Effects of Dietary Supplementation of Stimbiotics to Sows on Lactation Performance, Immune Function, and Anti-Inflammatory and Antioxidant Capacities during Late Gestation and Lactation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethic Statement
2.2. Animals and Experimental Design
2.3. Measurements and Samples Collection
2.4. Immunological and Inflammatory Indicators
2.5. Antioxidant Capacities
2.6. Statistical Analysis
3. Results
3.1. Lactation Performance
3.2. Immunoglobulin Concentration in Plasma and Milk
3.3. Plasma Inflammatory Cytokines
3.4. Plasma Antioxidant Capacities
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González-Ortiz, G.; Gomes, G.; Dos Santos, T.; Bedford, M. Chapter 14 New Strategies influencing gut functionality and animal performance. In The Value of Fibre: Engaging the Second Brain for Animal Nutrition; Wageningen Academic Publishers: Wageningen, The Netherlands, 2019; pp. 19–26. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, B.; Rousseau, X.; Gomes, G.A.; Oh, H.J.; Kim, Y.J.; Chang, S.Y.; An, J.W.; Go, Y.B.; Song, D.C. Stimbiotic supplementation modulated intestinal inflammatory response and improved broilers performance in an experimentally-induced necrotic enteritis infection model. J. Anim. Sci. Biotechnol. 2022, 13, 100. [Google Scholar] [CrossRef]
- Petry, A.L.; Patience, J.F.; Koester, L.R.; Huntley, N.F.; Bedford, M.R.; Schmitz-Esser, S. Xylanase modulates the microbiota of ileal mucosa and digesta of pigs fed corn-based arabinoxylans likely through both a stimbiotic and prebiotic mechanism. PLoS ONE 2021, 16, e0246144. [Google Scholar] [CrossRef]
- Zhang, D.; Jian, Y.-P.; Zhang, Y.-N.; Li, Y.; Gu, L.-T.; Sun, H.-H.; Liu, M.-D.; Zhou, H.-L.; Wang, Y.-S.; Xu, Z.-X. Short-chain fatty acids in diseases. Cell Commun. Signal. 2023, 21, 212. [Google Scholar] [CrossRef]
- Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The role of short-chain fatty acids in health and disease. Adv. Immunol. 2014, 121, 91–119. [Google Scholar] [CrossRef]
- Cho, H.M.; Gonzalez-Ortiz, G.; Melo-Duran, D.; Heo, J.M.; Cordero, G.; Bedford, M.R.; Kim, J.C. Stimbiotic supplementation improved performance and reduced inflammatory response via stimulating fiber fermenting microbiome in weaner pigs housed in a poor sanitary environment and fed an antibiotic-free low zinc oxide diet. PLoS ONE 2020, 15, e0240264. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Lee, J.; Kwak, W.; Song, M.; Oh, H.; Kim, Y.; An, J.; Chang, S.; Go, Y.; Cho, H. Stimbiotic supplementation alleviates poor performance and gut integrity in weaned piglets induced by challenge with E. coli. Animals 2022, 12, 1799. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Lee, J.; Kwak, W.; Oh, H.; Chang, S.; An, J.; Cho, H.; Park, S.; Jeon, K.; Cho, J. Effects of stimbiotic supplementation on gut health, immune response, and intestinal microbiota in weaned piglets challenged with E. coli. Front. Vet. Sci. 2023, 10, 1187002. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Yin, C.; Li, J.; Sun, W.; Li, Y.; Wang, C.; Pi, Y.; Cordero, G.; Li, X.; Jiang, X. Stimbiotics Supplementation Promotes Growth Performance by Improving Plasma Immunoglobulin and IGF-1 Levels and Regulating Gut Microbiota Composition in Weaned Piglets. Biology 2023, 12, 441. [Google Scholar] [CrossRef] [PubMed]
- Koketsu, Y.; Tani, S.; Iida, R. Factors for improving reproductive performance of sows and herd productivity in commercial breeding herds. Porc. Health Manag. 2017, 3, 1. [Google Scholar] [CrossRef] [PubMed]
- Rydhmer, L. Genetics of sow reproduction, including puberty, oestrus, pregnancy, farrowing and lactation. Lives Prod. Sci. 2000, 66, 1–12. [Google Scholar] [CrossRef]
- Berchieri-Ronchi, C.; Kim, S.; Zhao, Y.; Correa, C.; Yeum, K.-J.; Ferreira, A. Oxidative stress status of highly prolific sows during gestation and lactation. Animal 2011, 5, 1774–1779. [Google Scholar] [CrossRef]
- Zhao, Y.; Kim, S.W. Oxidative stress status and reproductive performance of sows during gestation and lactation under different thermal environments. Asian-Australas. J. Anim. Sci. 2020, 33, 722. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.E.; Tyus, J.; Kim, S.W. Synbiotic effects of enzyme and probiotics on intestinal health and growth of newly weaned pigs challenged with enterotoxigenic F18+ Escherichia coli. Front. Vet. Sci. 2020, 7, 573. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.F.; Mou, Q.; Yang, Y.; Li, J.M.; Xu, M.L.; Huang, J.; Li, J.Z.; Yang, H.S.; Liang, X.X.; Yin, Y.L. Effects of supplementing sow diets during late gestation with Pennisetum purpureum on antioxidant indices, immune parameters and faecal microbiota. Vet. Med. Sci. 2021, 7, 1347–1358. [Google Scholar] [CrossRef]
- Li, Q.; Yang, S.; Chen, F.; Guan, W.; Zhang, S. Nutritional strategies to alleviate oxidative stress in sows. Anim. Nutr. 2022, 9, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Camacho, D.; Vinyeta, E.; Pérez, J.F.; Aumiller, T.; Criado, L.; Palade, L.M.; Taranu, I.; Folch, J.M.; Calvo, M.A.; Van der Klis, J.D. Phytogenic actives supplemented in hyperprolific sows: Effects on maternal transfer of phytogenic compounds, colostrum and milk features, performance and antioxidant status of sows and their offspring, and piglet intestinal gene expression. J. Anim. Sci. 2020, 98, skz390. [Google Scholar] [CrossRef]
- Pete, W.; Kiah, M.B.; Gustavo, C.; Anthony, R. PSII-14 The effect of increasing soluble dietary fiber and the addition of a stimbiotic in gestation on sow productivity in a Prrs and non-Prrs challenge. J. Anim. Sci. 2023, 101, 290–291. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, Y.; Tan, C.; Zheng, L.; Peng, J.; Jiang, S. Effects of konjac flour inclusion in gestation diets on the nutrient digestibility, lactation feed intake and reproductive performance of sows. Animal 2014, 8, 1089–1094. [Google Scholar] [CrossRef]
- Geisert, R.; Schmitt, R. Early embryonic survival in the pig: Can it be improved? J. Anim. Sci. 2002, 80, 54–65. [Google Scholar] [CrossRef]
- Hoving, L.; Soede, N.; Van der Peet-Schwering, C.; Graat, E.; Feitsma, H.; Kemp, B. An increased feed intake during early pregnancy improves sow body weight recovery and increases litter size in young sows. J. Anim. Sci. 2011, 89, 3542–3550. [Google Scholar] [CrossRef]
- Peltoniemi, O.; Yun, J.; Björkman, S.; Han, T. Coping with large litters: The management of neonatal piglets and sow reproduction. J. Anim. Sci. Technol. 2021, 63, 1. [Google Scholar] [CrossRef]
- Moreira, R.H.R.; Perez Palencia, J.Y.; Moita, V.H.C.; Caputo, L.S.S.; Saraiva, A.; Andretta, I.; Ferreira, R.A.; de Abreu, M.L.T. Variability of piglet birth weights: A systematic review and meta-analysis. J. Anim. Physiol. Anim. Nutr. 2020, 104, 657–666. [Google Scholar] [CrossRef]
- Palencia, J.; Lemes, M.; Garbossa, C.; Abreu, M.; Pereira, L.; Zangeronimo, M. Arginine for gestating sows and foetal development: A systematic review. J. Anim. Physiol. Anim. Nutr. 2018, 102, 204–213. [Google Scholar] [CrossRef]
- Ebarb, S.; May, S.; Newcomb, M.D. 249 Increasing Structural Fiber Improves Growth Performance of Nursery Pigs. J. Anim. Sci. 2021, 99, 93. [Google Scholar] [CrossRef]
- González-Ortiz, G.; Dos Santos, T.T.; Bedford, M.R. Evaluation of xylanase and a fermentable xylo-oligosaccharide on performance and ileal digestibility of broiler chickens fed energy and amino acid deficient diets. Anim. Nutr. 2021, 7, 488–495. [Google Scholar] [CrossRef]
- Petry, A.; Patience, J.; Huntley, N.; Koester, L.; Bedford, M.; Schmitz-Esser, S. Xylanase supplementation modulates the microbiota of the large intestine of pigs fed corn-based fiber by means of a stimbiotic mechanism of action. Front. Microbiol. 2021, 12, 619970. [Google Scholar] [CrossRef] [PubMed]
- Weber, T.; Merriman, L.A.; Wilcock, P.; Cordero, G.; Gabler, N.K. PSVIII-2 Evaluation of the Effects of a Stimbiotic and Fiber Source on Nursery Pig Performance. J. Anim. Sci. 2022, 100, 180–181. [Google Scholar] [CrossRef]
- Desai, M.S.; Seekatz, A.M.; Koropatkin, N.M.; Kamada, N.; Hickey, C.A.; Wolter, M.; Pudlo, N.A.; Kitamoto, S.; Terrapon, N.; Muller, A. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 2016, 167, 1339–1353.e21. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, P.; Araújo, J.R.; Di Santo, J.P. A cross-talk between microbiota-derived short-chain fatty acids and the host mucosal immune system regulates intestinal homeostasis and inflammatory bowel disease. Inflamm. Bowel Dis. 2018, 24, 558–572. [Google Scholar] [CrossRef] [PubMed]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; Everard, A.; Duparc, T. Gut microbiota, enteroendocrine functions and metabolism. Curr. Opin. Pharmacol. 2013, 13, 935–940. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, T.; Wang, Y.; Mi, J.; Liu, J.; Fan, X.; Niu, R.; Sun, Z. Intestinal microbiota regulates colonic inflammation in fluorosis mice by TLR/NF-κB pathway through short-chain fatty acids. Food Chem. Toxicol. 2023, 178, 113866. [Google Scholar] [CrossRef]
- Curtis, J.; Bourne, F. Immunoglobulin quantitation in sow serum, colostrum and milk and the serum of young pigs. Biochim. Biophys. Acta. 1971, 236, 319–332. [Google Scholar] [CrossRef]
- Maddur, M.S.; Lacroix-Desmazes, S.; Dimitrov, J.D.; Kazatchkine, M.D.; Bayry, J.; Kaveri, S.V. Natural antibodies: From first-line defense against pathogens to perpetual immune homeostasis. Clin. Rev. Allergy Immunol. 2020, 58, 213–228. [Google Scholar] [CrossRef]
- Salmon, H.; Berri, M.; Gerdts, V.; Meurens, F. Humoral and cellular factors of maternal immunity in swine. Dev. Comp. Immunol. 2009, 33, 384–393. [Google Scholar] [CrossRef]
- Markowska-Daniel, I.; Pomorska-Mól, M.; Pejsak, Z. Dynamic changes of immunoglobulin concentrations in pig colostrum and serum around parturition. Pol. J. Vet. Sci. 2010, 13, 21. [Google Scholar] [PubMed]
- Wu, W.; Sun, M.; Chen, F.; Cao, A.T.; Liu, H.; Zhao, Y.; Huang, X.; Xiao, Y.; Yao, S.; Zhao, Q. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal. Immunol. 2017, 10, 946–956. [Google Scholar] [CrossRef] [PubMed]
- Mueller, A.; Koebnick, C.; Binder, H.; Hoffmann, I.; Schild, R.L.; Beckmann, M.W.; Dittrich, R. Placental defence is considered sufficient to control lipid peroxidation in pregnancy. Med. Hypotheses 2005, 64, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, P.; Liu, H.; Li, S.; Zhao, Y.; Deng, K.; Cao, D.; Che, L.; Fang, Z.; Xu, S. Effects of inulin supplementation in low-or high-fat diets on reproductive performance of sows and antioxidant defence capacity in sows and offspring. Reprod. Domest. Anim. 2016, 51, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Chen, J.; Liu, J.; Chen, F.; Guan, W.; Zhang, S. Dietary fiber and microbiota interaction regulates sow metabolism and reproductive performance. Anim. Nutr. 2020, 6, 397–403. [Google Scholar] [CrossRef]
- González-Bosch, C.; Boorman, E.; Zunszain, P.A.; Mann, G.E. Short-chain fatty acids as modulators of redox signaling in health and disease. Redox Biol. 2021, 47, 102165. [Google Scholar] [CrossRef] [PubMed]
- Mann, G.E.; Forman, H.J. Introduction to special issue on ‘Nrf2 regulated redox signaling and metabolism in physiology and medicine. Free Radic. Biol. Med. 2015, 88, 91–92. [Google Scholar] [CrossRef] [PubMed]
- Stilling, R.M.; van de Wouw, M.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem. Int. 2016, 99, 110–132. [Google Scholar] [CrossRef] [PubMed]
Items | Gestation | Lactation |
---|---|---|
Ingredients | ||
Corn | 64.65 | 62.94 |
Soybean meal, 43% | 16.00 | 18.00 |
Fish meal | - | 3.00 |
Extruded soybean | - | 8.00 |
Rice bran | 8.00 | - |
Bran | 7.00 | 4.00 |
Soybean oil | 1.40 | 1.00 |
Dicalcium phosphate | 0.20 | 0.90 |
Limestone (CaCO3) | 1.60 | 1.05 |
L-lysine, 70% | 0.15 | 0.11 |
Vitamin and mineral premixes 1 | 1.00 | 1.00 |
Total | 100.00 | 100.00 |
Analyzed nutrient content | ||
Protein, % | 14.36 | 18.10 |
Calcium, % | 0.78 | 1.15 |
Phosphorus, % | 0.74 | 0.71 |
Fat, % | 5.57 | 5.99 |
Calculated nutrient content | ||
NE, kcal/kg | 2470 | 2508 |
Protein, % | 14.50 | 18.50 |
Calcium, % | 0.70 | 0.76 |
Phosphorus, % | 0.55 | 0.65 |
NDF, % | 11.57 | 9.30 |
ADF, % | 4.43 | 3.70 |
Lysine, % | 0.65 | 0.90 |
Methionine, % | 0.20 | 0.24 |
Threonine, % | 0.43 | 0.56 |
Tryptophan, % | 0.14 | 0.18 |
Items | CT | VP | SEM | p-Value |
---|---|---|---|---|
Number of sows | 20 | 20 | ||
Body weight of sows, kg | ||||
D 85 of gestation | 251.3 | 252.0 | 5.6 | 0.932 |
D 107 of gestation | 268.4 | 270.5 | 5.5 | 0.811 |
At weaning | 235.5 | 232.1 | 6.1 | 0.709 |
Average backfat thickness, mm | ||||
D 85 of gestation | 15.91 | 16.62 | 0.32 | 0.165 |
D 110 of gestation | 17.18 | 17.11 | 0.44 | 0.919 |
At weaning | 15.34 | 14.52 | 0.48 | 0.221 |
Average daily feed intake/sows, kg | ||||
During lactation | 5.26 | 5.01 | 0.23 | 0.289 |
Items | CT | VP | SEM | p-Value |
---|---|---|---|---|
Number of sows | 20 | 20 | ||
At farrowing | ||||
Total born | 14.85 | 15.25 | 1.00 | 0.739 |
Born alive | 12.60 | 12.10 | 0.80 | 0.655 |
Average litter weight, kg | 18.17 | 16.06 | 0.86 | 0.117 |
Average body weight, kg | 1.48 | 1.42 | 0.07 | 0.523 |
During lactation | ||||
Average lactation days | 27.95 | 27.85 | 0.53 | 0.911 |
ADG of piglets, g | 227 | 249 | 9 | 0.021 |
At weaning | ||||
Average litter size | 10.60 | 9.80 | 0.42 | 0.159 |
Average litter weight, kg | 83.42 | 80.39 | 4.04 | 0.608 |
Average body weight, kg | 7.86 | 8.33 | 0.29 | 0.215 |
Items | CT | VP | SEM | p-Value |
---|---|---|---|---|
IgA, μg/mL | ||||
At farrowing | 1054 | 1058 | 25 | 0.915 |
At weaning | 863 | 946 | 30 | 0.087 |
IgG, mg/mL | ||||
At farrowing | 29.02 | 29.92 | 0.61 | 0.321 |
At weaning | 30.87 | 35.27 | 1.16 | 0.022 |
IgM, mg/mL | ||||
At farrowing | 4.88 | 5.16 | 0.08 | 0.021 |
At weaning | 4.32 | 4.37 | 0.12 | 0.765 |
Items | CT | VP | SEM | p-Value |
---|---|---|---|---|
IgA, μg/mL | ||||
Colostrum | 1969 | 1910 | 36 | 0.264 |
D14 after farrowing | 1044 | 1161 | 19 | <0.01 |
IgG, mg/mL | ||||
Colostrum | 45.63 | 48.71 | 1.11 | 0.094 |
D14 after farrowing | 32.40 | 32.56 | 0.49 | 0.825 |
IgM, mg/mL | ||||
Colostrum | 8.12 | 9.03 | 0.25 | 0.032 |
D14 after farrowing | 5.19 | 5.65 | 0.10 | <0.01 |
Items | CT | VP | SEM | p-Value |
---|---|---|---|---|
IL-10, pg/mL | ||||
At farrowing | 153 | 155 | 4 | 0.677 |
At weaning | 114 | 122 | 4 | 0.189 |
IL-1β, pg/mL | ||||
At farrowing | 548 | 571 | 11 | 0.178 |
At weaning | 475 | 444 | 17 | 0.229 |
IL-6, pg/mL | ||||
At farrowing | 618 | 619 | 12 | 0.977 |
At weaning | 727 | 719 | 14 | 0.697 |
TNF-α, pg/mL | ||||
At farrowing | 122 | 124 | 2 | 0.602 |
At weaning | 152 | 144 | 8 | 0.476 |
Items | CT | VP | SEM | p-Value |
---|---|---|---|---|
T-AOC, mmol/mg | ||||
At farrowing | 0.050 | 0.061 | 0.004 | 0.112 |
At weaning | 0.055 | 0.057 | 0.004 | 0.751 |
SOD, U/mL | ||||
At farrowing | 16.27 | 16.52 | 0.92 | 0.853 |
At weaning | 12.17 | 12.67 | 0.33 | 0.295 |
GSH-Px, U/mL | ||||
At farrowing | 135 | 135 | 6 | 0.946 |
At weaning | 126 | 148 | 12 | 0.233 |
MDA, nmol/mL | ||||
At farrowing | 4.00 | 3.56 | 0.16 | 0.080 |
At weaning | 4.40 | 3.86 | 0.21 | 0.080 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Chen, W.-N.; Sun, W.-J.; Cordero, G.; Hasan, S.; Bontempo, V.; Xiao, J.-F.; Li, Y.-P.; Pi, Y.; Li, X.-L.; et al. Effects of Dietary Supplementation of Stimbiotics to Sows on Lactation Performance, Immune Function, and Anti-Inflammatory and Antioxidant Capacities during Late Gestation and Lactation. Vet. Sci. 2024, 11, 53. https://doi.org/10.3390/vetsci11020053
Li J, Chen W-N, Sun W-J, Cordero G, Hasan S, Bontempo V, Xiao J-F, Li Y-P, Pi Y, Li X-L, et al. Effects of Dietary Supplementation of Stimbiotics to Sows on Lactation Performance, Immune Function, and Anti-Inflammatory and Antioxidant Capacities during Late Gestation and Lactation. Veterinary Sciences. 2024; 11(2):53. https://doi.org/10.3390/vetsci11020053
Chicago/Turabian StyleLi, Jing, Wen-Ning Chen, Wen-Juan Sun, Gustavo Cordero, Shah Hasan, Valentino Bontempo, Jun-Feng Xiao, Yan-Pin Li, Yu Pi, Xi-Long Li, and et al. 2024. "Effects of Dietary Supplementation of Stimbiotics to Sows on Lactation Performance, Immune Function, and Anti-Inflammatory and Antioxidant Capacities during Late Gestation and Lactation" Veterinary Sciences 11, no. 2: 53. https://doi.org/10.3390/vetsci11020053
APA StyleLi, J., Chen, W. -N., Sun, W. -J., Cordero, G., Hasan, S., Bontempo, V., Xiao, J. -F., Li, Y. -P., Pi, Y., Li, X. -L., & Jiang, X. -R. (2024). Effects of Dietary Supplementation of Stimbiotics to Sows on Lactation Performance, Immune Function, and Anti-Inflammatory and Antioxidant Capacities during Late Gestation and Lactation. Veterinary Sciences, 11(2), 53. https://doi.org/10.3390/vetsci11020053