Parallel Simplex, an Alternative to Classical Experimentation: A Case Study
Abstract
:1. Summary
- They are very sensitive to noise (internal noise).
- The complexity of the computation increases dramatically with the number of variables considered.
- The number of iterations to find a local optimum grows exponentially with the number of variables in the algorithm.
- The utilization of randomness or approximation: Stochastic algorithms frequently employ a random component (for example, in the decisions made during their execution) or an approximation based on heuristics to identify solutions more expediently in complex problems.
- Objective: In numerous instances, these algorithms do not pursue an exact solution, but a “good” solution within a reasonable time, particularly when the search space is vast or the problem is challenging to solve exactly.
- Deterministic: Those that work with a known function.
- Heuristic: Algorithms based on test and error procedures.
- Stochastic: They use successive iterations, taking into account changes in the input variables and measuring the change observed in the output variables, with the help of probabilistic theories.
2. Methods
2.1. Basic Operations of the Nelder and Mead Algorithm
2.1.1. Reflection
2.1.2. Expansion
2.1.3. Contraction
2.1.4. Shrinkage
3. The Parallel Simplex Proposal
- The complexity of the algorithm still increases with the number of input variables.
- Almost all the evidence found is generated through known test functions (thus, deterministic approximations).
- Almost all the cases presented are computer-simulated situations.
4. The Analyzed Process
- The design, set up, and run of 26 runs, that is 64 runs.
- If more replicates are used for better-fit estimations, the number of runs will increase.
- The majority of products will not be conformant to specifications.
- Production will be lost because the process must stop (to set up each run).
- Extra resources (time, technicians, operators, materials, etc.) will be needed.
The Experimental Array
5. Results Analysis
6. Discussion
7. Conclusions
“The complexity of the solution is directly proportional to the complexity of the mind that is searching for it”.Anonymous.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Box, G.E.P. Evolutionary Operation: A Method for Increasing Industrial Productivity. Appl. Stat. 1957, 6, 110–115. [Google Scholar] [CrossRef]
- Spendely, W.G.R.; Himsworth, F.R. Sequential Applications of Simplex Designs in Optimization and EVOP. Technometrics 1962, 4, 441–461. [Google Scholar] [CrossRef]
- Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes: The Art of Scientific Computing, 3rd ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef]
- Mrad, M.; Bamatraf, K.; Alkahtani, M.; Hidri, L. A Genetic Algorithm for the Integrated Warehouse Location, Allocation and Vehicle Routing Problem in a Pooled Transportation System. Int. J. Ind. Eng. Theory Appl. Pract. 2023, 30, 852–875. [Google Scholar] [CrossRef]
- Vineetha, G.R.; Shiyas, C.R. Machine Learning-Enhanced Genetic Algorithm for Robust Layout Design in Dynamic Facility Layout Problems: Implementation of Dynamic Facility Layout Problems. Int. J. Ind. Eng. Theory Appl. Pract. 2023, 30, 1466–1485. [Google Scholar]
- Xie, Y.; Jiang, H.; Wang, L.; Wang, C. Sports Ecotourism Demand Prediction Using Improved Fruit Fly Optimization Algorithm. Int. J. Ind. Eng. Theory Appl. Pract. 2023, 30, 1629–1642. [Google Scholar] [CrossRef]
- Praga-Alejo, R.J.; de León-Delgado, H.; González-González, D.S.; Cantú-Sifuentes, M.; Tahaei, A. Manufacturing Processes Modeling Using Multivariate Information Criteria for Radial Basis Function Selection. Int. J. Ind. Eng. Theory Appl. Pract. 2022, 29, 117–130. [Google Scholar] [CrossRef]
- Bardeji, S.F.; Saghih, A.M.F.; Mirghaderi, S.H. Multi-Objective Inventory and Routing Model for a Multi-Product and Multi-Period Problem of Veterinary Drugs. Int. J. Ind. Eng. Theory Appl. Pract. 2022, 29, 464–486. [Google Scholar] [CrossRef]
- Drazic, M.; Drazic, Z.; Dragan, U. Continuous variable neighborhood search with modified Nelder- Mead for non-differentiable optimization. IMA J. Manag. Math. 2014, 27, 75–78. [Google Scholar] [CrossRef]
- Fan, S.; Zahara, E. Stochastic response surface optimization via an Enhanced Nelder Mead simplex search procedure. Eng. Optim. 2006, 38, 15–36. [Google Scholar] [CrossRef]
- Park, H.; Shin, Y.; Moon, I. Multiple-Objective Scheduling for Batch Process Systems Using Stochastic Utility Evaluation. Int. J. Ind. Eng. Theory Appl. Pract. 2024, 31, 412–428. [Google Scholar] [CrossRef]
- Uluskan, M.; Beki, B. Project Selection Revisited: Customized Type-2 Fuzzy ORESTE Approach for Project Prioritization. Int. J. Ind. Eng. Theory Appl. Pract. 2024, 31, 317–339. [Google Scholar] [CrossRef]
- Sharma, J.; Tyagi, M.; Bhardwaj, A. Contemplation of Operations Perspectives Encumbering the Production-Consumption Avenues of the Processed Food Supply Chain. Int. J. Ind. Eng. Theory Appl. Pract. 2023, 30, 121–146. [Google Scholar] [CrossRef]
- Ryan, T.P. Statistical Methods for Quality Improvement; John Wiley: New York, NY, USA, 1989. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments, 4th ed.; Jhon Wiley & Sons: New York, NY, USA, 1997. [Google Scholar]
- Kaelo, P.; Ali, M. Some Variants of the Controlled Random Search Algorithm for Global Optimization. J. Optim. Theory Appl. 2006, 130, 253–264. [Google Scholar] [CrossRef]
- Lewis, R.; Shepherd, A.; Torczon, V. Implementing Generating Set Search Methods for Linearly Constrained Minimization. Soc. Ind. Appl. Math. 2007, 29, 2507–2530. [Google Scholar] [CrossRef]
- Lewis, R.; Torczon, V. Active set identification for linearly constrained minimization without explicit derivatives. Soc. Ind. Appl. Math. 2009, 20, 1378–1405. [Google Scholar] [CrossRef]
- Bogani, C.; Gasparo, M.G.; Papini, A. Generating Set Search Methods for Piecewise Smooth Problems. Siam J. Optim. 2009, 20, 321–335. [Google Scholar] [CrossRef]
- Khorsandi, A.; Alimardani, A.; Vahidir, B.; Hosseinian, S.H. Hybrid shuffled frog leaping algorithm and Nelder-Mead simplex search for optimal reactive power dispatch. IET Gener. Transm. Distrib. 2010, 5, 249–256. [Google Scholar] [CrossRef]
- Bera, S.; Mukherjee, I. A Mahalanobis Distance-based Diversification and Nelder-Mead Simplex Intensification Search Scheme for Continuous Ant Colony Optimization. World Acad. Sci. Eng. Technol. 2010, 69, 1265–1271. [Google Scholar]
- Griffin, J.; Kolda, T. Asynchronous parallel hybrid optimization combining DIRECT and GSS. Optim. Methods Softw. 2010, 25, 797–817. [Google Scholar] [CrossRef]
- Gao, X.K.; Low, T.S.; Liu, Z.J.; Chen, S.X. Robust Design for Torque Optimization Using Response Surface Methodology. IEEE Trans. Magn. 2002, 38, 1141–1144. [Google Scholar] [CrossRef]
- Luo, C.; Yu, B. Low dimensional simplex evolution: A new heuristic for global optimization. J. Glob. Optim. 2011, 52, 45–55. [Google Scholar] [CrossRef]
- Barzinpour, F.; Noorossana, R.; Akhavan Niaki, S.; Javad Ershadi, M. A hybrid Nelder- Mead simplex and PSO approach on economic and economic-statistical designs of MEWMA control charts. Int. J. Adv. Manuf. Technol. 2012, 65, 1339–1348. [Google Scholar] [CrossRef]
- Hossein Gandomi, A.; Yang, X.; Hossein Alavi, A. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Eng. Comput. 2011, 29, 17–35. [Google Scholar] [CrossRef]
- Hussain, S.; Gabbar, H. Fault Diagnosis in Gearbox Using Adaptive Wavelet Filtering and Shock Response Spectrum Features Extraction. Struct. Health Monit. 2013, 12, 169–180. [Google Scholar] [CrossRef]
- McCormick, M.; Verghese, T. An Approach to Unbiased Subsample Interpolation for Motion Tracking. Ultrason. Imaging 2013, 35, 76. [Google Scholar] [CrossRef]
- Ren, J.; Duan, J. A parameter estimation method based on random slow manifolds. arXiv 2013, arXiv:1303.4600. [Google Scholar]
- Tippayawannakorn, N.; Pichitlamken, J. Nelder-Mead Method with Local Selection using Neighborhood and Memory for Stochastic Optimization. J. Comput. Sci. 2013, 9, 463–476. [Google Scholar] [CrossRef]
- Xiong, Q.; Jutan, A. Continuous Optimization Using a Dynamic Simplex method. Chem. Eng. Sci. 2003, 58, 3817–3828. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0009250903002367 (accessed on 24 November 2024). [CrossRef]
- Luersen, M.; Le Riche, R. Globalized Nelder Mead method for engineering optimization. Comput. Struct. 2004, 82, 2251–2260. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0045794904002378 (accessed on 24 November 2024). [CrossRef]
- Fan, S.; Liang, Y.; Zahara, E. A genetic algorithm and a particle swarm optimizer hybridized with Nelder-Mead simplex search. Comput. Ind. Enginering 2006, 50, 401–425. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0360835206000404 (accessed on 24 November 2024).
- Chelouah, R.; Siarry, P. A hybrid method combining continuous tabu search and nelder-Mead simplex algorithms for the global optimization of multiminima functions. Eur. J. Oper. Res. 2003, 161, 636–654. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0377221703006301 (accessed on 24 November 2024). [CrossRef]
Function | VNS+NM | VNS+RNM | RMNME | EMNM | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | n | Fopt | Feval | Succ. | Fmin | Feval | Succ. | Fmin | Feval | Succ. | Fmin | Feval | Succ. | Fmin |
S1. Branin | 2 | 0.3979 | 72 | 10 | 75 | 10 | 72 | 10 | 72 | 10 | ||||
S2. Gldstein and Price | 2 | 3.0000 | 150 | 10 | 211 | 10 | 109 | 10 | 109 | 10 | ||||
S3. Hartman H34 | 3 | −3.8626 | 245 | 10 | 367 | 10 | 702 | 10 | 123 | 4 | −2.1453 | |||
S4. Hartman H64 | 6 | −3.3224 | 1019 | 10 | 1375 | 10 | 1547 | 8 | −3.2744 | 590 | 5 | −2.9421 | ||
S5. Shekel 4, 10 | 4 | −10.5364 | 1367 | 10 | 3131 | 10 | 1793 | 6 | −7.3679 | 222 | 2 | −4.2124 | ||
S6. Shekel 4, 5 | 4 | −10.1532 | 1035 | 10 | 1318 | 10 | 1487 | 5 | −6.4069 | 270 | 5 | −6.4069 | ||
S7. Shubert | 2 | −186.7306 | 1071 | 10 | 1218 | 10 | 2228 | 10 | 73 | 0 | −23.3780 | |||
S8. Ackley | 10 | 0 | 188,726 | 10 | 324,405 | 10 | 35,706 | 0 | 0.8977 | 880 | 0 | 12.4700 | ||
S9. Dixon and Price | 10 | 0 | 5273 | 10 | 4752 | 10 | 5138 | 10 | 5138 | 10 | ||||
S10. Griewank | 6 | 0 | 148,528 | 10 | 161,096 | 10 | 17,285 | 0 | 0.2108 | 601 | 0 | 53.1800 | ||
S11. Rosenbrock | 10 | 0 | 9738 | 10 | 7917 | 10 | 8482 | 8 | 0.7974 | 6750 | 8 | 0.7974 | ||
S12. Schwefel | 10 | 0 | 1,173,568 | 10 | 1,262,060 | 10 | 16,426 | 0 | 1789.88 | 2535 | 0 | 1818.4500 | ||
S13. Zakharov | 10 | 0 | 4056 | 10 | 4218 | 10 | 4508 | 10 | 4508 | 10 | ||||
S14. Rastrigin | 10 | 0 | 130,802 | 10 | 222,881 | 10 | 32,184 | 0 | 7.5618 | 1147 | 0 | 88.7500 | ||
S15. Powell | 12 | 0 | 6092 | 10 | 5977 | 10 | 6349 | 10 | 6237 | 10 | ||||
Sum | 1,671,742 | 150 | 2,002,001 | 150 | 134,016 | 97 | 29,255 | 74 |
Efficiency Parameters | |||||||
---|---|---|---|---|---|---|---|
Problem | Dimension | Step Size | Iterations | L | D | B | A |
1 | 2 | 1 | 20 | 6.931 | 0.022 | 0.073 | 0.047 |
10 | 4 | 250 | 9.66 | 0.325 | 0.195 | 0.042 | |
18 | 4 | 1250 | 11.340 | 0.797 | 0.096 | 0.023 | |
Average | 9.31 | 0.381 | 0.121 | 0.037 | |||
2 | 2 | 1 | 20 | 7.149 | 0.013 | 0.105 | 0.070 |
10 | 1 | 225 | 9.480 | 0.113 | 0.217 | 0.080 | |
18 | 4 | 600 | 10.534 | 0.510 | 0.210 | 0.077 | |
Average | 9.054 | 0.212 | 0.177 | 0.076 | |||
3 | 2 | 1 | 30 | 7.630 | 0.049 | 0.046 | 0.038 |
10 | 4 | 595 | 10.579 | 2.461 | 0.963 | 0.543 | |
18 | 4 | 2000 | 11.960 | 6.846 | 1.241 | 0.777 | |
Average | 10.056 | 3.119 | 0.75 | 0.453 | |||
4 | 4 | 1 | 80 | 8.357 | 0.113 | 0.153 | 0.075 |
8 | 1 | 240 | 9.519 | 0.306 | 0.254 | 0.093 | |
16 | 4 | 1520 | 11.663 | 0.547 | 0.432 | 0.122 | |
Average | 9.846 | 0.322 | 0.280 | 0.097 | |||
5 | 2 | 1 | 20 | 7.172 | 0.028 | 0.084 | 0.060 |
10 | 4 | 170 | 9.112 | 0.222 | 0.310 | 0.106 | |
18 | 4 | 1360 | 11.546 | 0.367 | 0.342 | 0.111 | |
Average | 9.277 | 0.206 | 0.245 | 0.092 |
Vertice No. | Simplex No. | Air Out 01 | Air Out 02 | Air Out 03 | Air Out 04 | Puller Height | Extrusion Speed | RD | Ranking | TETA |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0.2000 | 0.1800 | 0.1800 | 0.2200 | 0.6900 | 22.4000 | 0.005 | B | 0.0000000000 |
2 | 1 | 0.3000 | 0.2800 | 0.2500 | 0.3200 | 0.7200 | 24.0000 | 0.085 | Nw | 0.0000000000 |
3 | 1 | 0.1500 | 0.1500 | 0.1500 | 0.1700 | 0.6500 | 21.0000 | 0.130 | W | 0.0026722222 |
4 | 1 | 0.3500 | 0.3100 | 0.2800 | 0.3700 | 0.7600 | 25.4000 | 0.500 | R | 0.0470722222 |
5 | 1 | 0.3000 | 0.2700 | 0.2475 | 0.3200 | 0.6775 | 22.1000 | 0.099 | Cw | 0.0017146667 |
6 | 2 | 0.2000 | 0.1700 | 0.1775 | 0.2200 | 0.6475 | 20.5000 | 0.050 | R | 0.0014735556 |
7 | 3 | 0.1000 | 0.0800 | 0.1100 | 0.1200 | 0.6600 | 20.8000 | 0.075 | R | 0.0008388889 |
8 | 3 | 0.1500 | 0.1275 | 0.1444 | 0.1700 | 0.6644 | 21.1250 | 0.065 | Cr | 0.0006500000 |
9 | 4 | 0.2500 | 0.2175 | 0.2119 | 0.2700 | 0.6519 | 20.8250 | 0.060 | R | 0.0000389000 |
10 | 5 | 0.3000 | 0.2600 | 0.2450 | 0.3200 | 0.6350 | 20.2000 | 0.090 | R | 0.0002888889 |
11 | 5 | 0.2625 | 0.2269 | 0.2198 | 0.2825 | 0.6570 | 20.8938 | 0.105 | Cw | 0.0005722222 |
12 | 6 | 0.2125 | 0.1794 | 0.1855 | 0.2325 | 0.6527 | 20.5688 | 0.006 | R | 0.0016402222 |
13 | 6 | 0.1938 | 0.1603 | 0.1723 | 0.2138 | 0.6530 | 20.4406 | 0.005 | E | 0.0016722222 |
14 | 7 | 0.1313 | 0.1034 | 0.1299 | 0.1513 | 0.6435 | 20.0469 | 0.060 | R | 0.0005722222 |
15 | 7 | 0.1641 | 0.1343 | 0.1524 | 0.1841 | 0.6469 | 20.2586 | 0.056 | Cr | 0.0005180000 |
16 | 8 | 0.2328 | 0.2009 | 0.2000 | 0.2528 | 0.6509 | 20.7117 | 0.003 | R | 0.0005615556 |
17 | 8 | 0.2836 | 0.2496 | 0.2350 | 0.3036 | 0.6546 | 21.0441 | 0.101 | E | 0.0005180000 |
18 | 9 | 0.2688 | 0.2366 | 0.2251 | 0.2888 | 0.6515 | 20.9531 | 0.025 | R | 0.0003686667 |
19 | 10 | 0.3016 | 0.2674 | 0.2476 | 0.3216 | 0.6549 | 21.1648 | 0.106 | R | 0.0019615556 |
20 | 10 | 0.2762 | 0.2431 | 0.2300 | 0.2962 | 0.6493 | 20.6662 | 0.096 | Cw | 0.0015748889 |
21 | 11 | 0.2402 | 0.2074 | 0.2049 | 0.2602 | 0.6487 | 20.4248 | 0.060 | R | 0.0014660000 |
22 | 12 | 0.1969 | 0.1652 | 0.1749 | 0.2169 | 0.6503 | 20.4703 | 0.002 | R | 0.0007348889 |
23 | 12 | 0.1572 | 0.1262 | 0.1473 | 0.1772 | 0.6507 | 20.3724 | 0.060 | E | 0.0007220000 |
24 | 13 | 0.1895 | 0.1587 | 0.1699 | 0.2095 | 0.6524 | 20.7572 | 0.002 | R | 0.0000002222 |
Variable | Parallel Simplex | Response Surface |
---|---|---|
(Air 1) | 0.19 | 0.2059 |
(Air 2) | 0.16 | 0.1768 |
(Air 3) | 0.17 | 0.1813 |
(Air 4) | 0.21 | (Out of the analysis due to lack of effect) |
(Puller Height) | 0.65 | 0.6514 |
(Extrusion Speed) | 20.75 | 20.66 |
Model | X1, X2 | X3, X4 | X5, X6 | Global (X1, X2, X3, X4, X5, X6) |
---|---|---|---|---|
Adjusted R2 | 71.55% | 75.22% | 82.52% | 93.28 |
Stationary Point | Minimum | Minimum | Minimum | Saddle |
References | Method | Application | Characteristics |
---|---|---|---|
Xiong and Jutan (2003) [33] | Dynamic Simplex | Chemical Processes | The conventional Nelder–Mead Method is adapted and expanded to facilitate the monitoring of evolving optima. |
Luersen and Le Riche (2004) [34] | Globalized Nelder Mead | Engineering Design | Particularly adapted to tackle multimodal, discontinuous optimization problems, for which it is uncertain that a global optimization can be afforded. Different strategies for restarting the local search. Made more robust by reinitializing degenerated simplexes |
Fan S. et al. (2006) [35] | Particle Swarm Optimizer Hybridized with Nelder–Mead Simplex | To locate the global optimal solutions for the nonlinear continuous variable functions mainly focusing on response surface methodology (RSM). | Both the hybrid NM–GA and NM–PSO algorithms incorporate concepts from the NM, GA or PSO, which are readily implemented in practice and the computation of functional derivatives is not necessary. |
Chelouah and Siarry (2003) [36] | Continuous Tabu Search and Nelder–Mead | Combinatorial Optimization Problems | Avoid the risk of trapping into a local minimum. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zorrilla Briones, F.; Meléndez Pastrana, I.Y.; Rodríguez Morachis, M.A.; Anaya Carrasco, J.L. Parallel Simplex, an Alternative to Classical Experimentation: A Case Study. Data 2024, 9, 147. https://doi.org/10.3390/data9120147
Zorrilla Briones F, Meléndez Pastrana IY, Rodríguez Morachis MA, Anaya Carrasco JL. Parallel Simplex, an Alternative to Classical Experimentation: A Case Study. Data. 2024; 9(12):147. https://doi.org/10.3390/data9120147
Chicago/Turabian StyleZorrilla Briones, Francisco, Inocente Yuliana Meléndez Pastrana, Manuel Alonso Rodríguez Morachis, and José Luís Anaya Carrasco. 2024. "Parallel Simplex, an Alternative to Classical Experimentation: A Case Study" Data 9, no. 12: 147. https://doi.org/10.3390/data9120147
APA StyleZorrilla Briones, F., Meléndez Pastrana, I. Y., Rodríguez Morachis, M. A., & Anaya Carrasco, J. L. (2024). Parallel Simplex, an Alternative to Classical Experimentation: A Case Study. Data, 9(12), 147. https://doi.org/10.3390/data9120147