Role of Dietary Inclusion of Phytobiotics and Mineral Adsorbent Combination on Dairy Cows′ Milk Production, Nutrient Digestibility, Nitrogen Utilization, and Biochemical Parameters
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Animals and Experimental Design
2.3. Feed, Animal Feeding, and Dietary Supplement
2.4. Samples Collection and Chemical Analysis
2.5. Milk Sampling and Analysis
2.6. Digestibility of Nutrients and the Use of Nitrogen in the Diet
2.7. Blood Sampling and Analysis
2.8. Fermentation Indicators in the Rumen
2.9. Statistical Analysis
3. Results
3.1. Analysis of Nutritional Value and Chemical Composition of Additives
3.2. Milk Production and Quality Indicators
3.3. Indicators of Digestibility and Nitrogen Balance in Cows
3.4. Rumen Fermentation Indicators
3.5. Blood Biochemical Parameters
4. Discussion
4.1. Analysis of Nutritional Value and Chemical Composition of Additives
4.2. The Milk Productivity and Quality Indicators
4.3. Indicators of Digestibility and Nitrogen Balance in Cows
4.4. Rumen Fermentation Indicators
4.5. Blood Biochemical Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Litvina, N.I.; Dolgova, E.A.; Litvina, N.V. Innovative development of cattle breeding: Status, problems and prospects. IOP Conf. Ser. Earth Environ. Sci. 2021, 650, 012027. [Google Scholar] [CrossRef]
- Mironiuk, M.; Samoraj, M.; Witek-Krowiak, A.; Górecki, H.; Moustakas, K.; Chojnacka, K. Processing of nuisance animal waste into agricultural products. Environ. Pollut. 2022, 319, 120924. [Google Scholar] [CrossRef] [PubMed]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2022. In Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable; FAO: Rome, Italy, 2022; Available online: https://www.fao.org/3/cc0639en/cc0639en.pdf (accessed on 2 November 2022).
- Altarawneh, M. Estimating supply and demand functions for dairy cow’s milk production. AJAEES 2015, 7, 1–5. [Google Scholar] [CrossRef]
- OECD; FAO. OECD-FAO Agricultural Outlook 2022–2031; OECD Publishing: Paris, France; FAO: Rome, Italy, 2022; Available online: https://www.fao.org/3/CC0308EN/Dairy.pdf (accessed on 2 November 2022).
- Kiambi, S.; Fèvre, E.M.; Alarcon, P.; Gitahi, N.; Masinde, J.; Kang’ethe, E.; Aboge, G.; Rushton, J.; Onono, J.O. Assessment of milk quality and food safety challenges in the complex nairobi dairy value Chain. Front. Vet. Sci. 2022, 9, 892739. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-H.; Tapio, I.; Vilkki, J.; Ivanova, Z.; Kiselyova, T.; Marzanov, N.; Cinkulov, M.; Stojanović, S.; Ammosov, I.; Popov, R.; et al. The genetic structure of cattle populations (Bos taurus) in northern Eurasia and the neighbouring Near Eastern regions: Implications for breeding strategies and conservation. Mol. Ecol. 2007, 16, 3839–3853. [Google Scholar] [CrossRef]
- Buryakov, N.; Buryakova, M.; Prokhorov, E.; Aleshin, D. Efficiency of white Lupin grain in composition of feed for dairy cattle. Eng. Rural. Dev. 2019, 18, 407–412. [Google Scholar]
- Bell, M.J.; Cullen, B.R.; Eckard, R.J. The Influence of climate, soil and pasture type on productivity and greenhouse gas emissions intensity of modeled beef cow-calf grazing systems in southern Australia. Animals 2012, 2, 540–558. [Google Scholar] [CrossRef] [Green Version]
- Howden, S.M.; Crimp, S.J.; Stokes, C.J. Climate change and Australian livestock systems: Impacts, research and policy issues. Aust. J. Exp. Agric. 2008, 48, 780–788. [Google Scholar] [CrossRef]
- Heckman, J.R. Securing fresh food from fertile soil, challenges to the organic and crude milk movements. renewable agriculture and food systems. Renew. Agric. Food Syst. 2017, 34, 472–485. [Google Scholar] [CrossRef] [Green Version]
- Lamy, E.; van Harten, S.; Sales-Baptista, E.; Guerra, M.M.M.; de Almeida, A.M. Factors Influencing Livestock Productivity. In Environmental Stress and Amelioration in Livestock Production; Sejian, V., Naqvi, S., Ezeji, T., Lakritz, J., Lal, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 19–51. [Google Scholar] [CrossRef]
- Van Vliet, S.; Provenza, F.D.; Kronberg, S.L. Health-promoting phytonutrients are higher in grass-fed meat and milk. Front. Sustain. Food Syst. 2021, 4, 555426. [Google Scholar] [CrossRef]
- Biscarini, F.; Nicolazzi, E.L.; Stella, A.; Boettcher, P.J.; Gandini, G. Challenges and opportunities in genetic improvement of local livestock breeds. Front. Genet. 2015, 6, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afanasievna, N.N.; Viktorovich, P.V.; Matveevna, C.N.; Fedoseevich, G.M. The use of feed additives in the diet of cows and young cattle in Yakutia. Biosci. Biotech. Res. Asia 2015, 12, 1651–1657. [Google Scholar] [CrossRef] [Green Version]
- Trukhachev, V.I.; Buryakov, N.P.; Shapovalov, S.O.; Shvydkov, A.N.; Buryakova, M.A.; Khardik, I.V.; Fathala, M.M.; Komarova, O.E.; Aleshin, D.E. Impact of inclusion of multicomponent synbiotic Russian Holstein dairy cow’s rations on milk yield, rumen fermentation, and some blood biochemical parameters. Front. Vet. Sci. 2022, 9, 884177. [Google Scholar] [CrossRef]
- Buryakov, N.P.; Zagarin, A.Y.; Fathala, M.M.; Aleshin, D.E. The role of supplementing a complex phytobiotic feed additive containing (Castanea Sativa Mill) extract in combination with calcium butyrate, zinc–methionine and essential oils on growth indicators, blood profile and carcass quality of broiler chickens. Vet. Sci. 2023, 10, 212. [Google Scholar] [CrossRef]
- Zaikina, A.S.; Buryakov, N.P.; Buryakova, M.A.; Zagarin, A.Y.; Razhev, A.A.; Aleshin, D.E. Impact of supplementing phytobiotics as a substitute for antibiotics in broiler chicken feed on growth performance, nutrient digestibility, and biochemical parameters. Vet. Sci. 2022, 9, 672. [Google Scholar] [CrossRef]
- Khan, A.K.; Kausar, H.; Jaferi, S.S.; Drouet, S.; Hano, C.; Abbasi, B.H.; Anjum, S. An Insight into the Algal Evolution and Genomics. Biomolecules 2020, 10, 1524. [Google Scholar] [CrossRef]
- Pereira, L. Macroalgae. Encyclopedia 2021, 1, 17. [Google Scholar] [CrossRef]
- Preisig, H.R. Systematics and evolution of the algae: Phylogenetic relationships of taxa within the different groups of algae. In Progress in Botany; Springer: Berlin/Heidelberg, Germany, 1999; Volume 60, pp. 369–412. [Google Scholar] [CrossRef]
- Wells, M.L.; Potin, P.; Craigie, J.S.; Raven, J.A.; Merchant, S.S.; Helliwell, K.E.; Smith, A.G.; Camire, M.E.; Brawley, S.H. Algae as nutritional and functional food sources: Revisiting our understanding. J. Appl. Phycol. 2017, 29, 949–982. [Google Scholar] [CrossRef]
- Babich, O.; Sukhikh, S.; Larina, V.; Kalashnikova, O.; Kashirskikh, E.; Prosekov, A.; Noskova, S.; Ivanova, S.; Fendri, I.; Smaoui, S.; et al. Algae: Study of edible and biologically active fractions, their properties and applications. Plants 2022, 11, 780. [Google Scholar] [CrossRef]
- Skrypnik, L.; Babich, O.; Sukhikh, S.; Shishko, O.; Ivanova, S.; Mozhei, O.; Kochish, I.; Nikonov, I. A study of the antioxidant, cytotoxic activity and adsorption properties of Karelian shungite by physicochemical methods. Antioxidants 2021, 10, 1121. [Google Scholar] [CrossRef]
- Obradović, N.; Gigov, M.; Ðordević, A.; Kern, F.; Dmitrović, S.; Matović, B.; Ðordević, A.; Tshantshapanyan, A.; Vlahović, B.; Petrović, P.; et al. Shungite—A carbon-mineral rock material: Its sinterability and possible applications. Process. Appl. Ceram. 2019, 13, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Golovin, A.V.; Anikin, A.S.; Pervov, N.G.; Nekrasov, R.V.; Strekozov, N.I.; Duborezov, V.M.; Chabaev, M.G.; Fomichev, Y.P.; Gusev, I.V. Recommendations on Detailed Feeding of Dairy Cattle: A Reference Manual; Federal Research Center for Animal Husbandry Named after L.K. Ernst: Moscow, Russia, 2016; 242p. [Google Scholar]
- ISO 6869:2000; Animal Feeding Stuffs—Determination of the Contents of Calcium, Copper, Iron, Magnesium, Manganese, Potassium, Sodium and Zinc—Method Using Atomic Absorption Spectrometry. International Organization for Standardization: Geneva, Switzerland, 2000.
- GOST 26657-97; Fodders, Mixed Fodders, Mixed Fodder Raw Materials. Methods for Determination of Phosphorus Content. Publishing and printing complex of Gosstandart of Russia; Publishing House of Standards: Moscow, Russia, 2002.
- ISO 6498:2012; Animal Feeding Stuffs—Guidelines for Sample Preparation. International Organization for Standardization: Geneva, Switzerland, 2012.
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis; AOAC: Arlington, VA, USA, 1990. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA; Washington, DC, USA, 1995. [Google Scholar]
- GOST 26570-95; Fodder, Mixed Fodder and Mixed Fodder Raw Material. Methods for Determination of Calcium. Publishing and Printing Complex of Gosstandart of Russia; Publishing House of Standards: Moscow, Russia, 2002.
- Van Soest, P.J. Cell wall matrix interactions and degradation—Session synopsis. In Forage Cell Wall Structure and Digestibility; Jung, H.G., Buxton, D.R., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 1993; pp. 377–396. [Google Scholar]
- Kugenev, P.V.; Barabanshchikov, N.V. Practicum on Dairy Business, 6th ed.; Agropromizdat, Federal Research Center for Animal Husbandry Named after L.K. Ernst: Moscow, Russia, 1988. [Google Scholar]
- Larsen, M.; Hansen, N.P.; Weisbjerg, M.R.; Lund, P. Technical note: Evaluation of the ororuminal FLORA sampling device for rumen fluid sampling in intact cattle. J. Dairy Sci. 2020, 103, 447–450. [Google Scholar] [CrossRef] [Green Version]
- Buryakov, N.P.; Aleshin, D.E.; Buryakova, M.A.; Zaikina, A.S.; Laptev, G.Y.; Ilina, L.A.; Petrov, A.S.; Kostomakhin, N.M.; El Sheikh, A.I.; Sahwan, F.M.; et al. Influence of using various levels of protein concentrate in rations of Ayrshire dairy cows on rumen microbiome, reproductive traits and economic efficiency. Vet. Sci. 2022, 9, 534. [Google Scholar] [CrossRef] [PubMed]
- IBM Corp. IBM SPSS Statistics for Windows; Version 25.0; Released; IBM Corp: Armonk, NY, USA, 2017. [Google Scholar]
- Duncan, D.B. Multiple Range’s and Multiple F-test. Biometrics 1995, 11, 1–42. [Google Scholar] [CrossRef]
- Robinson, G.W. Mineralogy of Michigan by E.W. Heinrich, 2nd ed.; A.E. Seaman Mineral Museum, Michigan Technological University: Houghton, MI, USA, 2004; 252p. [Google Scholar]
- Schulz, O.; Lukas, W. Eine Uranerzlagerstätte in permotriadischen Sedimenten Tirols. Tschermaks Mineral. Petrogr. Mitt. 1970, 14, 213–231. [Google Scholar]
- Heijlen, W.; Banks, D.A.; Muchez, P.; Stensgard, B.M.; Yardley, B.W.D. The Nature of Mineralizing Fluids of the Kipushi Zn-Cu Deposit, Katanga, Democratic Repubic of Congo: Quantitative Fluid Inclusion Analysis using Laser Ablation ICP-MS and Bulk Crush-Leach Methods. Econ. Geol. 2008, 103, 1459–1482. [Google Scholar] [CrossRef]
- Misra, K.S. Tectonic history of major geological structures of peninsular India and development of petroliferous basins and eruption of deccan and associated volcanics. J. Geophys. 2006, 27, 3–14. [Google Scholar]
- Snezhko, A.M.; Lashko, S.P.; Yatsenko, V.G. About shungites and shungite mineral raw material of Ukraine. In Tektonika, Minerageniya, Mineral’nye Resursy. Sbornik Nauchnykh Rabot Instituta Geokhimii Okruzhayushchey Sredy; Institute of Environmental Geochemistry of the NAS and the Ministry of Emergency Situations of Ukraine: Ukraine, Kiev, 2015; Volume 11, pp. 80–88. [Google Scholar]
- Ongarbayev, Y.; Baigulbayeva, M.; Tileuberdi, Y.; Zhumakhan, K. Sorption of oil by mechanochemicaly activated shungite. Rud.-Geološko-Naft. Zb. 2022, 37, 17–26. [Google Scholar] [CrossRef]
- Türk, S.; Tamm, T.; Mändar, H.; Raal, A.; Laurson, P.; Mäeorg, U. Microbiological and chemical properties of shungite water. Proc. Est. Acad. Sci. 2022, 71, 361–368. [Google Scholar] [CrossRef]
- Charykova, M.V.; Bornyakova, I.I.; Polekhovskii, Y.S.; Charykov, N.A.; Kustova, E.V.; Arapov, O.V. Chemical composition of extracts from Shungite and “Shungite water”. Russ. J. Appl. Chem. 2006, 79, 29–33. [Google Scholar] [CrossRef]
- Novikova, A.; Karabchevsky, A. Green extraction of graphene from natural Mineral Shungite. Nanomaterials 2022, 12, 4356. [Google Scholar] [CrossRef] [PubMed]
- Krasnovyd, S.V.; Konchits, A.A.; Shanina, B.D.; Valakh, M.Y.; Igor Bogdanovich Yanchuk, I.B.; Yukhymchuk, V.A.; Yefanov, A.V.; Skoryk, M.A. Local structure and paramagnetic properties of the nanostructured carbonaceous material shungite. Nanoscale Res. Lett. 2015, 10, 78. [Google Scholar] [CrossRef] [Green Version]
- Sajo, M.E.J.; Kim, C.-S.; Kim, S.-K.; Shim, K.Y.; Kang, T.-Y.; Lee, K.-J. Antioxidant and anti-inflammatory effects of shungite against ultraviolet b irradiation-induced skin damage in hairless mice. Oxid. Med. Cell. Longev. 2017, 2017, 7340143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mooste, M.; Tkesheliadze, T.; Kozlova, J.; Kikas, A.; Kisand, V.; Treshchalov, A.; Tamm, A.; Aruväli, J.; Zagal, J.H.; Kannan, A.M.; et al. Transition metal phthalocyanine-modified shungite-based cathode catalysts for alkaline membrane fuel cell. Int. J. Hydrogen Energy 2021, 46, 4365–4377. [Google Scholar] [CrossRef]
- Estemesova, A.S.; Altaeva, Z.N.; Aimenov, Z.T. Shungite Waste—An Effective Mineral Additive for Concrete Modification. In Innovations and Technologies in Construction. Buildintech BIT 2020. Lecture Notes in Civil Engineering; Klyuev, S., Lesovik, V., Vatin, N., Eds.; Springer: Cham, Switzerland, 2021; Volume 95, pp. 52–58. [Google Scholar] [CrossRef]
- Polunina, I.A.; Vysotskii, V.V.; Senchikhin, I.N.; Polunin, K.E.; Goncharova, I.S.; Petukhova, G.A.; Buryak, A.K. The effect of modification on the physicochemical characteristics of Shungite. Colloid. J. 2017, 79, 244–249. [Google Scholar] [CrossRef]
- Buryakov, N.P.; Buryakova, M.A.; Suslova, I.A.; Zaikina, A.S.; Aleshin, D.E.; Stavtcev, A.E. Influence of protein concentrate in the diet on productivity and amino acid composition of cow milk. IOP Conf. Ser. Earth Environ. Sci. 2019, 341, 012057. [Google Scholar] [CrossRef] [Green Version]
- Khachlouf, K.; Hamed, H.; Gdoura, R. Effects of zeolite supplementation on dairy cow production and ruminal parameters—A review. Ann. Anim. Sci. 2018, 18, 857–877. [Google Scholar] [CrossRef] [Green Version]
- Lyubin, N.A.; Dezhatkina, S.V.; Akhmetova, V.V.; Muchitov, A.A.; Dezhatkin, I.M.; Zyalalov, S. Rapplication of sedimentary zeolite in dairy cattle breeding. RJOAS 2020, 97, 113–119. [Google Scholar] [CrossRef]
- Lanier, J.S.; Corl, B.A. Challenges in enriching milk fat with polyunsaturated fatty acids. J. Anim. Sci. Biotechnol. 2015, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Barłowska, J.; Litwińczuk, Z. Nutritional and pro-health properties of milk fat. Med. Weter. 2009, 65, 171–174. [Google Scholar]
- Amores, G.; Virto, M. Total and free fatty acids analysis in milk and dairy fat. Separations 2019, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Flaga, J.; Korytkowski, L.; Gorka, P.; Kowalski, Z.M. The effect of docosahexaenoic acid-rich algae supplementation in milk replacer on performance and selected immune system functions in calves. J. Dairy Sci. 2019, 102, 8862–8873. [Google Scholar] [CrossRef] [PubMed]
- Shalimov, A.S.; Kovalevskii, V.V.; Obrezkov, O.N.; Yaroslavtsev, A.B. Sorptive properties of Shungite. Inorg. Mater. 2004, 40, 364–367. [Google Scholar] [CrossRef]
- Ignatov, I.; Mosin, O.V. The Structure and Composition of Shungite and Zeolite. Mathematical Model of Distribution of Hydrogen Bonds of Water Molecules in Solution of Shungite and Zeolite. Physiol. Med. J. 2014, 2, 20–36. Available online: https://iiste.org/Journals/index.php/JMPB/article/view/13775/14174 (accessed on 2 November 2022).
- Ismail, A.; Ktari, L.; Ben Redjem Romdhane, Y.; Aoun, B.; Sadok, S.; Boudabous, A.; El Bour, M. Antimicrobial fatty acids from green alga Ulva rigida (Chlorophyta). BioMed. Res. Int. 2018, 2018, 3069595. [Google Scholar] [CrossRef] [Green Version]
- Leupp, J.L.; Caton, J.S.; Soto-Navarro, S.A.; Lardy, G.P. Effects of cooked molasses blocks and fermentation extract or brown seaweed meal inclusion on intake, digestion, and microbial efficiency in steers fed low-quality hay. J. Anim. Sci. 2005, 83, 2938–2945. [Google Scholar] [CrossRef] [PubMed]
- Bobade, M.D.; Anbatkar, S.V.; Khanvilker, A.V.; Pendse, M.D. Effect of feeding seaweed extract on production and composition of milk in crossbred cows. Indian J. Anim. Prod. Manag. 1998, 14, 189–190. [Google Scholar]
- Zhu, H.; Fievez, V.; Mao, S.; He, W.; Zhu, W. Dose and time response of ruminally infused algae on rumen fermentation characteristics, biohydrogenation and Butyrivibrio group bacteria in goats. J. Anim. Sci. Biotechnol. 2016, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Duncan, W.R.H.; Ørskov, E.R.; Fraser, C.; Garton, G.A. Effect of processing of dietary barley and of supplementary cobalt and cyanocobalamin on the fatty acid composition of lamb triglycerides, with special reference to branched-chain components. J. Nutr. 1974, 32, 71–75. [Google Scholar] [CrossRef]
- Wathes, D.C.; Clempson, A.M.; Pollott, G.E. Associations between lipid metabolism and fertility in the dairy cow. Reprod. Fert. Develop. 2012, 25, 48–61. [Google Scholar] [CrossRef]
- Kuznetsova, T.A.; Persiyanova, E.V.; Makarenkova, I.D.; Besednova, N.N.; Menshova, R.V.; Zvyagintseva, T.N. Effect of fucoidan on the level and dynamic of lipid metabolism parameters in P-407 induced dyslipidemia. Atherosclerosis 2016, 12, 5–10. [Google Scholar]
- Kryzhanovsky, S.P.; Bogdanovich, L.N.; Kushnerova, N.F.; Shevchenko, N.M. Phospholipids and neutral blood lipids in patients with dyslipidemia and their correction with polysaccharides from marine brown algae. Fundam. Res. 2014, 10, 1951–1958. [Google Scholar]
Groups | Cows Number (n) | The Program of Feeding Cows |
---|---|---|
CON | 20 | Basic diet, without inclusion of mineral adsorbent (shungite) and dry grits Fucus vesiculosus. |
TMS | 20 | BD + mineral adsorbent from heat-treated shungite (Zazhoginsky mine, Republic of Karelia, Russian Federation) in the amount of 50 g. |
FG | 20 | BD + dry grits from Fucus vesiculosus (Obtained from the White Sea, Republic of Karelia, Russian Federation) in the amount of 100 g. |
TMS + FG | 20 | BD + mineral adsorbent from heat-treated shungite in the amount 50 g and dry grits from Fucus vesiculosus in the amount of 100 g |
Feeds of Diet | Content (kg) | Feeds of Diet | Content (kg) |
---|---|---|---|
Wheat straw | 2.0 | Rapeseed cake | 1.5 |
Cereal-legume hay | 4.0 | Flattened wheat | 1.8 |
Cereal-legume silage | 13.0 | Flattened barley | 1.8 |
Clover haylage | 16.0 | Vitamin-trace mineral premixes | 0.05 |
Nutritional value | |||
Metabolic energy (ME) MJ | 175.4 | Phosphorus, g | 89.0 |
Dry matter (DM), kg | 17.2 | Magnesium, g | 40.0 |
ME per 1 kg DM, MJ/kg | 10.2 | Potassium, g | 151.0 |
Crude protein, g | 2572.0 | Sodium, g | 46.0 |
Digestible protein, g | 1542.0 | Sulfur, g | 40.0 |
Degradable protein, g | 1786.0 | Iron, mg | 2711.0 |
Ungradable protein, g | 981.0 | Copper, mg | 173.0 |
Neutral detergent fiber, g | 6422.0 | Zinc, mg | 1148.0 |
Acid detergent fiber, g | 3911.0 | Manganese, mg | 1125.0 |
Crude fiber, g | 3427.0 | Cobalt, mg | 14.3 |
Starch, g | 2440.0 | Iodine, mg | 15.8 |
Sugars, g | 627.0 | Carotene, mg | 803.0 |
Essential extract, g | 536.0 | Vitamin D, thousands of IU | 17.8 |
Calcium, g | 133.0 | Vitamin E, mg | 1457.0 |
Trace Mineral Element | Concentration, mg/kg | Trace Mineral Element | Concentration, mg/kg |
---|---|---|---|
Sodium | 68.05 ± 5.80 | Copper | 6.72 ± 1.91 |
Magnesium | 157.58 ± 28.54 | Zinc | 39.34 ± 15.67 |
Aluminum | 133.15 ± 46.12 | Bromine | 4.73 ± 0.24 |
Potassium | 75.10 ± 20.42 | Selenium | 0.67 ± 0.10 |
Calcium | 378.87 ± 26.28 | Rubidium | 0.59 ± 0.19 |
Titan | 1.18 ± 0.06 | Strontium | 8.79 ± 0.60 |
Vanadium | 1.43 ± 0.43 | Zirconium | 0.70 ± 0.22 |
Chrome | 2.95 ± 0.97 | Molybdenum | 0.78 ± 0.10 |
Manganese | 6.24 ± 1.62 | Iodine | 2.99 ± 0.45 |
Iron | 903.49 ± 26.17 | Barium | 16.49 ± 2.64 |
Cobalt | 0.60 ± 0.11 | Tungsten | 0.45 ± 0.11 |
Nickel | 9.19 ± 2.82 | Lead | 8.05 ± 1.35 |
Parameters | Type of Feed Additive in the Diet | p-Value | |||
---|---|---|---|---|---|
CON | TMS | FG | TMS + FG | ||
Milk yield, kg | 1808.17 ± 44.01 | 1845.40 ± 71.02 | 1863.50 ± 62.55 | 1863.50 ± 62.55 | 0.904 |
Average daily milk yield, kg | 20.09 ± 0.49 | 20.50 ± 0.79 | 20.71 ± 0.69 | 20.71 ± 0.69 | 0.904 |
FCM yield, kg | 1793.61 ± 48.11 | 1834.01 ± 74.69 | 1863.07 ± 60.71 | 1863.07 ± 60.71 | 0.836 |
Average daily of FCM yield, kg | 19.93 ± 0.53 | 20.38 ± 0.83 | 20.70 ± 0.67 | 20.70 ± 0.67 | 0.837 |
Milk fat content, % | 3.95 ± 0.03 b | 4.37 ± 0.13 a | 4.35 ± 0.19 a | 4.36 ± 0.05 a | 0.018 |
Milk total protein content, % | 3.03 ± 0.01 b | 3.03 ± 0.01 b | 3.08 ± 0.02 a | 3.06 ± 0.01 ab | 0.012 |
GFC, kg | 70.63 ± 2.03 | 72.30 ± 3.08 | 73.76 ± 2.36 | 73.76 ± 2.36 | 0.784 |
GPC, kg | 55.90 ± 1.85 | 55.90 ± 1.85 | 57.71 ± 1.47 | 56.66 ± 0.86 | 0.825 |
Parameters, % | Type of Feed Additive in the Diet | p-Value | |||
---|---|---|---|---|---|
CON | TMS | FG | TMS + FG | ||
DM | 67.86 ± 0.27 | 68.54 ± 0.29 | 68.86 ± 0.46 | 69.31 ± 0.56 | 0.170 |
OM | 68.74 ± 0.23 | 69.71 ± 0.39 | 70.36 ± 0.82 | 70.52 ± 0.38 | 0.131 |
CP | 70.88 ± 0.68 | 72.04 ± 0.20 | 70.82 ± 1.20 | 72.32 ± 1.18 | 0.566 |
EE | 51.71 ± 0.37 b | 52.38 ± 0.47 ab | 50.75 ± 0.87 b | 54.74 ± 0.72 a | 0.012 |
CF | 55.15 ± 0.90 b | 57.23 ± 1.34 ab | 55.62 ± 1.36 b | 60.68 ± 0.58 a | 0.027 |
NFE | 74.22 ± 0.30 | 75.33 ± 0.66 | 74.44 ± 0.44 | 76.12 ± 0.64 | 0.118 |
Parameters | Type of Feed Additive in the Diet | p-Value | |||
---|---|---|---|---|---|
CON | TMS | FG | TMS + FG | ||
Consumed nitrogen, g | 349.58 ± 2.10 b | 355.04 ± 1.21 ab | 360.88 ± 1.40 a | 363.02 ± 2.21 a | 0.003 |
Excreted with feces, g | 101.91 ± 1.63 | 99.69 ± 0.28 | 105.26 ± 3.98 | 104.07 ± 0.49 | 0.337 |
Digestible nitrogen, g | 247.82 ± 3.84 | 255.35 ± 1.05 | 255.62 ± 5.26 | 258.92 ± 2.41 | 0.227 |
Excreted with milk, g | 92.70 ± 6.42 | 95.94 ± 5.86 | 98.87 ± 3.50 | 100.95 ± 3.05 | 0.673 |
Excreted in urine, g | 153.41 ± 8.13 | 157.23 ± 5.34 | 160.04 ± 2.76 | 155.19 ± 3.62 | 0.838 |
Assimilable nitrogen, g | 94.41 ± 6.09 | 98.12 ± 6.05 | 101.12 ± 3.36 | 103.76 ± 3.35 | 0.592 |
Absorbed from consumed, % | 27.01 ± 1.77 | 27.63 ± 1.65 | 28.02 ± 0.82 | 28.58 ± 0.86 | 0.866 |
Absorbed from digested, % | 38.14 ± 2.67 | 38.41 ± 2.25 | 39.55 ± 0.75 | 40.08 ± 1.25 | 0.868 |
Balance (±), g | +1.71 ± 0.35 | +2.18 ± 0.19 | +2.24 ± 0.14 | +2.81 ± 0.34 | 0.108 |
Parameters | Type of Feed Additive in the Diet | p-Value | |||
---|---|---|---|---|---|
CON | TMS | FG | TMS + FG | ||
pH | 6.47 ± 0.08 | 6.38 ± 0.06 | 6.68 ± 0.30 | 6.44 ± 0.06 | 0.526 |
Ammonia, mg% | 10.21 ± 0.57 a | 8.01 ± 0.21 b | 9.26 ± 0.15 ab | 8.09 ± 0.14 b | 0.004 |
SCFAs, mmol/100 mL | 7.96 ± 0.77 | 8.28 ± 0.76 | 8.89 ± 0.43 | 8.59 ± 0.34 | 0.740 |
DM of protozoa, g/100 mL | 0.19 ± 0.02 | 0.21 ± 0.04 | 0.16 ± 0.06 | 0.17 ± 0.05 | 0.870 |
DM of bacteria, g/100 mL | 0.20 ± 0.01 | 0.21 ± 0.02 | 0.20 ± 0.02 | 0.21 ± 0.01 | 0.934 |
Parameters | Type of Feed Additive in the Diet | p-Value | |||
---|---|---|---|---|---|
CON | TMS | FG | TMS + FG | ||
Leucocytes, 109/L | 6.17 ± 0.37 | 7.72 ± 0.56 | 6.02 ± 0.43 | 6.72 ± 0.37 | 0.091 |
Erythrocytes, 1012/L | 6.95 ± 0.40 | 6.30 ± 0.27 | 5.29 ± 1.00 | 7.53 ± 0.09 | 0.095 |
Hemoglobin, g/L | 109.00 ± 3.06 | 97.00 ± 4.16 | 104.00 ± 4.16 | 107.67 ± 3.84 | 0.197 |
Hematocrit, % | 40.33 ± 1.54 | 36.21 ± 1.78 | 37.77 ± 1.68 | 39.35 ± 1.77 | 0.391 |
MCV, fl | 58.00 ± 2.65 | 57.33 ± 1.76 | 58.33 ± 3.18 | 52.33 ± 1.45 | 0.309 |
MCH, pg | 15.77 ± 0.90 | 15.40 ± 0.38 | 15.60 ± 0.95 | 14.37 ± 0.35 | 0.527 |
MCHC, g/dl | 27.07 ± 0.42 | 26.83 ± 0.19 | 26.73 ± 0.17 | 27.47 ± 0.24 | 0.301 |
Platelets, 109/L | 334.33 ± 72.47 | 316.67 ± 31.69 | 315.33 ± 50.96 | 375.67 ± 63.62 | 0.862 |
Neutrophils, % | 26.67 ± 10.94 | 33.93 ± 4.14 | 36.00 ± 3.35 | 37.53 ± 6.35 | 0.698 |
Lymphocytes, % | 63.27 ± 9.16 | 57.50 ± 5.31 | 54.13 ± 5.43 | 53.77 ± 7.12 | 0.755 |
Monocytes, % | 6.20 ± 3.50 | 3.90 ± 1.99 | 2.87 ± 1.30 | 1.80 ± 0.75 | 0.471 |
Eosinophils, % | 3.43 ± 0.48 | 3.30 ± 0.85 | 5.93 ± 1.66 | 5.40 ± 0.46 | 0.216 |
Basophils, % | 1.33 ± 0.17 | 1.37 ± 0.13 | 1.07 ± 0.43 | 1.50 ± 0.06 | 0.658 |
Glucose, mmol/L | 4.24 ± 0.17 | 4.70 ± 0.11 | 4.53 ± 0.50 | 4.56 ± 0.76 | 0.914 |
Creatinine, µmol/L | 148.33 ± 11.89 | 144.67 ± 14.89 | 144.67 ± 5.55 | 145.33 ± 23.84 | 0.998 |
Urea, mmol/L | 3.63 ± 0.19 | 3.53 ± 0.23 | 3.57 ± 0.27 | 4.27 ± 0.20 | 0.144 |
Total bilirubin, µmol/L | 3.47 ± 1.19 | 5.15 ± 0.26 | 3.28 ± 0.37 | 4.67 ± 0.89 | 0.319 |
Cholesterol, mmol/L | 3.06 ± 0.16 | 4.40 ± 1.00 | 3.97 ± 0.24 | 4.13 ± 0.30 | 0.389 |
Triglycerides, mmol/L | 0.16 ± 0.02 | 0.21 ± 0.05 | 0.14 ± 0.02 | 0.18 ± 0.04 | 0.554 |
Calcium, mmol/L | 2.19 ± 0.06 | 2.48 ± 0.18 | 2.26 ± 0.04 | 2.24 ± 0.08 | 0.292 |
Phosphorus, mmol/L | 1.19 ± 0.09 | 1.22 ± 0.09 | 1.23 ± 0.08 | 1.31 ± 0.07 | 0.750 |
Aspartate aminotransferase, U/L | 34.97 ± 4.64 | 41.40 ± 2.95 | 39.17 ± 6.77 | 42.97 ± 5.10 | 0.709 |
Alanine aminotransferase, U/L | 79.00 ± 6.66 | 64.00 ± 2.31 | 78.00 ± 3.46 | 77.33 ± 4.81 | 0.146 |
Gamma-glutamyltransferase, U/L | 23.30 ± 0.15 | 22.80 ± 1.30 | 25.37 ± 1.56 | 23.03 ± 0.85 | 0.389 |
Alkaline phosphatase, U/L | 52.30 ± 1.42 | 51.50 ± 1.27 | 52.00 ± 0.87 | 52.47 ± 1.28 | 0.946 |
Parameters | Type of Feed Additive in the Diet | p-Value | |||
---|---|---|---|---|---|
CON | TMS | FG | TMS + FG | ||
Glucose, mmol/L | 2.37 ± 0.18 b | 2.47 ± 0.12 b | 3.13 ± 0.09 a | 3.27 ± 0.09 a | 0.002 |
Creatinine, µmol/L | 73.00 ± 4.04 | 85.33 ± 4.41 | 77.67 ± 6.01 | 87.67 ± 9.17 | 0.376 |
Total protein, g/L | 78.23 ± 1.62 | 79.50 ± 4.04 | 83.47 ± 1.34 | 82.70 ± 0.35 | 0.369 |
Urea, mmol/L | 7.07 ± 0.62 | 6.93 ± 0.23 | 6.83 ± 0.24 | 6.77 ± 0.29 | 0.948 |
Albumin, g/L | 32.60 ± 1.95 | 35.47 ± 1.04 | 35.00 ± 0.26 | 35.63 ± 0.45 | 0.277 |
Globulin, g/L | 45.63 ± 2.38 a | 34.03 ± 1.00 b | 38.47 ± 1.12 ab | 40.40 ± 3.65 ab | 0.043 |
Albumin/globulin | 0.72 ± 0.07 b | 1.04 ± 0.02 a | 0.91 ± 0.02 ab | 0.89 ± 0.08 ab | 0.025 |
Urea/Creatinine ratio | 98.31 ± 14.13 | 81.98 ± 7.16 | 89.07 ± 7.51 | 79.28 ± 10.24 | 0.577 |
Total bilirubin, µmol/L | 4.00 ± 0.15 | 3.93 ± 0.27 | 4.30 ± 0.42 | 3.57 ± 0.12 | 0.348 |
Bilirubin straight, µmol/L | 0.53 ± 0.12 | 0.43 ± 0.15 | 0.53 ± 0.15 | 0.33 ± 0.03 | 0.613 |
Cholesterol, mmol/L | 5.23 ± 0.09 | 5.20 ± 0.12 | 5.00 ± 0.10 | 5.10 ± 0.15 | 0.520 |
Triglycerides, mmol/L | 0.22 ± 0.02 a | 0.22 ± 0.02 a | 0.15 ± 0.01 b | 0.17 ± 0.01 ab | 0.019 |
Calcium, mmol/L | 2.37 ± 0.03 | 2.40 ± 0.06 | 2.43 ± 0.03 | 2.40 ± 0.06 | 0.802 |
Phosphorus, mmol/L | 1.70 ± 0.12 | 1.70 ± 0.06 | 1.72 ± 0.06 | 1.72 ± 0.02 | 0.995 |
Magnesium, mmol/L | 0.93 ± 0.03 | 1.00 ± 0.06 | 0.97 ± 0.03 | 1.13 ± 0.07 | 0.091 |
Potassium, mmol/L | 3.87 ± 0.13 | 4.03 ± 0.18 | 3.80 ± 0.17 | 4.13 ± 0.28 | 0.644 |
Sodium, mmol/L | 138.33 ± 0.67 | 139.33 ± 1.20 | 138.00 ± 1.53 | 139.33 ± 1.20 | 0.802 |
Chlorine, mmol/L | 93.00 ± 1.00 | 96.67 ± 2.67 | 95.00 ± 3.51 | 96.67 ± 1.20 | 0.659 |
Iron, mmol/L | 23.03 ± 1.95 | 24.23 ± 0.92 | 21.67 ± 1.00 | 23.70 ± 2.55 | 0.754 |
Acidity, unit pH | 7.75 ± 0.03 | 7.68 ± 0.09 | 7.72 ± 0.03 | 7.76 ± 0.01 | 0.633 |
Aspartate aminotransferase, U/L | 70.33 ± 6.49 | 84.33 ± 8.69 | 91.67 ± 11.41 | 103.33 ± 17.95 | 0.328 |
Alanine aminotransferase, U/L | 38.67 ± 1.76 | 42.67 ± 1.45 | 43.67 ± 0.67 | 43.33 ± 2.67 | 0.248 |
Gamma-glutamyltransferase, U/L | 27.07 ± 3.86 | 17.97 ± 0.45 | 25.33 ± 2.89 | 29.43 ± 6.42 | 0.283 |
Alpha-amylase, U/L | 112.67 ± 5.81 | 87.00 ± 11.15 | 108.00 ± 7.37 | 112.00 ± 1.53 | 0.113 |
Alkaline phosphatase, U/L | 53.67 ± 0.33 | 55.33 ± 2.85 | 56.00 ± 2.08 | 53.67 ± 2.73 | 0.837 |
Creatine kinase, U/L | 113.00 ± 14.93 | 133.67 ± 37.95 | 166.33 ± 44.01 | 162.33 ± 63.55 | 0.803 |
Lactate dehydrogenase, U/L | 963.33 ± 101.14 | 1134.00 ± 100.18 | 1152.67 ± 160.84 | 1364.00 ± 50.90 | 0.164 |
Cyanocobalamin (vitamin B12), pg/mL | 82.67 ± 9.21 | 86.00 ± 14.29 | 106.00 ± 21.38 | 168.67 ± 74.93 | 0.440 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buryakov, N.P.; Sycheva, L.V.; Trukhachev, V.I.; Zaikina, A.S.; Buryakova, M.A.; Nikonov, I.N.; Petrov, A.S.; Kravchenko, A.V.; Fathala, M.M.; Medvedev, I.K.; et al. Role of Dietary Inclusion of Phytobiotics and Mineral Adsorbent Combination on Dairy Cows′ Milk Production, Nutrient Digestibility, Nitrogen Utilization, and Biochemical Parameters. Vet. Sci. 2023, 10, 238. https://doi.org/10.3390/vetsci10030238
Buryakov NP, Sycheva LV, Trukhachev VI, Zaikina AS, Buryakova MA, Nikonov IN, Petrov AS, Kravchenko AV, Fathala MM, Medvedev IK, et al. Role of Dietary Inclusion of Phytobiotics and Mineral Adsorbent Combination on Dairy Cows′ Milk Production, Nutrient Digestibility, Nitrogen Utilization, and Biochemical Parameters. Veterinary Sciences. 2023; 10(3):238. https://doi.org/10.3390/vetsci10030238
Chicago/Turabian StyleBuryakov, Nikolai P., Larisa V. Sycheva, Vladimir I. Trukhachev, Anastasiya S. Zaikina, Maria A. Buryakova, Ilia N. Nikonov, Alexander S. Petrov, Andrey V. Kravchenko, Mohamed M. Fathala, Ivan K. Medvedev, and et al. 2023. "Role of Dietary Inclusion of Phytobiotics and Mineral Adsorbent Combination on Dairy Cows′ Milk Production, Nutrient Digestibility, Nitrogen Utilization, and Biochemical Parameters" Veterinary Sciences 10, no. 3: 238. https://doi.org/10.3390/vetsci10030238
APA StyleBuryakov, N. P., Sycheva, L. V., Trukhachev, V. I., Zaikina, A. S., Buryakova, M. A., Nikonov, I. N., Petrov, A. S., Kravchenko, A. V., Fathala, M. M., Medvedev, I. K., & Aleshin, D. E. (2023). Role of Dietary Inclusion of Phytobiotics and Mineral Adsorbent Combination on Dairy Cows′ Milk Production, Nutrient Digestibility, Nitrogen Utilization, and Biochemical Parameters. Veterinary Sciences, 10(3), 238. https://doi.org/10.3390/vetsci10030238