Antibiotic Resistance Genes Carried by Commensal Escherichia coli from Shelter Cats in Italy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Escherichia coli Strains Collection
2.2. Determination of Minimum Inhibitory Concentration (MIC)
2.3. Double Disk Sinergy Test
2.4. Multiplex Real-Time PCR for ESBLs Determination
2.5. Class 1 Integron and ARGs Detection for Tetracyclines, Sulfonamides and Fluoroquinolones
2.6. Statistical Analysis
3. Results
3.1. Phenotypic Profile
3.2. Genotypic Profile
3.3. Data Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, L.; Zhao, X.; Li, R.; Han, Y.; Hao, G.; Wang, G.; Sun, S. Companion Animals as Potential Reservoirs of Antibiotic Resistant Diarrheagenic Escherichia Coli in Shandong, China. Antibiotics 2022, 11, 828. [Google Scholar] [CrossRef]
- Poirel, L.; Madec, J.-Y.; Lupo, A.; Schink, A.-K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial Resistance in Escherichia coli. Microbiol. Spectr. 2018, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Pormohammad, A.; Nasiri, M.J.; Azimi, T. Prevalence of Antibiotic Resistance in Escherichia Coli Strains Simultaneously Isolated from Humans, Animals, Food, and the Environment: A Systematic Review and Meta-Analysis. Infect. Drug Resist. 2019, 12, 1181–1197. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety; European Centre for Disease Prevention and Control (ECDC). The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Animals and Food in 2020/2021. EFSA J. 2023, 21, e07867. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe 2023–2021 Data; World Health Organization: Stockholm, Sweden, 2023.
- Gargano, V.; Gambino, D.; Orefice, T.; Cirincione, R.; Castelli, G.; Bruno, F.; Interrante, P.; Pizzo, M.; Spada, E.; Proverbio, D.; et al. Can Stray Cats Be Reservoirs of Antimicrobial Resistance? Vet. Sci. 2022, 9, 631. [Google Scholar] [CrossRef] [PubMed]
- Ratti, G.; Facchin, A.; Stranieri, A.; Giordano, A.; Paltrinieri, S.; Scarpa, P.; Maragno, D.; Gazzonis, A.; Penati, M.; Luzzago, C.; et al. Fecal Carriage of Extended-Spectrum β-Lactamase-/AmpC-Producing Escherichia Coli in Pet and Stray Cats. Antibiotics 2023, 12, 1249. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.K.; Shin, S.; Park, Y.K.; Lim, S.-K.; Moon, D.-C.; Park, K.T.; Park, Y.H. Distribution and Antimicrobial Resistance Profiles of Bacterial Species in Stray Cats, Hospital-Admitted Cats, and Veterinary Staff in South Korea. BMC Vet. Res. 2020, 16, 109. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, L.; Buldain, D.; Gortari Castillo, L.; Buchamer, A.; Chirino-Trejo, M.; Mestorino, N. Pet and Stray Dogs as Reservoirs of Antimicrobial-Resistant Escherichia coli. Int. J. Microbiol. 2021, 2021, e6664557. [Google Scholar] [CrossRef] [PubMed]
- Marco-Fuertes, A.; Marin, C.; Lorenzo-Rebenaque, L.; Vega, S.; Montoro-Dasi, L. Antimicrobial Resistance in Companion Animals: A New Challenge for the One Health Approach in the European Union. Vet. Sci. 2022, 9, 208. [Google Scholar] [CrossRef]
- Gómez-Beltrán, D.A.; Villar, D.; López-Osorio, S.; Ferguson, D.; Monsalve, L.K.; Chaparro-Gutiérrez, J.J. Prevalence of Antimicrobial Resistance in Bacterial Isolates from Dogs and Cats in a Veterinary Diagnostic Laboratory in Colombia from 2016–2019. Vet. Sci. 2020, 7, 173. [Google Scholar] [CrossRef]
- Hamame, A.; Davoust, B.; Cherak, Z.; Rolain, J.-M.; Diene, S.M. Mobile Colistin Resistance (Mcr) Genes in Cats and Dogs and Their Zoonotic Transmission Risks. Pathogens 2022, 11, 698. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Caxito, M.; Moreno-Switt, A.I.; Paes, A.C.; Shiva, C.; Munita, J.M.; Rivas, L.; Benavides, J.A. Higher Prevalence of Extended-Spectrum Cephalosporin-Resistant Enterobacterales in Dogs Attended for Enteric Viruses in Brazil Before and After Treatment with Cephalosporins. Antibiotics 2021, 10, 122. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Hao, J.; Yang, J.; Tong, C.; Xie, L.; Xiao, D.; Zeng, Z.; Xiong, W. The Co-Occurrence of Antibiotic Resistance Genes between Dogs and Their Owners in Families. iMeta 2022, 1, e21. [Google Scholar] [CrossRef]
- Naziri, Z.; Poormaleknia, M.; Ghaedi Oliyaei, A. Risk of Sharing Resistant Bacteria and/or Resistance Elements between Dogs and Their Owners. BMC Vet. Res. 2022, 18, 203. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.C.; Barbosa, A.V.; Arais, L.R.; Ribeiro, P.F.; Carneiro, V.C.; Cerqueira, A.M.F. Resistance Patterns, ESBL Genes, and Genetic Relatedness of Escherichia coli from Dogs and Owners. Braz. J. Microbiol. 2016, 47, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Vassallo, A.; Kett, S.; Purchase, D.; Marvasi, M. The Bacterial Urban Resistome: Recent Advances. Antibiotics 2022, 11, 512. [Google Scholar] [CrossRef] [PubMed]
- Ministero della Salute Italiano. Legge Quadro in Materia di Animali di Affezione e Prevenzione del Randagismo n 281. (GU Serie Generale n.203 del 30-08-1991); 1991.
- Lu, J.-J.; Perng, C.-L.; Lee, S.-Y.; Wan, C.-C. Use of PCR with Universal Primers and Restriction Endonuclease Digestions for Detection and Identification of Common Bacterial Pathogens in Cerebrospinal Fluid. J. Clin. Microbiol. 2000, 38, 2076–2080. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2023; ISBN 978-1-68440-171-0. [Google Scholar]
- European Committee on Antimicrobial Susceptibility. Testing Guideline for the Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance; Version 2.0; EUCAST: Växjö, Sweden; European Committee on Antimicrobial Susceptibility: Växjö, Sweden, 2017. [Google Scholar]
- Roschanski, N.; Fischer, J.; Guerra, B.; Roesler, U. Development of a Multiplex Real-Time PCR for the Rapid Detection of the Predominant Beta-Lactamase Genes CTX-M, SHV, TEM and CIT-Type AmpCs in Enterobacteriaceae. PLoS ONE 2014, 9, e100956. [Google Scholar] [CrossRef]
- Salgado-Caxito, M.; Benavides, J.A.; Munita, J.M.; Rivas, L.; García, P.; Listoni, F.J.P.; Moreno-Switt, A.I.; Paes, A.C. Risk Factors Associated with Faecal Carriage of Extended-Spectrum Cephalosporin-Resistant Escherichia Coli among Dogs in Southeast Brazil. Prev. Vet. Med. 2021, 190, 105316. [Google Scholar] [CrossRef]
- Piccolo, F.L.; Belas, A.; Foti, M.; Fisichella, V.; Marques, C.; Pomba, C. Detection of Multidrug Resistance and Extended-Spectrum/Plasmid-Mediated AmpC Beta-Lactamase Genes in Enterobacteriaceae Isolates from Diseased Cats in Italy. J. Feline Med. Surg. 2020, 22, 613–622. [Google Scholar] [CrossRef]
- Salgado-Caxito, M.; Benavides, J.A.; Adell, A.D.; Paes, A.C.; Moreno-Switt, A.I. Global Prevalence and Molecular Characterization of Extended-Spectrum β-Lactamase Producing-Escherichia Coli in Dogs and Cats—A Scoping Review and Meta-Analysis. One Health 2021, 12, 100236. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Simner, P.J.; Bradford, P.A. Extended-Spectrum β-Lactamases: An Update on Their Characteristics, Epidemiology and Detection. JAC Antimicrob. Resist. 2021, 3, dlab092. [Google Scholar] [CrossRef] [PubMed]
- Bush, K. Past and Present Perspectives on β-Lactamases. Antimicrob. Agents Chemother. 2018, 62, e01076-18. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.S.; O’Brien, T.; Bateman, S. Fecal Shedding of Extended-Spectrum Beta-Lactamase-Producing Enterobacterales in Cats Admitted to an Animal Shelter. J. Feline Med. Surg. 2022, 24, 1301–1304. [Google Scholar] [CrossRef] [PubMed]
- Reygaert, W.C. An Overview of the Antimicrobial Resistance Mechanisms of Bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef] [PubMed]
- Gargano, V.; Sciortino, S.; Gambino, D.; Costa, A.; Agozzino, V.; Reale, S.; Alduina, R.; Vicari, D. Antibiotic Susceptibility Profile and Tetracycline Resistance Genes Detection in Salmonella Spp. Strains Isolated from Animals and Food. Antibiotics 2021, 10, 809. [Google Scholar] [CrossRef]
- Del Castillo, J.R.E. Tetracyclines. In Antimicrobial Therapy in Veterinary Medicine; Giguère, S., Prescott, J.F., Dowling, P.M., Eds.; Wiley: Hoboken, NJ, USA, 2013; pp. 257–268. ISBN 978-0-470-96302-9. [Google Scholar]
- Wu, S.; Dalsgaard, A.; Hammerum, A.M.; Porsbo, L.J.; Jensen, L.B. Prevalence and Characterization of Plasmids Carrying Sulfonamide Resistance Genes among Escherichia Coli from Pigs, Pig Carcasses and Human. Acta Vet. Scand. 2010, 52, 47. [Google Scholar] [CrossRef]
- Bhat, B.A.; Mir, R.A.; Qadri, H.; Dhiman, R.; Almilaibary, A.; Alkhanani, M.; Mir, M.A. Integrons in the Development of Antimicrobial Resistance: Critical Review and Perspectives. Front. Microbiol. 2023, 14, 1231938. [Google Scholar] [CrossRef]
- Sun, W.; Wang, D.; Yan, S.; Xue, Y. Characterization of Escherichia Coli Strains Isolated from Geese by Detection of Integron-Mediated Antimicrobial Resistance. J. Glob. Antimicrob. Resist. 2022, 31, 10–14. [Google Scholar] [CrossRef]
Antimicrobial Agent | Number of Isolates at the Indicated MIC Value (µg/mL) | S | R | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | (%) | (%) | |
Amoxicillin/clavulanic acid | 1 | 1 | 15 | 10 | 17 | 1 | 5 | 91.7 | 8.3 | ||||||||
Ampicillin | 3 | 12 | 16 | 15 | 2 | 12 | 80 | 20 | |||||||||
Cefazolin | 4 | 11 | 29 | 8 | 8 | 86.7 | 13.3 | ||||||||||
Cefotaxime | 56 | 4 | 93.3 | 6.7 | |||||||||||||
Colistin | 1 | 10 | 37 | 8 | 1 | 2 | 1 | 95 | 5 | ||||||||
Enrofloxacin | 47 | 8 | 2 | 1 | 2 | 100 | |||||||||||
Gentamicin | 9 | 29 | 20 | 2 | 100 | ||||||||||||
Sulfamethoxazole/trimethoprim | 53 | 2 | 1 | 4 | 93.3 | 6.7 | |||||||||||
Sulfisoxazole | 49 | 11 | 81.7 | 18.3 | |||||||||||||
Tetracycline | 7 | 9 | 31 | 2 | 11 | 83.3 | 18.3 |
ARGs Detected | Phenotypic Resistance | Number of Isolates |
---|---|---|
sul1, int1 | FIS | 4 |
tet(A), sul1, int1 | AMP-TET-SXT-FIS | 3 |
tet(A), tet(B) | AMP-TET | 3 |
blaTEM, blaCTXM, tet(A) | AMP-AUG2-FAZ-FOT-COL-TET | 2 |
blaTEM, tet(A), tet(B) | AMP- FAZ-TET | 1 |
blaTEM, tet(A), tet(B) | AMP-AUG2-TET-FIS | 1 |
blaTEM | AMP-AUG2-FAZ | 1 |
blaCTXM | FAZ-FOT-FIS | 1 |
sul1, int1 | SXT | 1 |
blaCTXM | FOT | 1 |
tet(B) | TET-FIS | 1 |
* | FAZ-COL-FIS | 1 |
* | AUG2-COL | 1 |
* | AMP | 1 |
* | FAZ | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gambino, D.; Galluzzo, F.G.; Cicero, L.; Cirincione, R.; Mannino, E.; Fiore, V.; Proverbio, D.; Spada, E.; Cassata, G.; Gargano, V. Antibiotic Resistance Genes Carried by Commensal Escherichia coli from Shelter Cats in Italy. Vet. Sci. 2023, 10, 680. https://doi.org/10.3390/vetsci10120680
Gambino D, Galluzzo FG, Cicero L, Cirincione R, Mannino E, Fiore V, Proverbio D, Spada E, Cassata G, Gargano V. Antibiotic Resistance Genes Carried by Commensal Escherichia coli from Shelter Cats in Italy. Veterinary Sciences. 2023; 10(12):680. https://doi.org/10.3390/vetsci10120680
Chicago/Turabian StyleGambino, Delia, Francesco Giuseppe Galluzzo, Luca Cicero, Roberta Cirincione, Erika Mannino, Veronica Fiore, Daniela Proverbio, Eva Spada, Giovanni Cassata, and Valeria Gargano. 2023. "Antibiotic Resistance Genes Carried by Commensal Escherichia coli from Shelter Cats in Italy" Veterinary Sciences 10, no. 12: 680. https://doi.org/10.3390/vetsci10120680