The Role of Supplementing a Complex Phytobiotic Feed Additive Containing (Castanea sativa mill) Extract in Combination with Calcium Butyrate, Zinc–Methionine and Essential Oils on Growth Indicators, Blood Profile and Carcass Quality of Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Characteristics of Objects and Conditions of Research
2.2. Diets, Feed Analysis, Broiler Chicken Nutrition and Phytobiotic Feed Additive
2.3. Sample Collection and Chemical Analysis
2.4. Productivity and Quality Indicators of Carcass in Broiler Chickens
- The live weight (g) was determined by the control individual weighing of broiler chickens at the age of 7, 14, 21, 28 and 32 days, and before slaughter.
- The absolute live weight gain (AWG, g) is the increase in live weight over the period of the experiment; it was determined using Equation (2):
- 3.
- Average daily gain (ADG, g)—calculated by the weighing results; determined by Formula (3):
- 4.
- Feed costs (FC) were calculated based on the data of the feed consumption log and gross body weight gain in each group. Feed costs per 1 kg of live weight gain (kg)—by dividing the amount of feed consumed over the entire period of the experiment by the live weight gain of the broiler chickens during the growing period.
- 5.
- The safety of the livestock was calculated as the ratio of livestock at the end of cultivation to livestock at planting, expressed as a percentage.
2.5. Blood Sampling and Analysis
2.6. Statistical Analysis
3. Results
3.1. Growth Performance and Meat Quality of Ross 308 Broiler Chickens
3.2. Morphological Blood Parameters of Broiler Chickens
3.3. Biochemical Blood Parameters of Broiler Chickens
4. Discussion
4.1. Growth Performance and Meat Quality of Ross 308 Broiler Chickens
4.2. Morphological Blood Parameters of Broiler Chickens
4.3. Biochemical Blood Parameters of Broiler Chickens
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, K. Global population will increase to nine billion by 2050, says UN report. Lancet 2001, 357, 864. [Google Scholar] [CrossRef] [PubMed]
- Bonos, E.; Skoufos, I.; Giannenas, I.; Sidiropoulou, E.; Fotou, K.; Stylianaki, I.; Tsiftsoglou, O.; Lazari, D.; Venardou, B.; Galamatis, D.; et al. Effect of an Herbal Mixture of Oregano, Garlic, Sage and Rock Samphire Extracts in Combination with Tributyrin on Growth Performance, Intestinal Microbiota and Morphology, and Meat Quality in Broilers. Sustainability 2022, 14, 13565. [Google Scholar] [CrossRef]
- Bajagai, Y.S.; Petranyi, F.; Yu, S.J.; Lobo, E.; Batacan, R., Jr.; Kayal, A.; Horyanto, D.; Ren, X.; Whitton, M.M.; Stanley, D. Phytogenic supplement containing menthol, carvacrol and carvone ameliorates gut microbiota and production performance of commercial layers. Sci. Rep. 2022, 12, 11033. [Google Scholar] [CrossRef] [PubMed]
- Mottet, A.; Tempio, G. Global poultry production: Current state and future outlook and challenges. Worlds Poult. Sci. J. 2017, 73, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Mimoune, N.; Houari, C.; Ammari, C.; Hammouni, R.; Ait Issad, N.; Khelef, D. Zootechnical, bacteriological, and histometrical effects of a combination mycotoxin binder-acidifier in broiler chickens. Vet. Stanica 2023, 54, 13–28. [Google Scholar] [CrossRef]
- Uzundumlu, A.S.; Dilli, M. Estimating Chicken Meat Productions of Leader Countries for 2019-2025 Years. Ciência Rural 2023, 53, e20210477. [Google Scholar] [CrossRef]
- Livestock and Poultry: World Markets and Trade: United States Department of Agriculture Foreign Agricultural Service. 12 October 2022. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/73666448x/f1882v52q/765389829/livestock_poultry.pdf (accessed on 20 December 2022).
- Buryakov, N.; Traynev, I.; Zaikina, A.; Buryakova, M.; Shaaban, M.; Zagarin, A. The Effects of the Extract of Sweet Chestnut in Diets for Broilers on the Digestibility of Dietary Nutrients and Productive Performance. In Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East: Agricultural Innovation Systems; Springer International Publishing: Ussuriysk, Russia, 2021; Volume 2, pp. 778–784. [Google Scholar]
- Zaikina, A.S.; Buryakov, N.P.; Buryakova, M.A.; Zagarin, A.Y.; Razhev, A.A.; Aleshin, D.E. Impact of Supplementing Phytobiotics as a Substitute for Antibiotics in Broiler Chicken Feed on Growth Performance, Nutrient Digestibility, and Biochemical Parameters. Vet. Sci. 2022, 9, 672. [Google Scholar] [CrossRef]
- Liac, X.; Wanga, M.; Liu, S.; Chena, X.; Qiao, Y.; Yanga, X.; Yao, J.; Wu, S. Paternal transgenerational nutritional epigenetic effect: A new insight into nutritional manipulation to reduce the use of antibiotics in animal feeding. Anim. Nutr. 2022, 11, 142–151. [Google Scholar]
- Zhong, L.; Huiyun, Z.; Zouran, L.; Xuewen, L. Prioritized antibiotics screening based on comprehensive risk assessments and related management strategy in various animal farms. Environ. Manag. 2020, 319, 115702. [Google Scholar] [CrossRef]
- Bacanlı, M.; Başaran, N. Importance of antibiotic residues in animal food. Food Chem. Toxicol. 2019, 125, 462–466. [Google Scholar] [CrossRef]
- Pan, J.; Zhu, Y.; Changzhu Li, M.A.A.-S.; Cui, H.; Lin, L. Biological properties of essential oil emphasized on the feasibility as antibiotic substitute in feedstuff. Grain Oil Sci. Technol. 2022, 6, 10–23. [Google Scholar] [CrossRef]
- Naımatı, S.; Doğan, S.C.; Asghar, M.U.; Wilk, M.; Korczyński, M. The Effect of Quinoa Seed (Chenopodium quinoa Willd.) Extract on the Performance, Carcass Characteristics, and Meat Quality in Japanese Quails (Coturnix coturnix japonica). Animals 2022, 12, 1851. [Google Scholar] [CrossRef]
- ECDC; EMEA. The Bacterial Challenge: Time to React; ECDC/EMEA Joint Technical Report 2009; EMEA: Stockholm, Sweden, 2009. [Google Scholar]
- Machowska, A.; Stålsby Lundborg, C. Drivers of Irrational Use of Antibiotics in Europe. Int. J. Environ. Res. Public Health 2019, 16, 27. [Google Scholar] [CrossRef] [Green Version]
- Bilal, R.M.; ul Hassan, F.; Rafeeq, M.; Farag, M.R.; Abd El-Hack, M.E.; Madkour, M.; Alagawany, M. Use of Cinnamon and its Derivatives in Poultry Nutrition. In Antibiotic Alternatives in Poultry and Fish Feed; Bentham Science Publisher: New Delhi, India, 2020; Volume 1, pp. 52–65. [Google Scholar] [CrossRef]
- Cogliani, C.; Goossens, H.; Greko, C. Restricting Antimicrobial Use in Food Animals: Lessons from Europe: Banning nonessential antibiotic uses in food animals is intended to reduce pools of resistance genes. Microbe Mag. 2011, 6, 274–279. [Google Scholar] [CrossRef]
- Smith, J.A. Broiler production without antibiotics: United States field perspectives. Anim. Feed. Sci. Technol. 2019, 250, 93–98. [Google Scholar] [CrossRef]
- Moharreri, M.; Vakili, R.; Oskoueian, E.; Rajabzadeh, G. Evaluation of Microencapsulated Essential Oils in Broilers Challenged with Salmonella Enteritidis: A Focus on the Body’s Antioxidant Status, Gut Microbiology, and Morphology. Arch. Razi Inst. 2022, 77, 629–639. [Google Scholar] [CrossRef]
- Vispute, M.M.; Sharma, D.; Mandal, A.B.; Rokade, J.J.; Tyagi, P.K.; Yadav, A.S. Effect of dietary supplementation of hemp (Cannabis sativa) and dill seed (Anethum graveolens) on performance, serum biochemicals and gut health of broiler chickens. J. Anim. Physiol. Anim. Nutr. 2019, 103, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Hussein, E.O.S.; Ahmed, S.H.; Abudabos, A.M.; Aljumaah, M.R.; Alkhlulaifi, M.M.; Nassan, M.A.; Suliman, G.M.; Naiel, M.A.E.; Swelum, A.A. Effect of Antibiotic, Phytobiotic and Probiotic Supplementation on Growth, Blood Indices and Intestine Health in Broiler Chicks Challenged with Clostridium perfringens. Animals 2020, 10, 507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perricone, V.; Comi, M.; Giromini, C.; Rebucci, R.; Agazzi, A.; Savoini, G.; Bontempo, V. Green Tea and Pomegranate Extract Administered During Critical Moments of the Production Cycle Improves Blood Antiradical Activity and Alters Cecal Microbial Ecology of Broiler Chickens. Animals 2020, 10, 785. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Yu, Y.-H.; Hsiao, F.S.-H.; Dybus, A.; Ali, I.; Hsu, H.-C.; Cheng, Y.-H. Probiotics as a Friendly Antibiotic Alternative: Assessment of Their Effects on the Health and Productive Performance of Poultry. Fermentation 2022, 8, 672. [Google Scholar] [CrossRef]
- Ibrir, F.; Greathead, H.M.R.; Forbes, J.M. The Effect of Thymol/Carvacrol Treatments on the Performance of Broiler Chickens Infected with Eimeria acervulina. In Procedure Alternative Feed Antibiotics Anticoccidials in the Pig and Poultry; Meat Production: Oslo, Norway, 2001. [Google Scholar]
- Alamgir, A.N.M. Classification of Drugs, Nutraceuticals, Functional Food, and Cosmeceuticals; Proteins, Peptides, and Enzymes as Drugs. Ther. Use Med. Plants Extr. 2017, 1, 125–175. [Google Scholar] [CrossRef]
- Trukhachev, V.I.; Buryakov, N.P.; Shapovalov, S.O.; Shvydkov, A.N.; Buryakova, M.A.; Khardik, I.V.; Fathala, M.M.; Komarova, O.E.; Aleshin, D.E. Impact of Inclusion of Multicomponent Synbiotic Russian Holstein Dairy Cow’s Rations on Milk Yield, Rumen Fermentation, and Some Blood Biochemical Parameters. Front. Vet. Sci. 2022, 9, 884177. [Google Scholar] [CrossRef] [PubMed]
- Aviagen Group. Ross Broiler: Nutrition Specifications. Huntsville, AL 35806, USA. 2019. Available online: https://en.aviagen.com/brands/ross/products/ross-308 (accessed on 25 May 2022).
- Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International, 17th ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 2000. [Google Scholar]
- Saleeva, I.P.; Lysenko, V.P.; Shol, V.G.; Alekseev, F.F.; Gusev, V.A.; Belyakova, L.S.; Titov, V.Y.; Novatorov, E.N.; Kosenko, O.V.; Koroleva, N.A.; et al. Methodological Recommendations for Anatomical Cutting of Carcasses and Organoleptic Evaluation of the Quality of Meat and Eggs of Poultry and Egg Morphology; Lukashenko, V.S., Ed.; VNITIP: Sergiev Posad, Russia, 2015. [Google Scholar]
- Shapiro, B.S.S.; Wilk, M.B. An analysis of variance test for normality (complete samp1es). Biometrika 1965, 52, 591. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows, Version 25.0. Armonk; IBM Corp: New York, NY, USA, 2019.
- Food and Agriculture Organization of the United Nations (FAO). Probiotics in Animal Nutrition: Production. Impact and Regulation; FAO: Rome, Italy, 2016. [Google Scholar]
- Cheng, G.; Hao, H.; Xie, S.; Wang, X.; Dai, M.; Huang, L.; Yuan, Z. Antibiotic alternatives: The substitution of antibiotics in animal husbandry? Front. Microbiol. 2014, 5, 217. [Google Scholar] [CrossRef] [Green Version]
- Mašek, T.; Starčević, K.; Mikulec, Ž. The influence of the addition of thymol, tannic acid or gallic acid to broiler diet on growth performance, serum malondyaldehide value and cecal fermentation. Eur. Poult. Sci. 2014, 78, NIL-1. [Google Scholar] [CrossRef]
- Darmawan, A.; Hermana, W.; Suci, D.M.; Mutia, R.; Sumiati; Jayanegara, A.; Ozturk, E. Dietary Phytogenic Extracts Favorably Influence Productivity, Egg Quality, Blood Constituents, Antioxidant and Immunological Parameters of Laying Hens: A Meta-Analysis. Animals 2022, 12, 2278. [Google Scholar] [CrossRef] [PubMed]
- Saleem, K.; Rahman, A.; Pasha, T.N.; Mahmud, A.; Hayat, Z. Effects of dietary organic acids on performance, cecal microbiota, and gut morphology in broilers. Trop. Anim. Health Prod. 2020, 52, 3589–3596. [Google Scholar] [CrossRef] [PubMed]
- Patten, J.D.; Waldroup, P.W. Use of Organic Acids in Broiler Diets. Poult. Sci. 1988, 67, 1178–1182. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Tan, D.; Gong, X.; Ji, H.; Wang, K.; Lei, Q.; Zhao, G. An Extract of Artemisia argyi Leaves Rich in Organic Acids and Flavonoids Promotes Growth in BALB/c Mice by Regulating Intestinal Flora. Animals 2022, 12, 1519. [Google Scholar] [CrossRef]
- Vakili, R.; Toroghian, M.; Elahi Torshizi, M. Saffron extract feed improves the antioxidant status of laying hens and the inhibitory effect on cancer cells (PC3 and MCF7) Growth. Vet. Med. Sci. 2022, 8, 2249–2805. [Google Scholar] [CrossRef]
- Ruesga-Gutiérrez, E.; Ruvalcaba-Gómez, J.M.; Gómez-Godínez, L.J.; Villagrán, Z.; Gómez-Rodríguez, V.M.; Heredia-Nava, D.; Ramírez-Vega, H.; Arteaga-Garibay, R.I. Allium-Based Phytobiotic for Laying Hens’ Supplementation: Effects on Productivity, Egg Quality, and Fecal Microbiota. Microorganisms 2022, 10, 117. [Google Scholar] [CrossRef] [PubMed]
- Chodkowska, K.A.; Abramowicz-Pindor, P.A.; Tuśnio, A.; Gawin, K.; Taciak, M.; Barszcz, M. Effect of Phytobiotic Composition on Production Parameters, Oxidative Stress Markers and Myokine Levels in Blood and Pectoral Muscle of Broiler Chickens. Animals 2022, 12, 2625. [Google Scholar] [CrossRef] [PubMed]
- Jang, I.S.; Ko, Y.H.; Yang, H.Y.; Ha, J.S.; Kim, J.Y.; Kim, J.Y.S.; Kang, S.Y.; Yoo, D.H.; Nam, D.S.; Kim, D.H.; et al. Influence of essential oil components on growth performance and the functional activity of the pancreas and small intestine in broiler chickens. Asian-Australas. J. Anim. Sci. 2004, 17, 394–400. [Google Scholar] [CrossRef]
- Perić, L.; Žikić, D.; Stojčić, M.Đ.; Tomović, V.; Leskovec, J.; Levart, A.; Salobir, J.; Kanački, Z.; Rezar, V. Effect of Chestnut Tannins and Vitamin E Supplementation to Linseed Oil-Enriched Diets on Growth Performance, Meat Quality, and Intestinal Morphology of Broiler Chickens. Agriculture 2022, 12, 1772. [Google Scholar] [CrossRef]
- Buyse, K.; Delezie, E.; Goethals, L.; Van Noten, N.; Ducatelle, R.; Janssens, G.P.J.; Lourenço, M. Chestnut tannins in broiler diets: Performance, nutrient digestibility, and meat quality. Poult. Sci. 2021, 100, 101479. [Google Scholar] [CrossRef]
- Liu, H.S.; Mahfuz, S.U.; Wu, D.; Shang, Q.H.; Piao, X.S. Effect of chestnut wood extract on performance, meat quality, antioxidant status, immune function, and cholesterol metabolism in broilers. Poult. Sci. 2020, 99, 4488–4495. [Google Scholar] [CrossRef]
- Lee, A.; Dal Pont, G.C.; Farnell, M.B.; Jarvis, S.; Battaglia, M.; Arsenault, R.J. Supplementing chestnut tannins in the broiler diet mediates a metabolic phenotype of the ceca. Poult. Sci. 2021, 100, 47–54. [Google Scholar] [CrossRef]
- Dialoke, N.G.; Onimisi, P.A.; Afolayan, M. Performance, blood parameters and economic indices of broiler chickens fed graded levels of chestnut (Castenea sativa) phytobiotics as replacement for antibiotics growth promoters. Nig. J. Anim. Prod. 2020, 47, 161–170. [Google Scholar] [CrossRef]
- Mujezinović, I.; Smajlović, A.; Zuko, A.; Dukići, V.B. Ćupić Tanini pitomog kestena (Castanea sativa). Vet. Stanica 2018, 49, 371–377. [Google Scholar]
- Abudabos, A.M.; Alyemni, A.H.; Dafalla, Y.M.; Khan, R.U. The effect of phytogenics on growth traits, blood biochemical and intestinal histology in broiler chickens exposed to Clostridium perfringens challenge. J. Appl. Anim. Res. 2018, 46, 691–695. [Google Scholar] [CrossRef] [Green Version]
- Xi, Y.; Chen, J.; Guo, S.; Wang, S.; Liu, Z.; Zheng, L.; Qi, Y.; Xu, P.; Li, L.; Zhang, Z.; et al. Effects of tannic acid on growth performance, relative organ weight, antioxidative status, and intestinal histomorphology in broilers exposed to aflatoxin B1. Front. Vet. Sci. 2022, 9, 1037046. [Google Scholar] [CrossRef] [PubMed]
- Mahdi, Y.M.M.; Elsagheer, M.A.; Elsagheer, M.M.; Essa, N.M. Enhancement of Growth Performance and Some Blood Constituents of Broilers Chickens by Using of Probiotic and Enzymes. Arch. Agric. Sci. J. 2022, 5, 153–164. [Google Scholar] [CrossRef]
- Gilani, S.M.H.; Zehra, S.; Galani, S.; Ashraf, A. Effect of natural growth promoters on immunity, and biochemical and haematological parameters of broiler chickens. Trop. J. Pharm. Res 2018, 17, 627–633. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, S.; Wei, C.; Chen, J.; Ye, X. Proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves regulate lipid metabolism and glucose consumption by activating AMPK pathway in HepG2 cells. J. Funct. Food 2017, 29, 217–225. [Google Scholar] [CrossRef]
- Lillehoj, H.; Liu, Y.; Calsamiglia, S.; Fernandez-Miyakawa, M.E.; Chi, F.; Cravens, R.L.; Oh, S.; Gay, C.G. Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Vet. Res. 2018, 49, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Lillehoj, H.S.; Jang, S.I.; Kim, D.K.; Ionescu, C.; Bravo, D. Effect of dietary curcuma, capsicum, and lentinus on enhancing local immunity against Eimeria acervulina infection. J. Poult. Sci. 2010, 47, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.K.; Lillehoj, H.S.; Lee, S.H.; Jang, S.I.; Bravo, D. High-throughput gene expression analysis of intestinal intraepithelial lymphocytes after oral feeding of carvacrol, cinnamaldehyde, or Capsicum oleoresin. Poult. Sci. 2010, 89, 68–81. [Google Scholar] [CrossRef]
- Furness, J.B.; Rivera, L.R.; Cho, H.-J.; Bravo, D.M.; Callaghan, B. The gut as a sensory organ. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 729–740. [Google Scholar] [CrossRef]
- Boller, T.; He, S.Y. Innate Immunity in Plants: An Arms Race between Pattern Recognition Receptors in Plants and Effectors in Microbial Pathogens. Science 2009, 324, 742–744. [Google Scholar] [CrossRef] [Green Version]
- James, G.; Garba, D.J.; Adeolu, A.S.; Adamu, Z.; Mamma, Z. Effect of Different Bedding Materials on the Hematological and Serum Biochemical Parameters of Broiler Chickens. J. World Poult. Res. 2019, 9, 50–58. [Google Scholar] [CrossRef]
- Nawaz, A.H.; Amoah, K.; Leng, Q.Y.; Zheng, J.H.; Zhang, W.L.; Zhang, L. Poultry Response to Heat Stress: Its Physiological, Metabolic, and Genetic Implications on Meat Production and Quality Including Strategies to Improve Broiler Production in a Warming World. Front. Vet. Sci. 2021, 8, 699081. [Google Scholar] [CrossRef] [PubMed]
- Kabir, S.M.L. The Role of Probiotics in the Poultry Industry. Int. J. Mol. Sci. 2009, 10, 3531–3546. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.W.; Feng, J.H.; Chao, Z.; Chen, Y.; Wei, L.M.; Wang, F.; Sun, R.P.; Zhang, M.H. The influences of ambient temperature and crude protein levels on performance and serum biochemical parameters in broilers. J. Anim. Physiol. Anim. Nutr. 2015, 100, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, Y.; Li, A.; Wang, Z.; Zhang, X.; Yun, T.; Yin, Y. Effects of fermented rapeseed meal on antioxidant functions, serum biochemical parameters and intestinal morphology in broilers. Food Agric. Immunol. 2016, 27, 182–193. [Google Scholar] [CrossRef]
- Nahavandinejad, M.; Seidavi, A.; Asadpour, L.; Payan-Carreira, R. Blood biochemical parameters of broilers fed differently thermal processed soybean meal. Rev. MVZ Córdoba 2014, 19, 4301–4315. [Google Scholar] [CrossRef] [Green Version]
- Basit, M.A.; Kadir, A.A.; Loh, T.C.; Aziz, S.A.; Salleh, A.; Kaka, U.; Idris, S.B. Effects of Inclusion of Different Doses of Persicaria odorata Leaf Meal (POLM) in Broiler Chicken Feed on Biochemical and Haematological Blood Indicators and Liver Histomorphological Changes. Animals 2020, 10, 1209. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhang, S.; Wang, H.; Xiangshu, P. Essential oil and aromatic plants as feed additives in non-ruminant nutrition: A review. J. Anim. Sci. Biotechnol. 2015, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Tekeli, A.; Çelİk, L.; Kutlu, H.R.; Görgülü, M. Effect of dietary supplemental plant extracts on performance, carcass characteristics, digestive system development, intestinal microflora and some blood parameters of broiler chicks. In Proceedings of the 12th European Poultry Conference, Verona, Italy, 10–14 September 2006; pp. 10–14. [Google Scholar]
Groups | Poultry Number (n) | Broiler Chicken Feeding Program |
---|---|---|
CON | 43 | Basic diet (BD) without Complex Phytobiotic Feed Additives (CPFA) * |
CPFA 1 | 43 | BD + CPFA 200 g/t in Starter, 100 g/t CPFA Grower and Finisher * |
CPFA 2 | 43 | BD + CPFA 400 g/t in Starter, 200 g/t CPFA Grower and Finisher * |
CPFA 3 | 43 | BD + CPFA 600 g/t in Starter, 300 g/t CPFA Grower and Finisher * |
CPFA 4 | 43 | BD + CPFA 800 g/t in Starter, 400 g/t CPFA, Grower and Finisher * |
CPFA 5 | 43 | BD + CPFA 1000 g/t in Starter, 500 g/t CPFA Grower and Finisher * |
Ingredients | Age of Poultry (Days) | |||
---|---|---|---|---|
0–10 (Starter) | 11–24 (Grower) | 25–30 (Finisher 1) | 31–35 (Finisher 2) | |
The Content of Broiler Chickens in the Feed (%) | ||||
Wheat grain | 58.16 | 60.00 | 60.00 | 60.00 |
Corn grain | 7.00 | 7.58 | 3.87 | 3.89 |
Soybean cake | 24.62 | - | 20.36 | 20.32 |
Soybean meal | - | 9.42 | - | - |
Sunflower meal | - | 5.52 | 6.12 | 6.19 |
Fish meal | 6.05 | 11.64 | - | - |
Sunflower oil | - | 2.88 | 5.00 | 4.99 |
L-lysine sulphate, 70% | 0.52 | 0.48 | 0.63 | 0.63 |
DL-methionine, 99% | 0.37 | 0.28 | 0.32 | 0.31 |
L-threonine, 98,5% | 0.19 | 0.15 | 0.16 | 0.16 |
L-valine, 96.5% | 0.11 | 0.08 | 0.08 | 0.08 |
L-arginine, 98.5% | 0.15 | 0.12 | 0.05 | 0.05 |
L-isoleucine, 90% | 0.11 | 0.13 | 0.11 | 0.11 |
Sodium chloride | 0.18 | 0.07 | 0.20 | 0.20 |
Monocalcium phosphate | 1.04 | 0.23 | 1.37 | 1.37 |
Sodium sulfate anhydrous | 0.03 | 0.14 | 0.18 | 0.18 |
Potassium carbonate | - | 0.20 | - | - |
Choline, 60% | - | 0.08 | 0.04 | 0.03 |
Limestone powder | 0.47 | - | 0.51 | 0.49 |
Vitamin-trace mineral premixes * | 1.00 | 1.00 | 1.00 | 1.00 |
Nutrients | Age of Poultry (Days) | |||
---|---|---|---|---|
0–10 (Starter) | 11–24 (Grower) | 25–30 (Finisher 1) | 31–35 (Finisher 2) | |
Nutritional Value (%) | ||||
Metabolic energy (ME) (kcal/100 g) | 301 | 311 | 320 | 320 |
Crude protein | 23.00 | 21.50 | 19.04 | 19.04 |
Assimilable lysine | 1.44 | 1.29 | 1.16 | 1.16 |
Assimilable methionine | 0.72 | 0.67 | 0.59 | 0.58 |
Assimilable methionine + cystine | 1.08 | 0.99 | 0.91 | 0.91 |
Assimilable threonine | 0.97 | 0.88 | 0.78 | 0.78 |
Assimilable tryptophan | 0.28 | 0.25 | 0.24 | 0.24 |
Assimilable arginine | 1.52 | 1.37 | 1.22 | 1.22 |
Assimilable isoleucine | 0.97 | 0.89 | 0.81 | 0.81 |
Assimilable leucine | 1.58 | 1.42 | 1.27 | 1.27 |
Assimilable valine | 1.10 | 1.00 | 0.90 | 0.90 |
Assimilable histidine | 0.54 | 0.49 | 0.45 | 0.45 |
Crude fiber | 3.15 | 3.39 | 4.06 | 4.07 |
Essential extract | 4.85 | 6.00 | 8.90 | 8.89 |
Linoleic acid | 2.20 | 2.91 | 5.12 | 5.11 |
Linolenic acid | 0.14 | 0.06 | 0.13 | 0.13 |
Calcium | 0.96 | 0.87 | 0.79 | 0.79 |
Assimilable phosphorus | 0.48 | 0.44 | 0.40 | 0.40 |
Magnesium | 0.13 | 0.13 | 0.15 | 0.15 |
Potassium | 0.82 | 0.74 | 0.77 | 0.77 |
Sodium | 0.16 | 0.20 | 0.16 | 0.16 |
Chlorine | 0.21 | 0.21 | 0.18 | 0.18 |
Age of Poultry | CON | Group | p-Value | ||||
---|---|---|---|---|---|---|---|
CPFA 1 | CPFA 2 | CPFA 3 | CPFA 4 | CPFA 5 | |||
1 day (initial) | 41.72 ± 0.44 | 41.65 ± 0.50 | 41.63 ± 0.49 | 42.05 ± 0.41 | 41.60 ± 0.45 | 42.05 ± 0.48 | 0.962 |
7 days | 163.49 ± 3.27 b | 169.40 ± 2.87 a | 163.91 ± 2.78 ab | 170.37 ± 3.44 a | 173.05 ± 3.36 a | 155.40 ± 2.32 b | 0.001 |
14 days | 417.05 ± 8.40 | 446.07 ± 7.12 | 422.63 ± 7.31 | 427.33 ± 6.89 | 443.79 ± 9.05 | 432.86 ± 7.51 | 0.052 |
21 days | 733.95 ± 13.35 c | 830.23 ± 14.11 a | 752.56 ± 13.82 c | 760.47 ± 11.91 bc | 840.00 ± 18.06 a | 817.67 ± 15.14 ab | 0.001 |
28 days | 1254.42 ± 20.53 c | 1380.00 ± 25.73 a | 1251.16 ± 23.26 c | 1256.74 ± 21.96 bc | 1381.86 ± 26.45 a | 1353.95 ± 26.22 ab | 0.001 |
35 days (final) | 1875.35 ± 31.27 bc | 1955.81 ± 34.11 abc | 1849.07 ± 35.29 c | 1860.70 ± 33.52 bc | 1994.65 ± 35.08 b | 2007.91 ± 43.22 a | 0.002 |
Parameters | Groups | p-Value | |||||
---|---|---|---|---|---|---|---|
CON | CPFA 1 | CPFA 2 | CPFA 3 | CPFA 4 | CPFA 5 | ||
AWG, g | 1833.63 ± 31.16 abc | 1914.16 ± 34.09 abc | 1807.44 ± 35.29 c | 1818.65 ± 33.62 bc | 1953.05 ± 35.01 ab | 1965.86 ± 43.31 a | 0.002 |
1–7 days | 121.77 ± 3.33 ab | 127.74 ± 2.99 a | 122.28 ± 2.80 ab | 128.33 ± 3.56 a | 131.44 ± 3.37 a | 113.35 ± 2.38 b | 0.001 |
8–14 days | 253.56 ± 9.04 | 276.67 ± 7.45 | 258.72 ± 8.23 | 256.95 ± 8.19 | 270.74 ± 9.58 | 277.47 ± 7.59 | 0.165 |
15–21 days | 316.91 ± 12.91 b | 384.16 ± 15.25 a | 329.93 ± 15.78 ab | 333.14 ± 15.08 ab | 396.21 ± 21.56 a | 384.81 ± 16.80 a | 0.001 |
22–28 days | 520.47 ± 23.42 | 549.77 ± 29.70 | 498.60 ± 22.74 | 496.28 ± 25.95 | 541.86 ± 33.57 | 536.28 ± 32.81 | 0.672 |
29–35 days | 638.57 ± 34.07 | 575.81 ± 41.95 | 615.00 ± 37.71 | 603.95 ± 42.20 | 628.81 ± 43.18 | 653.95 ± 47.40 | 0.814 |
ADG, g | 53.93 ± 0.92 abc | 56.30 ± 1.00 abc | 53.16 ± 1.04 c | 53.49 ± 0.99 bc | 57.44 ± 1.03 ab | 57.82 ± 1.27 a | 0.002 |
1–7 days | 17.39 ± 0.48 ab | 18.25 ± 0.43 a | 17.47 ± 0.40 ab | 18.33 ± 0.51 a | 18.78 ± 48 a | 16.19 ± 0.34 b | 0.001 |
8–14 days | 36.22 ± 1.29 | 39.52 ± 1.06 | 36.96 ± 1.18 | 36.71 ± 1.17 | 38.68 ± 1.37 | 39.64 ± 1.08 | 0.165 |
15–21 days | 45.27 ± 1.84 b | 54.88 ± 2.18 a | 47.13 ± 2.25 ab | 47.59 ± 2.15 ab | 56.60 ± 3.08 a | 54.97 ± 2.40 a | 0.001 |
22–28 days | 45.27 ± 1.84 b | 54.88 ± 2.18 b | 47.13 ± 2.25 b | 47.59 ± 2.15 b | 77.41 ± 4.80 a | 76.61 ± 4.69 a | 0.000 |
29–35 days | 91.22 ± 4.87 | 82.26 ± 5.99 | 87.86 ± 5.39 | 86.28 ± 6.03 | 89.83 ± 6.17 | 93.42 ± 6.77 | 0.814 |
PEF, U | 307.59 | 335.01 | 296.14 | 300.02 | 348.35 | 350.02 | n/o |
Safety, % | 100 | 100 | 100 | 100 | 100 | 100 | n/o |
FC, kg | 1.742 | 1.668 | 1.784 | 1.772 | 1.636 | 1.639 | n/o |
Parameters | Groups | p-Value | |||||
---|---|---|---|---|---|---|---|
CON | CPFA 1 | CPFA 2 | CPFA 3 | CPFA 4 | CPFA 5 | ||
Un-eviscerated weight (g) | 1373.24 ± 18.27 ab | 1460.06 ± 18.43 a | 1456.52 ± 2.97 a | 1309.58 ± 18.21 b | 1434.84 ± 19.85 ab | 1401.69 ± 54.04 ab | 0.014 |
Pectoral muscles (g) | 385.96 ± 11.70 ab | 459.19 ± 9.64 a | 386.63 ± 11.66 ab | 332.43 ± 36.00 b | 417.28 ± 6.39 ab | 449.18 ± 20.56 a | 0.005 |
Thigh muscles (g) | 190.26 ± 2.30 | 168.22 ± 4.20 | 184.45 ± 16.23 | 157.38 ± 17.71 | 132.61 ± 7.78 | 156.13 ± 26.20 | 0.156 |
Leg muscle (g) | 136.45 ± 8.74 | 133.95 ± 3.95 | 120.83 ± 5.42 | 119.60 ± 6.57 | 132.31 ± 5.53 | 120.08 ± 14.04 | 0.491 |
Lungs (g) | 7.11 ± 1.13 b | 8.91 ± 1.17 ab | 10.54 ± 0.26 a | 10.94 ± 1.61 a | 8.25 ± 0.07 ab | 6.51 ± 0.25 b | 0.033 |
Heart (g) | 8.29 ± 0.09 | 6.98 ± 0.61 | 8.05 ± 0.31 | 6.99 ± 0.95 | 6.10 ± 0.50 | 7.25 ± 0.15 | 0.108 |
Hepatic (g) | 40.11 ± 2.19 | 38.59 ± 1.11 | 43.22 ± 1.50 | 38.70 ± 1.78 | 44.03 ± 0.92 | 39.17 ± 0.32 | 0.069 |
Spleen (g) | 2.41 ± 0.12 a | 1.31 ± 0.04 b | 2.18 ± 0.28 ab | 1.83 ± 0.21 ab | 2.04 ± 0.08 ab | 1.93 ± 0.14 ab | 0.010 |
Muscular stomach (g) | 20.43 ± 1.77 | 18.83 ± 1.99 | 22.05 ± 1.30 | 22.45 ± 1.23 | 18.68 ± 1.59 | 20.29 ± 1.74 | 0.493 |
Glandular stomach (g) | 6.59 ± 0.29 | 7.60 ± 1.56 | 8.51 ± 0.53 | 7.14 ± 0.05 | 7.07 ± 0.92 | 7.34 ± 0.10 | 0.641 |
Parameters | Groups | p-Value | |||||
---|---|---|---|---|---|---|---|
CON | CPFA 1 | CPFA 2 | CPFA 3 | CPFA 4 | CPFA 5 | ||
Erythrocytes, 1012/L | 2.60 ± 0.08 | 2.59 ± 0.04 | 2.44 ± 0.06 | 2.41 ± 0.03 | 2.62 ± 0.03 | 2.52 ± 0.14 | 0.264 |
Leukocytes, 109/L | 9.30 ± 0.57 bc | 8.73 ± 0.33 bc | 10.47 ± 0.71 ab | 11.67 ± 0.62 a | 7.90 ± 0.21 c | 7.73 ± 0.03 c | 0.001 |
Hemoglobin, g/L | 125.67 ± 1.76 | 123.67 ± 0.88 | 121.33 ± 1.86 | 123.00 ± 2.65 | 126.67 ± 1.76 | 125.33 ± 4.81 | 0.719 |
Parameters | CON | Groups | p-Value | ||||
---|---|---|---|---|---|---|---|
CPFA 1 | CPFA 2 | CPFA 3 | CPFA 4 | CPFA 5 | |||
Glucose, mmol/L | 11.67 ± 1.15 | 12.07 ± 0.35 | 13.67 ± 0.74 | 12.77 ± 0.44 | 11.20 ± 1.08 | 13.27 ± 0.28 | 0.234 |
Total protein, g/L | 34.10 ± 1.95 | 31.60 ± 0.29 | 32.37 ± 0.32 | 32.70 ± 1.01 | 35.90 ± 5.27 | 32.73 ± 0.45 | 0.819 |
Albumin, g/L | 12.47 ± 0.41 | 12.17 ± 0.15 | 11.87 ± 0.07 | 11.83 ± 0.48 | 11.73 ± 0.98 | 12.53 ± 0.32 | 0.791 |
Globulin, g/L | 21.63 ± 1.58 | 19.43 ± 0.23 | 20.50 ± 0.36 | 20.87 ± 0.54 | 24.17 ± 4.28 | 20.20 ± 0.30 | 0.591 |
AST, U/L | 285.00 ± 24.09 | 345.67 ± 50.26 | 293.33 ± 16.46 | 302.00 ± 16.44 | 327.67 ± 32.92 | 372.00 ± 86.52 | 0.731 |
ALT, U/L | 1.67 ± 0.33 | 2.00 ± 0.58 | 1.67 ± 0.33 | 2.00 ± 0.00 | 4.00 ± 1.53 | 1.67 ± 0.33 | 0.217 |
Cholesterol, mmol/L | 3.55 ± 0.11 a | 3.44 ± 0.32 ab | 3.11 ± 0.23 ab | 3.57 ± 0.10 a | 2.83 ± 0.14 b | 3.58 ± 0.20 a | 0.023 |
Triglycerides, mmol/L | 0.42 ± 0.04 | 0.45 ± 0.03 | 0.57 ± 0.10 | 0.53 ± 0.03 | 0.48 ± 0.07 | 0.51 ± 0.05 | 0.526 |
Total calcium, mmol/L | 2.83 ± 0.13 | 2.89 ± 0.11 | 2.94 ± 0.16 | 2.92 ± 0.03 | 2.89 ± 0.20 | 3.07 ± 0.27 | 0.942 |
Phosphorus, mmol/L | 2.46 ± 0.20 | 2.33 ± 0.17 | 2.33 ± 0.17 | 2.24 ± 0.10 | 2.55 ± 0.28 | 2.13 ± 0.01 | 0.611 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buryakov, N.P.; Zagarin, A.Y.; Fathala, M.M.; Aleshin, D.E. The Role of Supplementing a Complex Phytobiotic Feed Additive Containing (Castanea sativa mill) Extract in Combination with Calcium Butyrate, Zinc–Methionine and Essential Oils on Growth Indicators, Blood Profile and Carcass Quality of Broiler Chickens. Vet. Sci. 2023, 10, 212. https://doi.org/10.3390/vetsci10030212
Buryakov NP, Zagarin AY, Fathala MM, Aleshin DE. The Role of Supplementing a Complex Phytobiotic Feed Additive Containing (Castanea sativa mill) Extract in Combination with Calcium Butyrate, Zinc–Methionine and Essential Oils on Growth Indicators, Blood Profile and Carcass Quality of Broiler Chickens. Veterinary Sciences. 2023; 10(3):212. https://doi.org/10.3390/vetsci10030212
Chicago/Turabian StyleBuryakov, Nikolai P., Artem Yu. Zagarin, Mohamed M. Fathala, and Dmitrii E. Aleshin. 2023. "The Role of Supplementing a Complex Phytobiotic Feed Additive Containing (Castanea sativa mill) Extract in Combination with Calcium Butyrate, Zinc–Methionine and Essential Oils on Growth Indicators, Blood Profile and Carcass Quality of Broiler Chickens" Veterinary Sciences 10, no. 3: 212. https://doi.org/10.3390/vetsci10030212
APA StyleBuryakov, N. P., Zagarin, A. Y., Fathala, M. M., & Aleshin, D. E. (2023). The Role of Supplementing a Complex Phytobiotic Feed Additive Containing (Castanea sativa mill) Extract in Combination with Calcium Butyrate, Zinc–Methionine and Essential Oils on Growth Indicators, Blood Profile and Carcass Quality of Broiler Chickens. Veterinary Sciences, 10(3), 212. https://doi.org/10.3390/vetsci10030212