Scholar] [CrossRef]
- Kazakos, G. Contribution to the Study of Perioperative Homeostasis of Potassium in the Dog; Aristotle University of Thessaloniki (AUTh), Faculty of Geotechnical Science: Thessaloniki, Greece, 2005. [Google Scholar]
- DiBartola, S.P. Metabolic Acid-Base Disorders. In Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice, 3rd ed.; Elsevier Health Sciences: St. Louis, MO, USA, 2012; pp. 253–286. [Google Scholar]
- Adetunjia, A.; Osunbunmi, O. Haematological effects of azaperone sedation in pigs. Afr. J. Biomed. Res. 2000, 3, 131–133. [Google Scholar]
- Skelding, A.M.; Valverde, A. Comparison of the effect of three intramuscular sedation protocols on packed cell volume and total protein in cats. J. Feline Med. Surg. 2022, 24, 1173–1180. [Google Scholar] [CrossRef] [PubMed]
- Auger, M.; Fazio, C.; de Swarte, M.; Bussières, G.; Schaefer, D.; Springer, C.M. Administration of certain sedative drugs is associated with variation in sonographic and radiographic splenic size in healthy cats. Vet. Radiol. Ultrasound 2019, 60, 717–728. [Google Scholar] [CrossRef]
- Abrams, A.C.G.; Blois, S.L. Principles of canine and feline blood collection, processing, and storage. In Schalm’s Veterinary Hematology, 7th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022; p. 899. [Google Scholar]
- Wellman, M.; DiBartola, S.; Kohn, C. Applied physiology of body fluids in dogs and cats. In Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice, 3rd ed.; Elsevier Health Sciences: St. Louis, MO, USA, 2012; pp. 2–25. [Google Scholar]
- Zeiler, G.E.; Fuller, A.; Rioja, E.; Kamerman, P.; Buck, R.K.; Pohlin, F.; Dzikiti, B.T. Development of a severity scoring system for acute haemorrhage in anaesthetized domestic cats: The CABSS score. Vet. Anaesth. Analg. 2020, 47, 499–508. [Google Scholar] [CrossRef]
Time Point | Measurements and Administrations |
---|---|
T0 | Measurement of HR and RR Venous blood collection (blood gas, electrolytes, Glu, CREA, cTnI) Administration of dexmedetomidine |
T1 | Measurement of HR and RR Venous blood collection (blood gas, electrolytes) Administration of second drug |
T2 | Measurement of HR and RR Venous blood collection (blood gas, electrolytes, Glu, CREA, cTnI) Administration of atipamezole |
T3 | Measurement of HR and RR Full recovery |
Group | DD (p Value) | DC (p Value) | DT (p Value) | DBT (p Value) | DBP (p Value) | DK (p Value) |
---|---|---|---|---|---|---|
DC | Coef.: 36 (0.001) | |||||
DT | Coef.: 15 (0.02) | Coef.: −21 (0.001) | ||||
DBT | (0.497) | Coef.: −33 (<0.001) | Coef.: 12 (0.009) | |||
DBP | Coef.: 21 (0.004) | Coef.: 15 (0.019) | Coef.: 6 (<0.001) | Coef.: 18 (0.001) | ||
DK | Coef.: 36 (0.011) | (1.00) | (0.128) | Coef.: 33 (0.032) | (0.298) | |
DM | (0.103) | Coef.: 18 (0.04) | (0.722) | (0.128) | (0.743) | (0.158) |
Group | DD (p Value) | DC (p Value) | DT (p Value) | DBT (p Value) | DBP (p Value) | DK (p Value) |
---|---|---|---|---|---|---|
DC | Coef.: 0.77 (0.001) | |||||
DT | (0.05) | (0.119) | ||||
DBT | Coef.: 0.035 (0.035) | (0.161) | (0.876) | |||
DBP | Coef.: 0.49 (0.029) | (0.185) | (0.815) | (0.938) | ||
DK | (0.794) | Coef.: −0.71 (0.001) | (0.073) | (0.051) | Coef.: −0.43 (0.043) | |
DM | Coef.: 0.67 (0.003) | (0.640) | (0.275) | (0.350) | (0.391) | Coef.: 0.62 (0.004) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Margeti, C.; Kazakos, G.; Galatos, A.D.; Skampardonis, V.; Zacharopoulou, T.; Tsioli, V.; Tyrnenopoulou, P.; Loukopoulos, E.; Papatsiros, V.G.; Flouraki, E. The Effect of a Subsequent Dose of Dexmedetomidine or Other Sedatives following an Initial Dose of Dexmedetomidine on Electrolytes, Acid–Base Balance, Creatinine, Glucose, and Cardiac Troponin I in Cats: Part II. Vet. Sci. 2024, 11, 143. https://doi.org/10.3390/vetsci11040143
Margeti C, Kazakos G, Galatos AD, Skampardonis V, Zacharopoulou T, Tsioli V, Tyrnenopoulou P, Loukopoulos E, Papatsiros VG, Flouraki E. The Effect of a Subsequent Dose of Dexmedetomidine or Other Sedatives following an Initial Dose of Dexmedetomidine on Electrolytes, Acid–Base Balance, Creatinine, Glucose, and Cardiac Troponin I in Cats: Part II. Veterinary Sciences. 2024; 11(4):143. https://doi.org/10.3390/vetsci11040143
Chicago/Turabian StyleMargeti, Chrysoula, Georgios Kazakos, Apostolos D. Galatos, Vassilis Skampardonis, Theodora Zacharopoulou, Vassiliki Tsioli, Panagiota Tyrnenopoulou, Epameinondas Loukopoulos, Vasileios G. Papatsiros, and Eugenia Flouraki. 2024. "The Effect of a Subsequent Dose of Dexmedetomidine or Other Sedatives following an Initial Dose of Dexmedetomidine on Electrolytes, Acid–Base Balance, Creatinine, Glucose, and Cardiac Troponin I in Cats: Part II" Veterinary Sciences 11, no. 4: 143. https://doi.org/10.3390/vetsci11040143
APA StyleMargeti, C., Kazakos, G., Galatos, A. D., Skampardonis, V., Zacharopoulou, T., Tsioli, V., Tyrnenopoulou, P., Loukopoulos, E., Papatsiros, V. G., & Flouraki, E. (2024). The Effect of a Subsequent Dose of Dexmedetomidine or Other Sedatives following an Initial Dose of Dexmedetomidine on Electrolytes, Acid–Base Balance, Creatinine, Glucose, and Cardiac Troponin I in Cats: Part II. Veterinary Sciences, 11(4), 143. https://doi.org/10.3390/vetsci11040143