The Effect of a Subsequent Dose of Dexmedetomidine or Other Sedatives following an Initial Dose of Dexmedetomidine on Sedation and Quality of Recovery in Cats: Part I
Abstract
:Simple Summary
Abstract
1. Introduction
- Following insufficient sedation resulting from a single administration of dexmedetomidine, the subsequent dose has the potential to enhance the quality, intensity, and duration of the sedative effect.
- Following insufficient sedation resulting from a single administration of dexmedetomidine, the administration of additional medications, such as common opioids or anaesthetic agents, enhances the sedative properties of dexmedetomidine.
- The administered drugs do not compromise the quality of recovery.
2. Materials and Methods
- The Simple Descriptive Scale (SDS), developed by Lozano et al. (2009) [25], has not been previously used in cats. The scores on this scale ranged from 1 to 5, with 1 indicating smooth recovery and 5 indicating extremely violent recovery.
Statistical Analysis
3. Results
3.1. Quality and Duration of Sedation
3.2. Quality and Duration of Recovery
4. Discussion
4.1. Quality and Duration of Sedation
4.2. Quality and Duration of Recovery
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flacke, W.E.; Flacke, J.W.; Bloor, B.C.; McIntee, D.F.; Sagan, M. Effects of dexmedetomidine on systemic and coronary hemodynamics in the anesthetized dog. J. Cardiothorac. Vasc. Anesth. 1993, 7, 41–49. [Google Scholar] [CrossRef]
- Dart, C. Advantages and disadvantages of using alpha-2 agonists in veterinary practice. Aust. Vet. J. 1999, 77, 720–722. [Google Scholar] [CrossRef]
- Granholm, M.; McKusick, B.C.; Westerholm, F.C.; Aspegrén, J.C. Evaluation of the clinical efficacy and safety of dexmedetomidine or medetomidine in cats and their reversal with atipamezole. Vet. Anaesth. Analg. 2006, 33, 214–223. [Google Scholar] [CrossRef]
- Green, R.; Musulin, S.E.; Baja, A.J.; Hansen, B.D. Case report: Low dose dexmedetomidine infusion for the management of hypoglycemia in a dog with an insulinoma. Front. Vet. Sci. 2023, 10, 1161002. [Google Scholar] [CrossRef] [PubMed]
- Murrell, J.C.; Hellebrekers, L.J. Medetomidine and dexmedetomidine: A review of cardiovascular effects and antinociceptive properties in the dog. Vet. Anaesth. Analg. 2005, 32, 117–127. [Google Scholar] [CrossRef]
- Leppänen, M.K.; McKusick, B.C.; Granholm, M.M.; Westerholm, F.C.; Tulamo, R.; Short, C.E. Clinical efficacy and safety of dexmedetomidine and buprenorphine, butorphanol or diazepam for canine hip radiography. J. Small Anim. Pract. 2006, 47, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, L.T.; Auckburally, A.; Santilli, J.; Vieira, B.H.B.; Garcia, D.O.; Honsho, C.S.; de Mattos-Junior, E. Effects of dexmedetomidine combined with commonly administered opioids on clinical variables in dogs. Am. J. Vet. Res. 2018, 79, 267–275. [Google Scholar] [CrossRef]
- Slingsby, L.S.; Murrell, J.C.; Taylor, P.M. Combination of dexmedetomidine with buprenorphine enhances the antinociceptive effect to a thermal stimulus in the cat compared with either agent alone. Vet. Anaesth. Analg. 2010, 37, 162–170. [Google Scholar] [CrossRef]
- Carroll, G.L.; Howe, L.B.; Peterson, K.D. Analgesic efficacy of preoperative administration of meloxicam or butorphanol in onychectomized cats. J. Am. Vet. Med. Assoc. 2005, 226, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.M.; Kirby, J.J.; Robinson, C.; Watkins, E.A.; Clarke, D.D.; Ford, M.A.; Church, K.E. A prospective multi-centre clinical trial to compare buprenorphine and butorphanol for postoperative analgesia in cats. J. Feline Med. Surg. 2010, 12, 247–255. [Google Scholar] [CrossRef]
- Ansah; Raekallio; Vainio. Comparison of three doses of dexmedetomidine with medetomidine in cats following intramuscular administration. J. Vet. Pharmacol. Ther. 1998, 21, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Papastefanou, A.K.; Galatos, A.D.; Pappa, E.; Lymperis, A.G.; Kostoulas, P. The effect of butorphanol on the incidence of dexmedetomidine-induced emesis in cats. Vet. Anaesth. Analg. 2015, 42, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Robertson, S.; Taylor, P.; Lascelles, B.; Dixon, M. Changes in thermal threshold response in eight cats after administration of buprenorphine, butorphanol and morphine. Vet. Rec. 2003, 153, 462–465. [Google Scholar] [CrossRef] [PubMed]
- Giordano, T.; Steagall, P.V.; Ferreira, T.H.; Minto, B.W.; De Sá Lorena, S.E.R.; Brondani, J.; Luna, S.P. Postoperative analgesic effects of intravenous, intramuscular, subcutaneous or oral transmucosal buprenorphine administered to cats undergoing ovariohysterectomy. Vet. Anaesth. Analg. 2010, 37, 357–366. [Google Scholar] [CrossRef]
- Lizasoain, I.; Leza, J.; Lorenzo, P. Buprenorphine: Bell-shaped dose-response curve for its antagonist effects. Gen. Pharmacol. 1991, 22, 297–300. [Google Scholar] [CrossRef]
- Pypendop, B.H.; Ilkiw, J.E. Pharmacokinetics of tramadol, and its metabolite O-desmethyl-tramadol, in cats. J. Vet. Pharmacol. Ther. 2008, 31, 52–59. [Google Scholar] [CrossRef]
- Hermeto, L.C.; DeRossi, R.; Marques, B.C.; Jardim, P.H. Potentiation of epidural lidocaine by co-administering tramadol by either intramuscular or epidural route in cats. Can. J. Vet. Res. 2015, 79, 214–220. [Google Scholar]
- Green, C.J.; Knight, P. Ketamine alone and combined with diazepam or xylazine in laboratory animals: A 10 year experience. Lab. Anim. 1981, 15, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Ilkiw, J.E.; Suter, C.M.; Farver, T.B.; McNeal, D.; Steffey, E.P. The behaviour of healthy awake cats following intravenous and intramuscular administration of midazolam. J. Vet. Pharmacol. Ther. 1996, 19, 205–216. [Google Scholar] [CrossRef]
- Bhalla, R.J.; Trimble, T.A.; Leece, E.A.; Vettorato, E. Comparison of intramuscular butorphanol and buprenorphine combined with dexmedetomidine for sedation in cats. J. Feline Med. Surg. 2017, 20, 325–331. [Google Scholar] [CrossRef]
- Grint, N.J.; Burford, J.; Dugdale, A.H.A. Does pethidine affect the cardiovascular and sedative effects of dexmedetomidine in dogs? J. Small Anim. Pract. 2009, 50, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Young, L.E.; Brearley, J.C.; Richards, D.L.S.; Bartram, D.H.; Jones, R.S. Medetomidine as a premedicant in dogs and its reversal by atipamezole. J. Small Anim. Pract. 1990, 31, 554–559. [Google Scholar] [CrossRef]
- Kuusela, E.; Raekallio, M.; Anttila, M.; Falck, I.; Mölsä, S.; Vainio, O. Clinical effects and pharmacokinetics of medetomidine and its enantiomers in dogs. J. Vet. Pharmacol. Ther. 2000, 23, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, J.; Jolliffe, C.; Archer, E.; Leece, E.A. Intramuscular injection of alfaxalone in combination with butorphanol for sedation in cats. Vet. Anaesth. Analg. 2017, 44, 794–802. [Google Scholar] [CrossRef] [PubMed]
- Lozano, A.J.; Brodbelt, D.C.; Borer, K.E.; Armitage-Chan, E.; Clarke, K.W.; Alibhai, H.I.K. A comparison of the duration and quality of recovery from isoflurane, sevoflurane and desflurane anaesthesia in dogs undergoing magnetic resonance imaging. Vet. Anaesth. Analg. 2009, 36, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Sams, L.; Braun, C.; Allman, D.; Hofmeister, E. A comparison of the effects of propofol and etomidate on the induction of anesthesia and on cardiopulmonary parameters in dogs. Vet. Anaesth. Analg. 2008, 35, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-W.; Suh, S.; Choi, R.; Hyun, C. Evaluation of quality of anesthesia and analgesia and of vital signs after intramuscular administration of a combination of butorphanol, medetomidine and alfaxalone in cats. J. Vet. Med. Sci. 2015, 78, 431–433. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.M.; Auckburally, A.; Pawson, P.; Scott, E.M.; Flaherty, D. Two doses of dexmedetomidine in combination with buprenorphine for premedication in dogs; a comparison with acepromazine and buprenorphine. Vet. Anaesth. Analg. 2011, 38, 15–23. [Google Scholar] [CrossRef] [PubMed]
- NOAH. Atipam 5.0 mg/mL Solution for Injection for Cats and Dogs. NOAH Compendium Datasheet. Available online: https://www.noahcompendium.co.uk/?id=-469254 (accessed on 28 September 2023).
- Lenhard, W.; Lenhard, A. Computation of Effect Sizes. Available online: https://www.researchgate.net/publication/336836189 (accessed on 31 August 2023).
- Parente, P.M.; Santos Silva, J.M. Quantile regression with clustered data. J. Econom. 2016, 5, 1–15. [Google Scholar] [CrossRef]
- Gutierrez, R.G. Parametric Frailty and Shared Frailty Survival Models. Stat. J. 2002, 2, 22–44. [Google Scholar] [CrossRef]
- Meadows, C.; Rajala-Schultz, P.J.; Frazer, G.S.; Phillips, G.; Meiring, R.W.; Hoblet, K.H. Evaluation of a contract breeding management program in selected Ohio dairy herds with event-time analysis: II. Parametric frailty models. Prev. Vet. Med. 2007, 80, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Skampardonis, V.; Sotiraki, S.; Kostoulas, P.; Leontides, L. Effect of toltrazuril treatment in nursing piglets naturally infected with Isospora suis. Vet. Parasitol. 2010, 172, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Klein, J.P.; Moeschberger, M.L.; Klein, J.P.; Moeschberger, M.L. Hypothesis testing. In Survival Analys; Springer: New York, NY, USA, 2003; pp. 201–242. [Google Scholar]
- Sinclair, M.D. A review of the physiological effects of alpha2-agonists related to the clinical use of medetomidine in small animal practice. Can. Vet. J. 2003, 44, 885–897. [Google Scholar] [PubMed]
- Santos, L.C.P.; Ludders, J.W.; Erb, H.N.; Martin-Flores, M.; Basher, K.L.; Kirch, P. A randomized, blinded, controlled trial of the antiemetic effect of ondansetron on dexmedetomidine-induced emesis in cats. Vet. Anaesth. Analg. 2011, 38, 320–327. [Google Scholar] [CrossRef] [PubMed]
- McSweeney, P.M.; Martin, D.D.; Ramsey, D.S.; McKusick, B.C. Clinical efficacy and safety of dexmedetomidine used as a preanesthetic prior to general anesthesia in cats. J. Am. Vet. Med. Assoc. 2012, 240, 404–412. [Google Scholar] [CrossRef]
- Rufiange, M.; Ruel, H.L.; Monteiro, B.P.; Watanabe, R.; Cruz Benedetti, I.-C.; Benito, J.; Steagall, P.V. A randomized, prospective, masked clinical trial comparing an opioid-free vs. opioid-sparing anesthetic technique in adult cats undergoing ovariohysterectomy. Front. Vet. Sci. 2022, 9, 1751. [Google Scholar] [CrossRef] [PubMed]
- Biermann, K.; Hungerbühler, S.; Mischke, R.; Kästner, S.B.R. Sedative, cardiovascular, haematologic and biochemical effects of four different drug combinations administered intramuscularly in cats. Vet. Anaesth. Analg. 2012, 39, 137–150. [Google Scholar] [CrossRef]
- Bruniges, N.; Taylor, P.M.; Yates, D. Injectable anaesthesia for adult cat and kitten castration: Effects of medetomidine, dexmedetomidine and atipamezole on recovery. J. Feline Med. Surg. 2016, 18, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Dobromylskyj, P. Cardiovascular changes associated with anaesthesia induced by medetomidine combined with ketamine in cats. J. Small Anim. Pract. 1996, 37, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Ebner, J.; Wehr, U.; Busch, R.; Erhardt, W.; Henke, J. A comparative clinical study of three different dosages of intramuscular midazolam–medetomidine–ketamine immobilization in cats. J. Vet. Med. Ser. A 2007, 54, 418–423. [Google Scholar] [CrossRef]
- Harrison, K.A.; Robertson, S.A.; Levy, J.K.; Isaza, N.M. Evaluation of Medetomidine, Ketamine and Buprenorphine for Neutering Feral Cats. J. Feline Med. Surg. 2011, 13, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Barletta, M.; Austin, B.R.; Ko, J.C.; Payton, M.E.; Weil, A.B.; Inoue, T. Evaluation of dexmedetomidine and ketamine in combination with opioids as injectable anesthesia for castration in dogs. J. Am. Vet. Med. Assoc. 2011, 238, 1159–1167. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.C. Influence of ketamine on the cardiopulmonary effects of intramuscular administration of dexmedetomidine-buprenorphine with subsequent reversal with atipamezole in dogs. J. Am. Vet. Med. Assoc. 2013, 242, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.C.H.; Fox, S.M.; Mandsager, R.E. Sedative and cardiorespiratory effects of medetomidine, medetomidine-butorphanol, and medetomidine-ketamine in dogs. J. Am. Vet. Med. Assoc. 2000, 216, 1578–1583. [Google Scholar] [CrossRef] [PubMed]
- Krimins, R.A.; Ko, J.C.; Weil, A.B.; Payton, M.E.; Constable, P.D. Hemodynamic effects in dogs after intramuscular administration of a combination of dexmedetomidine-butorphanol-tiletamine-zolazepam or dexmedetomidine-butorphanol-ketamine. Am. J. Vet. Res. 2012, 73, 1363–1370. [Google Scholar] [CrossRef] [PubMed]
- Moens, Y.; Fargetton, X. A comparative study of medetomidine/ketamine and xylazine/ketamine anaesthesia in dogs. Vet. Rec. 1990, 127, 567–571. [Google Scholar] [PubMed]
- Selmi, A.L.; Mendes, G.M.; Lins, B.T.; Figueiredo, J.P.; Barbudo-Selmi, G.R. Evaluation of the sedative and cardiorespiratory effects of dexmedetomidine, dexmedetomidine-butorphanol, and dexmedetomidine-ketamine in cats. J. Am. Vet. Med. Assoc. 2003, 222, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.L.; Cerqueira Câmara, B.M.; Oliveira Barreto, M.S.; Wenceslau, R.R.; Karollini e Silva, A.; Fagundes, N.; Silva, R.A.; Mariani Pimenta, E.L.; Beier, S.L. Effect of Dexmedetomidine Low Doses with or without Midazolam in Cats: Clinical, Hemodynamic, Blood Gas Analysis, and Echocardiographic Effects. Anesth. Res. Pract. 2022, 2022, 9613721. [Google Scholar] [CrossRef] [PubMed]
- Kanda, T.; Hikasa, Y. Effects of medetomidine and midazolam alone or in combination on the metabolic and neurohormonal responses in healthy cats. Can. J. Vet. Res. 2008, 72, 332–339. [Google Scholar]
- Heidari, F.; Javdani, M.; Bigham Sadegh, A.; Nikouseft, Z. Does ketamine-midazolam combination act as a routine and safe chemical restraint in cats? Clinical and hemato-biochemical evaluation. Comp. Clin. Path 2017, 26, 793–797. [Google Scholar] [CrossRef]
- Monteiro, E.R.; Campagnol, D.; Parrilha, L.R.; Furlan, L.Z. Evaluation of cardiorespiratory effects of combinations of dexmedetomidine and atropine in cats. J. Feline Med. Surg. 2009, 11, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Dholakia, U.; Seddighi, R.; Odunayo, A.; Cox, S.K.; Jones, E.H.; Pypendop, B.H. Prolonged anesthetic recovery after continuous infusion of midazolam in 2 domestic cats (Felis catus). Comp. Med. 2019, 69, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Pal, D.; Saikia, B.; Sarma, K.; Konwar, B.; Lallinchhunga, M. Evaluation of Ketamine Hydrochloride in Combination with Midazolam, Dexmedetomidine and Butorphanol as Balanced Anaesthesia in Cats. Indian. J. Anim. Res. 2021, 1, 6. [Google Scholar] [CrossRef]
- Steagall, P.V.M.; Pelligand, L.; Giordano, T.; Auberger, C.; Sear, J.W.; Luna, S.P.L.; Taylor, P.M. Pharmacokinetic and pharmacodynamic modelling of intravenous, intramuscular and subcutaneous buprenorphine in conscious cats. Vet. Anaesth. Analg. 2013, 40, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, C.G.; Marques, D.R.C.; da Silva, T.H.M.; de Mattos-Junior, E. Cardiorespiratory, sedative and antinociceptive effects of dexmedetomidine alone or in combination with methadone, morphine or tramadol in dogs. Vet. Anaesth. Analg. 2014, 41, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Hommuang, K.; Koatsang, N.; Srikullabutr, S.; Sattasathuchana, P.; Thengchaisri, N. Intranasal dexmedetomidine with morphine or tramadol: A comparative study of effects on alfaxalone requirements for anesthesia in cats. Vet. World 2023, 16, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Pypendop, B.H.; Siao, K.T.; Ilkiw, J.E. Effects of tramadol hydrochloride on the thermal threshold in cats. Am. J. Vet. Res. 2009, 70, 1465–1470. [Google Scholar] [CrossRef]
- Steagall, P.V.; Taylor, P.M.; Brondani, J.T.; Luna, S.P.; Dixon, M.J. Antinociceptive effects of tramadol and acepromazine in cats. J. Feline Med. Surg. 2008, 10, 24–31. [Google Scholar] [CrossRef]
- Young, L.; Jones, R. Clinical observations on medetomidine/ketamine anaesthesia and its antagonism by atipamezole in the cat. J. Small Anim. Pract. 1990, 31, 221–224. [Google Scholar] [CrossRef]
- Verstegen, J.; Fargetton, X.; Zanker, S.; Donnay, I.; Ectors, F. Antagonistic activities of atipamezole, 4-aminopyridine and yohimbine against medetomidine/ketamine-induced anaesthesia in cats. Vet. Rec. 1991, 128, 57–60. [Google Scholar] [CrossRef]
- Flaherty, D. Alpha2-adrenoceptor agonists in small animal practice 1. Why they do what they do. Practice 2013, 35, 524–530. [Google Scholar] [CrossRef]
- Jang, H.S.; Lee, M.G. Atipamezole changes the antinociceptive effects of butorphanol after medetomidine–ketamine anaesthesia in rats. Vet. Anaesth. Analg. 2009, 36, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Vaha-Vahe, A. Clinical effectiveness of atipamezole as a medetomidine antagonist in cats. J. Small Anim. Pract. 1990, 31, 193–197. [Google Scholar] [CrossRef]
- Khenissi, L.; Nikolayenkova-Topie, O.; Broussaud, S.; Touzot-Jourde, G. Comparison of intramuscular alfaxalone and ketamine combined with dexmedetomidine and butorphanol for castration in cats. J. Feline Med. Surg. 2016, 19, 791–797. [Google Scholar] [CrossRef]
- Zeiler, G.E.; Dzikiti, B.T.; Fosgate, G.T.; Stegmann, F.G.; Venter, F.J.; Rioja, E. Anaesthetic, analgesic and cardiorespiratory effects of intramuscular medetomidine-ketamine combination alone or with morphine or tramadol for orchiectomy in cats. Vet. Anaesth. Analg. 2014, 41, 411–420. [Google Scholar] [CrossRef]
Time Point | Measurements and Administrations |
---|---|
T0 | Sedation score evaluation (Grint) Administration of dexmedetomidine |
q 5 min | Sedation score evaluation |
T1 | Sedation score evaluation (Grint) Administration of second drug |
q 5 min | Sedation score evaluation (Grint) |
T2 | Sedation score evaluation (Grint) Administration of atipamezole |
q 5 min | Recovery quality evaluation (Sams and Lozano) |
T3 | Full recovery |
Group | T0–T1 | T1–T2 | T0–T2 | T2–T3 | T0–T3 |
---|---|---|---|---|---|
DD | 19 (±1.9) | 11.7 (±2.3) | 30.8 (±3.4) | 15.3 (±2.1) | 46.2 (±4.7) |
DC | 18 (±2.5) | 11.7 (±2.3) | 29.2 (±1.9) | 13.2 (±3.5) | 42.3 (±4.95) |
DT | 15 (±0) | 10 (±0) | 25 (±0) | 11.8 (±2.3) | 36.8 (±2.3) |
DBT | 15 (±4.1) | 13.3 (±2.3) | 28.3 (±5.5) | 11.3 (±1.97) | 39.7 (±6.5) |
DBP | 16 (±1.9) | 15 (±2.9) | 30.8 (±1.9) | 11.7 (±2.5) | 42.5 (±2.6) |
DK | 18 (±2.5) | 12.5 (±2.5) | 29.2 (±1.9) | 17.3 (±2.7) | 46.5 (±4.03) |
DM | 17 (±3.7) | 8.33 (±2.3) | 25 (±4.1) | 19.2 (±1.9) | 44.2 (±4.5) |
All | 17 (±3.05) | 11.8 (±3.05) | 28.3 (±3.9) | 14.3 (±3.8) | 42.6 (±5.5) |
Mean duration of T1–T2 | Group | DD (p value) | DC (p value) | DT (p value) | DBT (p value) | DBP (p value) | DK (p value) |
DC | (0.967) | ||||||
DT | TR = 0.781 (0.002) | TR = 0.784 (0.021) | |||||
DBT | (0.308) | (0.314) | TR = 1.41 (<0.001) | ||||
DBP | TR = 1.263 (0.014) | TR = 1.268 (0.011) | TR = 1.617 (<0.001) | (0.160) | |||
DK | (0.548) | (0.563) | TR = 1.363 (0.001) | (0.723) | (0.118) | ||
DM | TR = 0.727 (0.001) | TR = 0.73 (0.001) | (0.476) | TR = 0.66 (<0.001) | TR = 0.57 (<0.001) | TR = 0.68 (<0.001) | |
Mean duration of T0–T2 | Group | DD (p value) | DC (p value) | DT (p value) | DBT (p value) | DBP (p value) | DK (p value) |
DC | (0.431) | ||||||
DT | TR = 0.812 (<0.001) | TR = 0.86 (0.026) | |||||
DBT | (0.224) | (0.496) | (0.124) | ||||
DBP | (0.924) | (0.412) | TR = 1.23 (0.002) | (0.134) | |||
DK | (0.661) | (0.707) | TR = 1.194 (0.009) | (0.291) | (0.657) | ||
DM | TR = 0.808 (0.004) | TR = 0.847 (0.016) | (0.84) | (0.082) | TR = 0.8 (<0.001) | TR = 0.826 (0.005) |
Group | Grint Score | |
---|---|---|
T1 | T2 | |
DD | 7.5 (6–9) | 10 (8–12) |
DC | 6 (5–7) | 5 (4–6) |
DT | 7 (6–9) | 8 (7–11) |
DBT | 6.5 (6–8) | 9 (7–12) |
DBP | 6.5 (5–8) | 10 (5–11) |
DK | 6 (5–7) | 10 (8–11) |
DM | 7 (6–8) | 7.5 (3–9) |
Grint scale score differences at interval T1–T2 | Group | DD (p value) | DC (p value) | DT (p value) | DBT (p value) | DBP (p value) | DK (p value) |
DC | Coef.: −3 (0.006) | ||||||
DT | Coef.: −2 (0.043) | Coef.: 3 (0.033) | |||||
DBT | (0.297) | Coef.: 4 (0.001) | (0.107) | ||||
DBP | (0.297) | Coef.: 4 (0.004) | (0.107) | (1.000) | |||
DK | Coef.: 2 (0.049) | Coef.: 4 (0.001) | Coef.: 2 (0.002) | (0.174) | (0.414) | ||
DM | (0.328) | (0.328) | (0.372) | (0.353) | (0.170) | (0.128) | |
Grint scale score differences at interval T0–T2 | Group | DD (p value) | DC (p value) | DT (p value) | DBT (p value) | DBP (p value) | DK (p value) |
DC | Coef.: −5 (0.001) | ||||||
DT | Coef.: −2 (0.008) | Coef.: 3 (0.012) | |||||
DBT | (0.203) | Coef.: 4 (0.001) | (0.321) | ||||
DBP | (1.000) | Coef.: 5 (0.001) | (0.069) | (0.170) | |||
DK | (1.000) | Coef.: 5 (0.001) | Coef.: 2 (0.003) | (0.170) | (1.000) | ||
DM | (0.346) | (0.814) | (0.607) | (0.506) | (0.335) | (0.335) |
Group | DD | DC | DT | DBT | DBP | DK |
---|---|---|---|---|---|---|
DC | (0.468) | |||||
DT | TR = 0.79 (0.039) | (0.150) | ||||
DBT | TR = 0.755 (0.003) | TR = 0.81 (0.025) | (0.686) | |||
DBP | TR = 0.787 (0.011) | (0.071) | (0.973) | (0.662) | ||
DK | (0.247) | (0.071) | TR = 1.42 (<0.001) | TR = 1.49 (<0.001) | TR = 1.43 (0.001) | |
DM | (0.061) | TR = 1.29 (0.011) | TR = 1.52 (<0.001) | TR = 1.59 (<0.001) | TR = 1.53 (<0.001) | (0.649) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Margeti, C.; Kazakos, G.; Skampardonis, V.; Galatos, A.D.; Zacharopoulou, T.; Tsioli, V.; Loukopoulos, E.; Tyrnenopoulou, P.; Papatsiros, V.G.; Flouraki, E. The Effect of a Subsequent Dose of Dexmedetomidine or Other Sedatives following an Initial Dose of Dexmedetomidine on Sedation and Quality of Recovery in Cats: Part I. Vet. Sci. 2024, 11, 186. https://doi.org/10.3390/vetsci11050186
Margeti C, Kazakos G, Skampardonis V, Galatos AD, Zacharopoulou T, Tsioli V, Loukopoulos E, Tyrnenopoulou P, Papatsiros VG, Flouraki E. The Effect of a Subsequent Dose of Dexmedetomidine or Other Sedatives following an Initial Dose of Dexmedetomidine on Sedation and Quality of Recovery in Cats: Part I. Veterinary Sciences. 2024; 11(5):186. https://doi.org/10.3390/vetsci11050186
Chicago/Turabian StyleMargeti, Chrysoula, Georgios Kazakos, Vassilis Skampardonis, Apostolos D. Galatos, Theodora Zacharopoulou, Vassiliki Tsioli, Epameinondas Loukopoulos, Panagiota Tyrnenopoulou, Vasileios G. Papatsiros, and Eugenia Flouraki. 2024. "The Effect of a Subsequent Dose of Dexmedetomidine or Other Sedatives following an Initial Dose of Dexmedetomidine on Sedation and Quality of Recovery in Cats: Part I" Veterinary Sciences 11, no. 5: 186. https://doi.org/10.3390/vetsci11050186
APA StyleMargeti, C., Kazakos, G., Skampardonis, V., Galatos, A. D., Zacharopoulou, T., Tsioli, V., Loukopoulos, E., Tyrnenopoulou, P., Papatsiros, V. G., & Flouraki, E. (2024). The Effect of a Subsequent Dose of Dexmedetomidine or Other Sedatives following an Initial Dose of Dexmedetomidine on Sedation and Quality of Recovery in Cats: Part I. Veterinary Sciences, 11(5), 186. https://doi.org/10.3390/vetsci11050186