Teal-WCA: A Climate Services Platform for Planning Solar Photovoltaic and Wind Energy Resources in West and Central Africa in the Context of Climate Change
Abstract
1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. Data
Institute/Country | Model | Reference | Horizontal Resolution |
---|---|---|---|
Alfred Wegener Institute Climate Mode (AWI-CM) | AWI-CM-1-1-MR | [38] | 0.937° × 0.934° |
Chinese Academy of Meteorological Sciences (CAMS) | CAMS-CSM1-0 | [39] | 1.125° × 1.121° |
Community Earth system model version 2—the whole atmosphere community climate model (CESM2-WACCM) | CESM2-WACCM | [40] | 1.25° × 0.942° |
Euro-Mediterranean Centre on Climate Change coupled climate model (CMCC-CM2) | CMCC-CM2-SR5 | [41] | 1.250° × 0.942° |
EC-Earth consortium | EC-Earth3-Veg | [42] | 0.703° × 0.701° |
Chinese Academy of Sciences (CAS) Flexible Global Ocean–Atmosphere–Land System (FGOALS-f3-L) | FGOALS-f3-L | [43] | 1.250° × 1° |
First Institute of Oceanography (FIO), China | FIO-ESM-2-0 | [44] | 1.250° × 0.942° |
Meteorological Research Institute Earth System Model (MRI-ESM), Japan | MRI-ESM2-0 | [45] | 1.125° × 1.121° |
Norwegian Earth System Model (NorESM) | NorESM2-MM | [46] | 1.250° × 0.942° |
Taiwan Earth System Model | TaiESM1 | [47] | 1.250° × 0.942° |
2.3. Methodology
2.3.1. Solar Energy Potential
2.3.2. Wind Energy Potential
3. Results
3.1. Evaluation of Downscaled and Adjusted Data
3.2. Projected Change in Climate Variables
3.3. Simulated Power
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Puig, D.; Moner-Girona, M.; Kammen, D.M.; Mulugetta, Y.; Marzouk, A.; Jarrett, M.; Hailu, Y.; Nakićenović, N. An action agenda for Africa’s electricity sector. Science 2021, 373, 616–619. [Google Scholar] [CrossRef] [PubMed]
- PwC. Africa Energy Review 2021; PwC: London, UK, 2021. [Google Scholar]
- Ritchie, H.; Roser, M.; Rosado, P. CO2 and Greenhouse Gas Emissions. Our World Data. 2020, pp. 2–6. Available online: https://ourworldindata.org/co2-and-greenhouse-gas-emissions (accessed on 11 September 2024).
- IRENA; AfDB. Renewable Energy Market Analysis: Africa and Its Regions; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates; African Development Bank: Abidjan, Côte d’Ivoire, 2022. [Google Scholar]
- Amoah, A.; Kwablah, E.; Korle, K.; Offei, D. Renewable energy consumption in Africa: The role of economic well-being and economic freedom. Energy Sustain. Soc. 2020, 10, 32. [Google Scholar] [CrossRef]
- IEA. World Energy Outlook Special Report; IEA: Paris, France, 2022. [Google Scholar] [CrossRef]
- Kondi-Akara, G.; Hingray, B.; Francois, B.; Diedhiou, A. Recent trends in urban electricity consumption for cooling in West and Central African countries. Energy 2023, 276, 127597. [Google Scholar] [CrossRef]
- Ezeh, A.; Kissling, F.; Singer, P. Why sub-Saharan Africa might exceed its projected population size by 2100. Lancet 2020, 396, 1131–1133. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar]
- IPCC. Climate Change 2021 the Physical Science Basis Summary for Policymakers Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Rim, B. Energies Renouvelables en Afrique: Enjeux, Défis et Opportunités; Policy Center for the New South: Rabat, Morocco, 2019. [Google Scholar]
- Obahoundje, S.; Diedhiou, A. Potential impacts of climate, land use and land cover changes on hydropower generation in West Africa: A review. Environ. Res. Lett. 2022, 17, 043005. [Google Scholar] [CrossRef]
- Obahoundje, S.; Diedhiou, A.; Kouassi, K.L.; Ta, M.Y.; Mortey, E.M.; Roudier, P.; Kouame, D.G.M. Analysis of hydroclimatic trends and variability and their impacts on hydropower generation in two river basins in Côte d’Ivoire (West Africa) during 1981–2017. Environ. Res. Commun. 2022, 4, 065001. [Google Scholar] [CrossRef]
- Obahoundje, S.; Diedhiou, A.; Dubus, L.; Alamou, E.A.; Amoussou, E.; Akpoti, K.; Ofosu, E.A. Modeling climate change impact on inflow and hydropower generation of Nangbeto dam in West Africa using multi-model CORDEX ensemble and ensemble machine learning. Appl. Energy 2022, 325, 119795. [Google Scholar] [CrossRef]
- Obahoundje, S.; Youan Ta, M.; Diedhiou, A.; Amoussou, E.; Kouadio, K. Sensitivity of Hydropower Generation to Changes in Climate and Land Use in the Mono Basin (West Africa) using CORDEX Dataset and WEAP Model. Environ. Process. 2021, 8, 1073–1097. [Google Scholar] [CrossRef]
- Obahoundje, S.; Amoussou, E.; Youan Ta, M.; Kouassi, L.K.; Diedhiou, A. Multiyear rainfall variability in the Mono river basin and its impacts on Nangbeto hydropower scheme. Proc. Int. Assoc. Hydrol. Sci. 2021, 384, 343–347. [Google Scholar] [CrossRef]
- Diedhiou, A.D.; Bichet, A.; Wartenburger, R.; I Seneviratne, S.; Rowell, D.P.; Sylla, M.B.; Diallo, I.; Todzo, S.; E Touré, N.; Camara, M.; et al. Changes in climate extremes over West and Central Africa at 1.5 °C and 2 °C global warming. Environ. Res. Lett. 2018, 13, 065020. [Google Scholar] [CrossRef]
- Obahoundje, S.; Hermann, V.; Bi, N.; Diedhiou, A.; Kravitz, B.; Moore, J.C. Influence of stratospheric aerosol geoengineering on temperature mean and precipitation extremes indices in Africa. Int. J. Clim. Chang. Strateg. Manag. 2022, 14, 399–423. [Google Scholar] [CrossRef]
- Obahoundje, S.; Nguessan-Bi, V.H.; Diedhiou, A.; Kravitz, B.; Moore, J.C. Implication of stratospheric aerosol geoengineering on compound precipitation and temperature extremes in Africa. Sci. Total. Environ. 2023, 863, 160806. [Google Scholar] [CrossRef] [PubMed]
- Sawadogo, W.; Abiodun, B.J.; Okogbue, E.C. Impacts of global warming on photovoltaic power generation over West Africa. Renew. Energy 2020, 151, 263–277. [Google Scholar] [CrossRef]
- Lüdecke, H.J.; Müller-Plath, G.; Wallace, M.G.; Lüning, S. Decadal and multidecadal natural variability of African rainfall. J. Hydrol. Reg. Stud. 2021, 34, 100795. [Google Scholar] [CrossRef]
- Lüdecke, H.J.; Müller-Plath, G.; Lüning, S. Central-European sunshine hours, relationship with the Atlantic Multidecadal Oscillation, and forecast. Sci. Rep. 2024, 14, 25152. [Google Scholar] [CrossRef]
- Sawadogo, W.; Reboita, M.S.; Faye, A.; da Rocha, R.P.; Odoulami, R.C.; Olusegun, C.F.; Adeniyi, M.O.; Abiodun, B.J.; Sylla, M.B.; Diallo, I.; et al. Current and future potential of solar and wind energy over Africa using the RegCM4 CORDEX-CORE ensemble. Clim. Dyn. 2021, 57, 1647–1672. [Google Scholar] [CrossRef]
- Bichet, A.; Hingray, B.; Evin, G.; Diedhiou, A.; Kebe, C.M.F.; Anquetin, S. Potential impact of climate change on solar resource in Africa for photovoltaic energy: Analyses from CORDEX-Africa climate experiments. Environ. Res. Lett. 2019, 14, 124039. [Google Scholar] [CrossRef]
- Dutta, R.; Chanda, K.; Maity, R. Future of solar energy potential in a changing climate across the world: A CMIP6 multi-model ensemble analysis. Renew. Energy 2022, 188, 819–829. [Google Scholar] [CrossRef]
- Danso, D.K.; Anquetin, S.; Diedhiou, A.; Lavaysse, C.; Hingray, B.; Raynaud, D.; Kobea, A.T. A CMIP6 assessment of the potential climate change impacts on solar photovoltaic energy and its atmospheric drivers in West Africa. Environ. Res. Lett. 2022, 17, 044016. [Google Scholar] [CrossRef]
- Mentis, D.; Hermann, S.; Howells, M.; Welsch, M.; Siyal, S.H. Assessing the technical wind energy potential in africa a GIS-based approach. Renew. Energy 2015, 83, 110–125. [Google Scholar] [CrossRef]
- Sawadogo, W.; Abiodun, B.J.; Okogbue, E.C. Projected changes in wind energy potential over West Africa under the global warming of 1.5 °C and above. Theor. Appl. Climatol. 2019, 138, 321–333. [Google Scholar] [CrossRef]
- Wang, C.; Soden, B.J.; Yang, W.; Vecchi, G.A. Compensation Between Cloud Feedback and Aerosol-Cloud Interaction in CMIP6 Models. Geophys. Res. Lett. 2021, 48, e2020GL091024. [Google Scholar] [CrossRef]
- Forster, P.M.; Maycock, A.C.; McKenna, C.M.; Smith, C.J. Latest climate models confirm need for urgent mitigation. Nat. Clim. Chang. 2020, 10, 7–10. [Google Scholar] [CrossRef]
- Scafetta, N. CMIP6 GCM ensemble members versus global surface temperatures. Clim. Dyn. 2022, 60, 3091–3120. [Google Scholar] [CrossRef]
- Voosen, P.U.N. Climate panel confronts implausibly hot forecasts of future warming. Science 2021, 373, 474–475. [Google Scholar] [CrossRef]
- Mülmenstädt, J.; Salzmann, M.; Kay, J.E.; Zelinka, M.D.; Ma, P.-L.; Nam, C.; Kretzschmar, J.; Hörnig, S.; Quaas, J. An underestimated negative cloud feedback from cloud lifetime changes. Nat. Clim. Chang. 2021, 11, 508–513. [Google Scholar] [CrossRef]
- Scafetta, N. CMIP6 GCM Validation Based on ECS and TCR Ranking for 21st Century Temperature Projections and Risk Assessment. Atmosphere 2023, 14, 345. [Google Scholar] [CrossRef]
- Michelangeli, P.A.; Vrac, M.; Loukos, H. Probabilistic downscaling approaches: Application to wind cumulative distribution functions. Geophys. Res. Lett. 2009, 36, 2–7. [Google Scholar] [CrossRef]
- Famien, A.M.; Janicot, S.; Ochou, A.D.; Vrac, M.; Defrance, D.; Sultan, B.; Noël, T. A bias-corrected CMIP5 dataset for Africa using the CDF-t method—A contribution to agricultural impact studies. Earth Syst. Dyn. 2018, 9, 313–338. [Google Scholar] [CrossRef]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Semmler, T.; Danilov, S.; Gierz, P.; Goessling, H.F.; Hegewald, J.; Hinrichs, C.; Koldunov, N.; Khosravi, N.; Mu, L.; Rackow, T.; et al. Simulations for CMIP6 with the AWI Climate Model AWI-CM-1-1. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002009. [Google Scholar] [CrossRef]
- Rong, X. CAMS CAMS-CSM1.0 Model Output Prepared for CMIP6 ScenarioMIP. Version YYYYMMDD.Earth System Grid Federation. 2019. Available online: https://www.wdc-climate.de/ui/cmip6?input=CMIP6.ScenarioMIP.CAMS.CAMS-CSM1-0 (accessed on 11 September 2024). [CrossRef]
- Liu, S.-M.; Chen, Y.-H.; Rao, J.; Cao, C.; Li, S.-Y.; Ma, M.-H.; Wang, Y.-B. Parallel comparison of major sudden stratospheric warming events in CESM1-WACCM and CESM2-WACCM. Atmosphere 2019, 10, 679. [Google Scholar] [CrossRef]
- Lovato, T.; Peano, D.; Butenschön, M.; Materia, S.; Iovino, D.; Scoccimarro, E.; Fogli, P.G.; Cherchi, A.; Bellucci, A.; Gualdi, S.; et al. CMIP6 Simulations with the CMCC Earth System Model (CMCC-ESM2). J. Adv. Model. Earth Syst. 2022, 14, e2021MS002814. [Google Scholar] [CrossRef]
- Döscher, R.; Acosta, M.; Alessandri, A.; Anthoni, P.; Arsouze, T.; Bergmann, T.; Bernardello, R.; Boussetta, S.; Caron, L.-P.; Carver, G.; et al. The EC-Earth3 Earth System Model for the Climate Model Intercomparison Project 6. Geosci. Model Dev. Discuss. 2022, 15, 2973–3020. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, Y.; Lin, P.; Liu, H.; He, B.; Bao, Q.; Zhao, S.; Wang, X. Overview of the CMIP6 Historical Experiment Datasets with the Climate System Model CAS FGOALS-f3-L. Adv. Atmos. Sci. 2020, 37, 1057–1066. [Google Scholar] [CrossRef]
- Song, Z.; Qiao, F.; Bao, Y.; Shu, Q.; Song, Y.; Yang, X. FIO-QLNM FIO-ESM2.0 model output prepared for CMIP6 CMIP historical. Version YYYYMMDD. Earth Syst. Grid. Fed. 2019, 6, 4–7. [Google Scholar] [CrossRef]
- Yukimoto, S.; Kawai, H.; Koshiro, T.; Oshima, N.; Yoshida, K.; Urakawa, S.; Tsujino, H.; Deushi, M.; Tanaka, T.; Hosaka, M.; et al. The meteorological research institute Earth system model version 2.0, MRI-ESM2.0: Description and basic evaluation of the physical component. J. Meteorol. Soc. 2019, 97, 931–965. [Google Scholar] [CrossRef]
- Seland, Ø.; Bentsen, M.; Olivié, D.; Toniazzo, T.; Gjermundsen, A.; Graff, L.S.; Debernard, J.B.; Gupta, A.K.; He, Y.-C.; Kirkevåg, A.; et al. Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci. Model Dev. 2020, 13, 6165–6200. [Google Scholar] [CrossRef]
- Lee, W.-L.; Liang, H.-C. AS-RCEC TaiESM1.0 model output prepared for CMIP6 CMIP 1pctCO2. Earth Syst. Grid. Fed. 2020, 6, 4–7. [Google Scholar] [CrossRef]
- Jerez, S.; Tobin, I.; Vautard, R.; Montávez, J.P.; López-Romero, J.M.; Thais, F.; Bartok, B.; Christensen, O.B.; Colette, A.; Déqué, M.; et al. The impact of climate change on photovoltaic power generation in Europe. Nat. Commun. 2015, 6, 10014. [Google Scholar] [CrossRef]
- Gualtieri, G.; Secci, S. Methods to extrapolate wind resource to the turbine hub height based on power law: A 1-h wind speed vs. Weibull distribution extrapolation comparison. Renew. Energy 2012, 43, 183–200. [Google Scholar] [CrossRef]
- Dubus, L.; Saint-Drenan, Y.-M.; Troccoli, A.; De Felice, M.; Moreau, Y.; Ho-Tran, L.; Goodess, C.; Amaro e Silva, R.; Sanger, L. C3S Energy: A climate service for the provision of power supply and demand indicators for Europe based on the ERA5 reanalysis and ENTSO-E data. Meteorol. Appl. 2023, 30, e2145. [Google Scholar] [CrossRef]
- Ivanov, M.A.; Luterbacher, J.; Kotlarski, S. Climate model biases and modification of the climate change signal by intensity-dependent bias correction. J. Clim. 2018, 31, 6591–6610. [Google Scholar] [CrossRef]
- Vaittinada Ayar, P.; Vrac, M.; Mailhot, A. Ensemble bias correction of climate simulations: Preserving internal variability. Sci. Rep. 2021, 11, 3098. [Google Scholar] [CrossRef]
- Akinsanola, A.A.; Ogunjobi, K.O.; Abolude, A.T.; Salack, S. Projected changes in wind speed and wind energy potential over West Africa in CMIP6 models. Environ. Res. Lett. 2021, 16, 044033. [Google Scholar] [CrossRef]
- Bandoc, G.; Prăvălie, R.; Patriche, C.; Degeratu, M. Spatial assessment of wind power potential at global scale. A geographical approach. J. Clean. Prod. 2018, 200, 1065–1086. [Google Scholar] [CrossRef]
- Fant, C. WIDER Working Paper 2016/125 Wind Turbine and Photovoltaic Generating Efficiency in Africa; United Nations University: Tokyo, Japan; World Institute for Development Economics Research: Helsinki, Finland, 2016. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obahoundje, S.; Diedhiou, A.; Troccoli, A.; Boorman, P.; Alabi, T.A.F.; Anquetin, S.; Crochemore, L.; Fassinou, W.F.; Hingray, B.; Koné, D.; et al. Teal-WCA: A Climate Services Platform for Planning Solar Photovoltaic and Wind Energy Resources in West and Central Africa in the Context of Climate Change. Data 2024, 9, 148. https://doi.org/10.3390/data9120148
Obahoundje S, Diedhiou A, Troccoli A, Boorman P, Alabi TAF, Anquetin S, Crochemore L, Fassinou WF, Hingray B, Koné D, et al. Teal-WCA: A Climate Services Platform for Planning Solar Photovoltaic and Wind Energy Resources in West and Central Africa in the Context of Climate Change. Data. 2024; 9(12):148. https://doi.org/10.3390/data9120148
Chicago/Turabian StyleObahoundje, Salomon, Arona Diedhiou, Alberto Troccoli, Penny Boorman, Taofic Abdel Fabrice Alabi, Sandrine Anquetin, Louise Crochemore, Wanignon Ferdinand Fassinou, Benoit Hingray, Daouda Koné, and et al. 2024. "Teal-WCA: A Climate Services Platform for Planning Solar Photovoltaic and Wind Energy Resources in West and Central Africa in the Context of Climate Change" Data 9, no. 12: 148. https://doi.org/10.3390/data9120148
APA StyleObahoundje, S., Diedhiou, A., Troccoli, A., Boorman, P., Alabi, T. A. F., Anquetin, S., Crochemore, L., Fassinou, W. F., Hingray, B., Koné, D., Mamadou, C., & Sorho, F. (2024). Teal-WCA: A Climate Services Platform for Planning Solar Photovoltaic and Wind Energy Resources in West and Central Africa in the Context of Climate Change. Data, 9(12), 148. https://doi.org/10.3390/data9120148