Fluorescent In Situ Hybridization for the Detection of Intracellular Bacteria in Companion Animals
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Use of FISH for the Detection of Intracellular Bacteria in Dogs and Cats
2.1. The Use of FISH in the Detection and Visualization of Escherichia coli
2.1.1. E. coli-Induced Canine Granulomatous Colitis
2.1.2. E. coli in Canine Focal Lipogranulomatous Lymphangitis
2.1.3. E. coli Infection within the Canine Urinary Tract
2.1.4. E. coli in Feline Inflammatory Disease
2.2. The Use of FISH in the Detection and Visualization of Helicobacter
2.2.1. Helicobacter within the Gastrointestinal Tract of Dogs and Cats
2.2.2. Helicobacter within the Liver and Portal System of Dogs and Cats
2.2.3. Helicobacter within the Enterohepatic System of Cats
3. Studies Using FISH to Investigate Disease States in Companion Animals, by System
3.1. The Use of FISH in the Identification of Intracellular Bacteria as a Cause of Chronic Gastrointestinal Disease in Cats
3.2. The Use of FISH in the Identification of Intracellular Bacteria as a Cause of Chronic Gastrointestinal Disease in Dogs
3.3. The Use of FISH in the Identification of Intracellular Bacteria as a Cause of Hepatic Disease in Cats
3.4. The Use of FISH in the Identification of Intracellular Bacteria as a Cause of Hepatic Disease in Dogs
3.5. The Use of FISH in the Identification of Intracellular Bacteria as a Cause of Urinary Tract Infections in Dogs
3.6. The Use of FISH in the Identification of Intracellular Bacteria as a Cause of Integumentary Infections in Dogs
3.7. The Use of FISH in the Identification of Intracellular Bacteria as a Cause of Cardiovascular Disease in Dogs
3.8. The Use of FISH in the Identification of Intracellular Organisms as a Cause of Cardiovascular Disease in Cats
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gal, G.; Pardue, M.L. Formation and Detection of RNA-DNA Hybrid Molecules in Cytological Preparations. Proc. Natl. Acad. Sci. USA 1969, 63, 378–383. [Google Scholar] [CrossRef]
- Frickmann, H.; Zautner, A.E.; Moter, A.; Kikhney, J.; Hagen, R.M.; Stender, H.; Poppert, S. Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: A review. Crit. Rev. Microbiol. 2017, 43, 263–293. [Google Scholar] [CrossRef] [PubMed]
- Pardue, M.L.; Gal, G. Molecular hybridization of radioactive dna to the dna of cytological preparations. Proc. Natl. Acad. Sci. USA 1969, 64, 600–604. [Google Scholar] [CrossRef]
- John, H.A.; Birnstiel, M.L.; Jones, K.W. RNA-DNA hybrids at the cytological level. Nature 1969, 223, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Bauman, J.G.; Wiegant, J.; Borst, P.; van Duijn, P. A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochromelabelled RNA. Exp. Cell Res. 1980, 128, 485–490. [Google Scholar] [CrossRef]
- Landegent, J.E.; Jansen in de Wal, N.; Dirks, R.W.; Baas, F.; van der Ploeg, M. Use of whole cosmid cloned genomic sequences for chromosomal localization by non-radioactive in situ hybridization. Hum. Genet. 1987, 77, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Levsky, J.M.; Singer, R.H. Fluorescence in situ hybridization: Past, present and future. J. Cell Sci. 2003, 116, 2833–2838. [Google Scholar] [CrossRef] [PubMed]
- Ekong, R.; Wolfe, J. Advances in fluorescent in situ hybridisation. Curr. Opin. Biotechnol. 1998, 9, 19–24. [Google Scholar] [CrossRef]
- Knuchel, M.C.; Graf, B.; Schlaepfer, E.; Kuster, H.; Fischer, M.; Weber, R.; Cone, R.W. PCR-derived ssDNA probes for fluorescent in situ hybridization to HIV-1 RNA. J. Histochem. Cytochem. 2000, 48, 285–294. [Google Scholar] [CrossRef]
- Moter, A.; Gobel, U.B. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J. Microbiol. Methods 2000, 41, 85–112. [Google Scholar] [CrossRef]
- Prudent, E.; Raoult, D. Fluorescence in situ hybridization, a complementary molecular tool for the clinical diagnosis of infectious diseases by intracellular and fastidious bacteria. FEMS Microbiol. Rev. 2019, 43, 88–107. [Google Scholar] [CrossRef] [PubMed]
- Young, A.P.; Jackson, D.J.; Wyeth, R.C. A technical review and guide to RNA fluorescence in situ hybridization. PeerJ 2020, 8, e8806. [Google Scholar] [CrossRef] [PubMed]
- Chrzanowska, N.M.; Kowalewski, J.; Lewandowska, M.A. Use of Fluorescence In Situ Hybridization (FISH) in Diagnosis and Tailored Therapies in Solid Tumors. Molecules 2020, 25, 1864. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Ru, K.; Zhang, L.; Huang, Y.; Zhu, X.; Liu, H.; Zetterberg, A.; Cheng, T.; Miao, W. Fluorescence in situ hybridization (FISH): An increasingly demanded tool for biomarker research and personalized medicine. Biomark. Res. 2014, 2, 3. [Google Scholar] [CrossRef] [PubMed]
- Jensen, E. Technical Review: In Situ Hybridization. Anat. Rec. 2014, 297, 1349–1353. [Google Scholar] [CrossRef]
- Keller, U.; Grabenbauer, G.; Kuechler, A.; Sauer, R.; Distel, L. Technical report. Radiation sensitivity testing by fluorescence in-situ hybridization: How many metaphases have to be analysed? Int. J. Radiat. Biol. 2004, 80, 615–620. [Google Scholar] [CrossRef]
- Onozato, M.L.; Yapp, C.; Richardson, D.; Sundaresan, T.; Chahal, V.; Lee, J.; Sullivan, J.P.; Madden, M.W.; Shim, H.S.; Liebers, M.; et al. Highly Multiplexed Fluorescence in Situ Hybridization for in Situ Genomics. J. Mol. Diagn. 2019, 21, 390–407. [Google Scholar] [CrossRef]
- Savic, S.; Bubendorf, L. Common Fluorescence In Situ Hybridization Applications in Cytology. Arch. Pathol. Lab. Med. 2016, 140, 1323–1330. [Google Scholar] [CrossRef]
- Volpi, E.V.; Bridger, J.M. FISH glossary: An overview of the fluorescence in situ hybridization technique. BioTechniques 2008, 45, 385–409. [Google Scholar] [CrossRef]
- Savic, S.; Bubendorf, L. Role of Fluorescence in situ Hybridization in Lung Cancer Cytology. Acta Cytol. 2012, 56, 611–621. [Google Scholar] [CrossRef]
- Liehr, T. Fluorescence In Situ Hybridization (FISH), 2nd ed.; Application Guide; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Lefmann, M.; Schweickert, B.; Buchholz, P.; Göbel, U.B.; Ulrichs, T.; Seiler, P.; Theegarten, D.; Moter, A. Evaluation of Peptide Nucleic Acid-Fluorescence In Situ Hybridization for Identification of Clinically Relevant Mycobacteria in Clinical Specimens and Tissue Sections. J. Clin. Microbiol. 2006, 44, 3760–3767. [Google Scholar] [CrossRef]
- Stender, H. PNA FISH: An intelligent stain for rapid diagnosis of infectious diseases. Expert Rev. Mol. Diagn. 2003, 3, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Lehtola, M.; Loades, C.J.; Keevil, C.W. Advantages of peptide nucleic acid oligonucleotides for sensitive site directed 16S rRNA fluorescence in situ hybridization (FISH) detection of Campylobacter jejuni, Campylobacter coli and Campylobacter lari. J. Microbiol. Methods 2005, 62, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Huber, D.; von Voithenberg, L.V.; Kaigala, G.V. Fluorescence in situ hybridization (FISH): History, limitations and what to expect from micro-scale FISH? Micro Nano Eng. 2018, 1, 15–24. [Google Scholar] [CrossRef]
- Gozzetti, A.; Le Beau, M.M. Fluorescence in situ hybridization: Uses and limitations. Semin. Hematol. 2000, 37, 320–333. [Google Scholar] [CrossRef] [PubMed]
- Brehm-Stecher, B.F.; Hyldig-Nielsen, J.J.; Johnson, E.A. Design and evaluation of 16S rRNA-targeted peptide nucleic acid probes for whole-cell detection of members of the genus Listeria. Appl. Environ. Microbiol. 2005, 71, 5451–5457. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, G. 10 Tips for Optimizing In Situ Hybridization (ISH). Available online: https://www.enzolifesciences.com/science-center/technotes/2018/may/10-tips-for-optimizing-in-situ-hybridization/ (accessed on 12 September 2022).
- Wildeboer-Veloo, A.C.M.; Harmsen, H.J.M.; Welling, G.W.; Degener, J.E. Development of 16S rRNA-based probes for the identification of Gram-positive anaerobic cocci isolated from human clinical specimens. Clin. Microbiol. Infect. 2007, 13, 985–992. [Google Scholar] [CrossRef]
- Whiley, H.; Taylor, M.; Bentham, R. Detection of Legionella species in potting mixes using fluorescent in situ hybridisation (FISH). J. Microbiol. Methods 2011, 86, 304–309. [Google Scholar] [CrossRef]
- Zwirglmaier, K. Fluorescence in situ hybridisation (FISH)—The next generation. FEMS Microbiol. Lett. 2005, 264, 151–158. [Google Scholar] [CrossRef]
- Cook, J.R. Fluorescence In Situ Hybridization. In Cell and Tissue Based Molecular Pathology; Tubbs, R., Stoler, H., Eds.; Churchill Livingstone: Philadelphia, PA, USA, 2009; pp. 104–113. [Google Scholar]
- Mollerup, J.; Nielsen, K.B. Chapter 5—In Situ Hybridization. In Companion and Complementary Diagnostics; From Biomarker Discovery to Clinical Implementation; Jorgensen, J.T., Ed.; Academic Press: London, UK, 2019; pp. 93–109. [Google Scholar]
- Veselinyová, D.; Mašlanková, J.; Kalinová, K.; Mičková, H.; Mareková, M.; Rabajdová, M. Selected In Situ Hybridization Methods: Principles and Application. Molecules 2021, 26, 3874. [Google Scholar] [CrossRef]
- Shah, J.; Mark, O.; Weltman, H.; Barcelo, N.; Lo, W.; Wronska, D.; Kakkilaya, S.; Rao, A.; Bhat, S.T.; Sinha, R.; et al. Fluorescence In Situ Hybridization (FISH) Assays for Diagnosing Malaria in Endemic Areas. PLoS ONE 2015, 10, e0136726. [Google Scholar] [CrossRef] [PubMed]
- Rohde, A.; Hammerl, J.A.; Appel, B.; Dieckmann, R. Differential detection of pathogenic Yersinia spp. by fluorescence in situ hybridization. Food Microbiol. 2017, 62, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.S.; Ramasamy, R. Fluorescence In Situ Hybridization (FISH) Tests for Identifying Protozoan and Bacterial Pathogens in Infectious Diseases. Diagnostics 2022, 12, 1286. [Google Scholar] [CrossRef] [PubMed]
- Twedt, D.C.; Cullen, J.; McCord, K.; Janeczko, S.; Dudak, J.; Simpson, K. Evaluation of fluorescence in situ hybridization for the detection of bacteria in feline inflammatory liver disease. J. Feline Med. Surg. 2014, 16, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Eichinger, S.; Kikhney, J.; Moter, A.; Wießner, A.; Eichinger, W.B. Fluorescence in situ hybridization for identification and visualization of microorganisms in infected heart valve tissue as addition to standard diagnostic tests improves diagnosis of endocarditis. Interact. Cardiovasc. Thorac. Surg. 2019, 29, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Mallmann, C.; Siemoneit, S.; Schmiedel, D.; Petrich, A.; Gescher, D.M.; Halle, E.; Musci, M.; Hetzer, R.; Göbel, U.B.; Moter, A. Fluorescence in situ hybridization to improve the diagnosis of endocarditis: A pilot study. Clin. Microbiol. Infect. 2010, 16, 767–773. [Google Scholar] [CrossRef]
- Manchester, A.C.; Dogan, B.; Guo, Y.; Simpson, K.W. Escherichia coli-associated granulomatous colitis in dogs treated according to antimicrobial susceptibility profiling. J. Vet. Intern. Med. 2021, 35, 150–161. [Google Scholar] [CrossRef]
- Dogan, B.; Zhang, S.; Kalla, S.E.; Dogan, E.I.; Guo, C.; Ang, C.R.; Simpson, K.W. Molecular and Phenotypic Characterization of Escherichia coli Associated with Granulomatous Colitis of Boxer Dogs. Antibiotics 2020, 25, 540. [Google Scholar] [CrossRef] [PubMed]
- Simpson, K.W.; Dogan, B.; Rishniw, M.; Goldstein, R.E.; Klaessig, S.; McDonough, P.L.; German, A.J.; Yates, R.M.; Russell, D.G.; Johnson, S.E.; et al. Adherent and Invasive Escherichia coli Is Associated with Granulomatous Colitis in Boxer Dogs. Infect. Immun. 2006, 74, 4778–4792. [Google Scholar] [CrossRef]
- Mansfield, C.S.; James, F.E.; Craven, M.; Davies, D.R.; O’Hara, A.J.; Nicholls, P.K.; Dogan, B.; MacDonough, S.P.; Simpson, K.W. Remission of Histiocytic Ulcerative Colitis in Boxer Dogs Correlates with Eradication of Invasive Intramucosal Escherichia coli. J. Vet. Intern. Med. 2009, 23, 964–969. [Google Scholar] [CrossRef]
- Conrado, F.O.; Jones, E.A.; Graham, E.A.; Simpson, K.W.; Craft, W.F.; Beatty, S.S.K. Cytologic, histopathologic, and clinical features of granulomatous colitis in a French Bulldog. Vet. Clin. Pathol. 2022, 50, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Cochran, L.; Hill, S.; Lotti, U.; Allenspach, K.; Palma, D.; Forman, M.; Gary, A.T.; Dogan, B.; McDonough, S.P.; Simpson, K.W. Clinical characteristics and long-term outcome of E. coli-associated granulomatous ileocolitis in dogs: Five cases (2010–2014). J. Small Anim. Pract. 2021, 62, 588–598. [Google Scholar] [CrossRef] [PubMed]
- Sims, C.S.; Nagle, J.; Tolbert, M.K.; Anderson, K.; Keith Linder, K.; Neel, J. Correlation of cytology to histology in a case of canine granulomatous colitis in a Boxer dog. Vet. Clin. Pathol. 2022, 50, 83–87. [Google Scholar] [CrossRef]
- Lecoindre, A.; Lecoindre, P.; Cadoré, J.L.; Chevallier, M.; Guerret, S.; Derré, G.; Mcdonough, S.P.; Simpson, K.W. Focal intestinal lipogranulomatous lymphangitis in 10 dogs. J. Small Anim. Pract. 2016, 57, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Cimino, M.; Alamo, L.; Leiria Salazar, L. Permeabilization of the mycobacterial envelope for protein cytolocalization studies by immunofluorescence microscopy. BMC Microbiol. 2006, 6, 35. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.; Azevedo, N.F. An Introduction to Fluorescence in situ Hybridization in Microorganisms. In Fluorescence In-Situ Hybridization (FISH) for Microbial Cells; Azevedo, N.F., Almeida, C., Eds.; Humana: New York, NY, USA, 2021; Volume 2246, pp. 1–15. [Google Scholar]
- Oliveira, M.; Dias, F.R.; Pomba, C. Biofilm and fluoroquinolone resistance of canine Escherichia coli uropathogenic isolates. BMC Res. Notes 2014, 7, 499. [Google Scholar] [CrossRef] [PubMed]
- Brükner, M. Malakoplakia of the urinary bladder in a young French Bulldog. J. Am. Vet. Med. Assoc. 2022, 260, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Cattin, R.P.; Hardcastle, M.R.; Simpson, K.W. Successful treatment of vaginal malakoplakia in a young cat. JFMS Open Rep. 2016, 2, 2055116916674871. [Google Scholar] [CrossRef]
- Leal, R.O.; Simpson, K.W.; Fine, M.; Husson, J.-C.; Hernandez, J. Granulomatous colitis: More than a canine disease? A case of Escherichia coli-associated granulomatous colitis in an adult cat. JFMS Open Rep. 2017, 3, 2055116917731168. [Google Scholar] [CrossRef]
- Matsumoto, I.; Nakashima, K.; Morita, H.; Kasahara, K.; Kataoka, O.; Uchida, K. Escherichia coli-induced granulomatous colitis in a cat. JFMS Open Rep. 2019, 5, 2055116919836537. [Google Scholar] [CrossRef]
- Polanco, R.; Salazar, V.; Reyes, N.; García-Amado, M.A.; Michelangeli, F.; Contreras, M. High prevalence of DNA from non-H. pylori helicobacters in the gastric mucosa of Venezuelan pet dogs and its histological alterations. Rev. Inst. Med. Trop. São Paulo 2011, 53, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Priestnall, S.L.; Wiinberg, B.; Spohr, A.; Neuhaus, B.; Kuffer, M.; Wiedmann, M.; Simpson, K.W. Evaluation of “Helicobacter heilmannii” Subtypes in the Gastric Mucosas of Cats and Dogs. J. Clin. Microbiol. 2004, 42, 2144–2151. [Google Scholar] [CrossRef] [PubMed]
- Recordati, C.; Gualdi, V.; Craven, M.; Sala, L.; Luini, M.; Lanzoni, A.; Rishniw, M.; Simpson, K.W.; Scanziani, E. Spatial Distribution of Helicobacter spp. in the Gastrointestinal Tract of Dogs. Helicobacter 2009, 14, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Strauss-Ayali, D.; Scanziani, E.; Deng, D.; Simpson, K.W. Helicobacter spp. infection in cats: Evaluation of the humoural immune response and prevalence of gastric Helicobacter spp. Vet. Microbiol. 2001, 79, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Swennes, A.G.; Parry, N.M.A.; Feng, Y.; Sawyer, E.; Lohr, B.R.; Twedt, D.C.; Fox, J.G. Enterohepatic Helicobacter spp. in cats with non-haematopoietic intestinal carcinoma: A survey of 55 cases. J. Med. Microbiol. 2016, 65, 814–820. [Google Scholar] [CrossRef]
- Trebesius, K.; Adler, K.; Vieth, M.; Stolte, M.; Haas, R. Specific Detection and Prevalence of Helicobacter heilmannii-Like Organisms in the Human Gastric Mucosa by Fluorescent In Situ Hybridization and Partial 16S Ribosomal DNA Sequencing. J. Clin. Microbiol. 2001, 39, 1510–1516. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.G.; Wang, T.C.; Parsonnet, J. Helicobacter, chronic inflammation and cancer. In Infections Causing Human Cancer; zur Hausen, H., Ed.; Wiley: Weinheim, Germany, 2006; Volume 3, pp. 386–467. [Google Scholar]
- Greiter-Wilke, A.; Scanziani, E.; Soldati, S.; McDonough, S.P.; McDonough, P.L.; Center, S.A.; Rishniw, M.; Simpson, K.W. Association of Helicobacter with cholangiohepatitis in cats. J. Vet. Intern. Med. 2006, 20, 822–827. [Google Scholar] [CrossRef]
- Hoehne, S.N.; McDonough, S.P.; Rishniw, M.; Simpson, K.W. Identification of Mucosa-Invading and Intravascular Bacteria in Feline Small Intestinal Lymphoma. Vet. Pathol. 2017, 54, 234–241. [Google Scholar] [CrossRef]
- Inness, V.L.; McCartney, A.L.; Khoo, C.; Gross, K.L.; Gibson, G.R. Molecular characterisation of the gut microflora of healthy and inflammatory bowel disease cats using fluorescence in situ hybridisation with special reference to Desulfovibrio spp. J. Anim. Physiol. Anim. Nutr. 2007, 91, 48–53. [Google Scholar] [CrossRef]
- Janeczko, S.; Atwater, D.; Bogel, E.; Greiter-Wilke, A.; Gerold, A.; Baumgart, M.; Bender, H.; McDonough, P.L.; McDonough, S.P.; Goldstein, R.E.; et al. The relationship of mucosal bacteria to duodenal histopathology, cytokine mRNA, and clinical disease activity in cats with inflammatory bowel disease. Vet. Microbiol. 2008, 128, 178–193. [Google Scholar] [CrossRef]
- Nicklas, J.L.; Moisan, P.; Stone, M.R.; Gookin, J.L. In Situ Molecular Diagnosis and Histopathological Characterization of Enteroadherent Enterococcus hirae Infection in Pre-Weaning-Age Kittens. J. Clin. Microbiol. 2010, 48, 2814–2820. [Google Scholar] [CrossRef] [PubMed]
- Linton, M.; Nimmo, J.S.; Norris, J.M.; Churcher, R.; Haynes, S.; Zoltowska, A.; Hughes, S.; Lessels, N.S.; Wright, M.; Malik, R. Feline gastrointestinal eosinophilic sclerosing fibroplasia: 13 cases and review of an emerging clinical entity. J. Feline Med. Surg. 2015, 17, 392–404. [Google Scholar] [CrossRef] [PubMed]
- Maunder, C.L.; Reynolds, Z.F.; Peacock, L.; Hall, E.J.; Day, M.J.; Cogan, T.A. Campylobacter Species and Neutrophilic Inflammatory Bowel Disease in Cats. J. Vet. Intern. Med. 2016, 30, 996–1001. [Google Scholar] [CrossRef] [PubMed]
- Cassmann, E.; White, R.; Atherly, T.; Wang, C.; Sun, Y.; Khoda, S.; Mosher, C.; Ackermann, M.; Jergens, A. Alterations of the Ileal and Colonic Mucosal Microbiota in Canine Chronic Enteropathies. PLoS ONE 2016, 11, e0147321. [Google Scholar] [CrossRef] [PubMed]
- Giaretta, P.R.; Suchodolski, J.S.; Jergens, A.E.; Steiner, J.M.; Lidbury, J.A.; Cook, A.K.; Hanifeh, M.; Spillmann, T.; Kilpinen, S.; Syrja, P.; et al. Bacterial Biogeography of the Colon in Dogs with Chronic Inflammatory Enteropathy. Vet. Pathol. 2020, 57, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Cartwright, J.A.; Pérez-Accino, J.; Timothy, C.; Simpson, K.W.; Schmitz, S.S. Acute Ulcerative Enterocolitis with Severe Protein Loss Due to Mucosal Invasion with Enterococcus spp. in a Dog with Exocrine Pancreatic Insufficiency: A Case Report. Front. Vet. Sci. 2020, 7, 577642. [Google Scholar] [CrossRef]
- Warren, A.; Center, S.; McDonough, S.; Chiotti, R.; Goldstein, R.; Meseck, E.; Jacobsen, M.; Rowland, P.; Simpson, K. Histopathologic Features, Immunophenotyping, Clonality, and Eubacterial Fluorescence In Situ Hybridization in Cats with Lymphocytic Cholangitis/Cholangiohepatitis. Vet. Pathol. 2011, 48, 627–641. [Google Scholar] [CrossRef]
- Hutchins, R.G.; Breitschwerdt, E.B.; Cullen, J.M.; Bissett, S.A.; Gookin, J.L. Limited yield of diagnoses of intrahepatic infectious causes of canine granulomatous hepatitis from archival liver tissue. J. Vet. Diagn. Investig. 2012, 24, 888–894. [Google Scholar] [CrossRef]
- Giuliano, A.; Meiring, T.; Grant, A.J.; Watson, P.J. Acute Hepatic Necrosis Caused by Salmonella enterica Serotype I 4,5,12:−:1,2 in a Dog. J. Clin. Microbiol. 2015, 53, 3674–3676. [Google Scholar] [CrossRef]
- McCallum, K.E.; Constantino-Casas, F.; Cullen, J.M.; Warland, J.H.; Swales, H.; Linghley, N.; Kortum, A.J.; Sterritt, A.J.; Cogan, T.; Watson, P.J. Hepatic leptospiral infections in dogs without obvious renal involvement. J. Vet. Intern. Med. 2019, 33, 141–150. [Google Scholar] [CrossRef]
- Im, J.; Burney, D.P.; McDonough, S.P.; Nicholson, B.; Adam Eatroff, A.; Simpson, K.W. Canine Hepatitis Associated with Intrahepatic Bacteria in Three Dogs. J. Am. Anim. Hosp. Assoc. 2018, 54, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Alashraf, A.R.; Lau, S.F.; Khairani-Bejo, S.; Khor, K.H.; Ajat, M.; Radzi, R.; Roslan, M.A.; Rahman, M.S.A.R. First report of pathogenic Leptospira spp. isolated from urine and kidneys of naturally infected cats. PLoS ONE 2020, 15, e0230048. [Google Scholar] [CrossRef] [PubMed]
- Dash, B.R.; Dhaygude, V.S.; Gadhave, P.D.; Garud, K.V.; Kadam, D.P. Molecular detection of Leptospira spp. from canine kidney tissues and its association with renal lesions. Vet. World 2018, 11, 530–534. [Google Scholar] [CrossRef]
- Hutton, T.A.; Goldstein, R.E.; Njaa, B.L.; Atwater, D.Z.; Chang, Y.-F.; Simpson, K.W. Search for Borrelia burgdorferi in kidneys of dogs with suspected “Lyme nephritis”. J. Vet. Intern. Med. 2008, 22, 860–865. [Google Scholar] [CrossRef] [PubMed]
- Borys, M.A.; Hulsebosch, S.E.; Mohr, F.C.; Watson, K.D.; Sykes, J.E.; Simpson, K.W.; Westropp, J.L. Clinical, histopathologic, cystoscopic, and fluorescence in situ hybridization analysis of proliferative urethritis in 22 dogs. J. Vet. Intern. Med. 2019, 33, 184–191. [Google Scholar] [CrossRef]
- Loeffler, A.; Lloyd, D.H. What has changed in canine pyoderma? A narrative review. Vet. J. 2018, 235, 73–82. [Google Scholar] [CrossRef]
- Ravens, P.A.; Vogelnest, L.J.; Ewen, E.; Bosward, K.I.; Norris, J.M. Canine superficial bacterial pyoderma: Evaluation of skin surface sampling methods and antimicrobial susceptibility of causal Staphylococcus isolates. Aust. Vet. J. 2014, 95, 149–155. [Google Scholar] [CrossRef]
- Banovic, F.; Linder, K.; Olivry, T. Clinical, microscopic and microbial characterization of exfoliative superficial pyoderma-associated epidermal collarettes in dogs. Vet. Dermatol. 2017, 28, 107-e123. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, K. Infective endocarditis in dogs: Diagnosis and therapy. Vet. Clin. North Am. Small Anim. Pract. 2010, 40, 665–684. [Google Scholar] [CrossRef]
- Kornreich, B.G.; Craven, M.; McDonough, S.P.; Nydam, D.V.; Scorza, V.; Assarasakorn, S.; Lappin, M.; Simpson, K.W. Fluorescence In-situ Hybridization for the Identification of Bacterial Species in Archival Heart Valve Sections of Canine Bacterial Endocarditis. J. Comp. Pathol. 2012, 146, 298–307. [Google Scholar] [CrossRef]
- Donovan, T.A.; Balakrishnan, N.; Carvalho Barbosa, I.; McCoy, T.; Breitschwerdt, E.B.; Fox, P.R. Bartonella spp. as a Possible Cause or Cofactor of Feline Endomyocarditis-Left Ventricular Endocardial Fibrosis Complex. J. Comp. Pathol. 2018, 162, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Peters, I.R.; Helps, C.R.; Willi, B.; Hofmann-Lehmann, R.; Gruffydd-Jones, T.J.; Day, M.J.; Tasker, S. Detection of feline haemoplasma species in experimental infections by in-situ hybridisation. Microb. Pathog. 2011, 50, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Berent, L.M.; Messick, J.B.; Cooper, S.K.; Cusick, P.K. Specific in situ hybridization of Haemobartonella felis with a DNA probe and tyramide signal amplification. Vet. Pathol. 2000, 37, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Gookin, J.L.; Stone, M.R.; Yaeger, M.J.; Meyerholz, D.K.; Moisan, P. Fluorescence in situ hybridization for identification of Tritrichomonas foetus in formalin-fixed and paraffin-embedded histological specimens of intestinal trichomoniasis. Vet. Parasitol. 2010, 172, 139–143. [Google Scholar] [CrossRef]
- Nilsson, O.R.; Kari, L.; Rosenke, R.; Steele-Mortimer, O. Protocol for RNA fluorescence in situ hybridization in mouse meningeal whole mounts. STAR Protoc. 2022, 3, 101256. [Google Scholar] [CrossRef]
- Van Gijlswijk, R.P.; Zijlmans, H.J.; Wiegant, J.; Bobrow, M.N.; Erickson, T.J.; Adler, K.E.; Tanke, H.J.; Raap, A.K. Fluorochrome-labeled tyramides: Use in immunocytochemistry and fluorescence in situ hybridization. J. Histochem. Cytochem. 1997, 45, 375–382. [Google Scholar] [CrossRef]
- Aistleitner, K.; Sieper, T.; Stürz, I.; Jeske, R.; Tritscheller, S.; Mantel, S.; Tscherne, A.; Zange, S.; Stoecker, K.; Wölfel, R. NOTIFy (non-toxic lyophilized field)-FISH for the identification of biological agents by Fluorescence in situ Hybridization. PLoS ONE 2020, 15, e0230057. [Google Scholar] [CrossRef]
- Batani, G.; Bayer, K.; Böge, J.; Hentschel, U.; Thomas, T. Fluorescence in situ hybridization (FISH) and cell sorting of living bacteria. Sci. Rep. 2019, 9, 18618. [Google Scholar] [CrossRef]
- Bridger, J.M.; Volpi, E.V. Fluorescence In Situ Hybridization (FISH); Protocols and Applications; Humana: Totowa, NJ, USA, 2010. [Google Scholar]
- Femino, A.M.; Fay, F.S.; Fogarty, K.; Singer, R.H. Visualization of Single RNA Transcripts In Situ. Science 1998, 280, 585–590. [Google Scholar] [CrossRef]
- Godwin, L.S.; Bridger, J.M.; Foster, H.A. Fluorescence In Situ Hybridization on DNA Halo Preparations to Reveal Whole Chromosomes, Telomeres and Gene Loci. J. Vis. Exp. JoVE 2021, e62017. [Google Scholar] [CrossRef]
- Guimarães, N.M.; Azevedo, N.F.; Almeida, C. FISH Variants. In Fluorescence In-Situ Hybridization (FISH) for Microbial Cells; Azevedo, N.F., Almeida, C., Eds.; Methods in Molecular Biology; Humana: New York, NY, USA, 2021; Volume 2246. [Google Scholar]
- Kwon, S. Single-molecule fluorescence in situ hybridization: Quantitative imaging of single RNA molecules. BMB Rep. 2013, 46, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Moffitt, J.R.; Zhuang, X. RNA Imaging with Multiplexed Error Robust Fluorescence in situ Hybridization. Methods Enzymol. 2016, 572, 1–49. [Google Scholar] [PubMed]
- Shaffer, S.M.; Wu, M.-T.; Levesque, M.J.; Raj, A. Turbo FISH: A Method for Rapid Single Molecule RNA FISH. PLoS ONE 2013, 8, e75120. [Google Scholar] [CrossRef]
- Simon, B.; Sandhu, M.; Myhr, K.L. Live FISH: Imaging mRNA in Living Neurons. J. Neurosci. Res. 2010, 88, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Simonetti, M.; Rossell, C.; Mignardi, M.; Mirzazadeh, R.; Annaratone, L.; Marchiò, C.; Sapino, A.; Bienko, M.; Crosetto, N.; et al. RollFISH achieves robust quantification of single-molecule RNA biomarkers in paraffin-embedded tumor tissue samples. Commun. Biol. 2018, 1, 209. [Google Scholar] [CrossRef] [PubMed]
- Popescu, M. FISHing for RNA: An Overview of Fluorescent In Situ Hybridization Methods for RNA Detection. Available online: https://blog.biodock.ai/overview-of-rna-fish/ (accessed on 11 November 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rolph, M.J.; Bolfa, P.; Cavanaugh, S.M.; Rolph, K.E. Fluorescent In Situ Hybridization for the Detection of Intracellular Bacteria in Companion Animals. Vet. Sci. 2024, 11, 52. https://doi.org/10.3390/vetsci11010052
Rolph MJ, Bolfa P, Cavanaugh SM, Rolph KE. Fluorescent In Situ Hybridization for the Detection of Intracellular Bacteria in Companion Animals. Veterinary Sciences. 2024; 11(1):52. https://doi.org/10.3390/vetsci11010052
Chicago/Turabian StyleRolph, Matthew J., Pompei Bolfa, Sarah M. Cavanaugh, and Kerry E. Rolph. 2024. "Fluorescent In Situ Hybridization for the Detection of Intracellular Bacteria in Companion Animals" Veterinary Sciences 11, no. 1: 52. https://doi.org/10.3390/vetsci11010052