Exploring the Potential of Rice, Tiger Nut and Carob for the Development of Fermented Beverages in Spain: A Comprehensive Review on the Production Methodologies Worldwide
Abstract
:1. Introduction
2. Literature Search
3. Vegetable Beverages from Carob, Tiger Nut and Rice
3.1. Carob Beverages
3.2. Tiger Nut Beverages
3.3. Rice Beverages
4. Future Trends and Needs for Carob, Tiger Nut and Rice Beverages in Spain
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sustainable Development Goals—Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/sustainable-development-goals/en/ (accessed on 3 February 2023).
- Zhu, P.; Burney, J.; Chang, J.; Jin, Z.; Mueller, N.D.; Xin, Q.; Xu, J.; Yu, L.; Makowski, D.; Ciais, P. Warming reduces global agricultural production by decreasing cropping frequency and yields. Nat. Clim. Chang. 2022, 12, 1016–1023. [Google Scholar] [CrossRef]
- Proyecto de Ley de Cambio Climático y Transición Energética. Available online: https://www.lamoncloa.gob.es/consejodeministros/Paginas/enlaces/190520-enlace-clima.aspx (accessed on 3 February 2023).
- Climate Change—Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/climate-change/en/ (accessed on 27 March 2023).
- Isah, S.; Ozbay, G. Valorization of food loss and wastes: Feedstocks for biofuels and valuable chemicals. Front. Sustain. Food Syst. 2020, 4, 82. [Google Scholar] [CrossRef]
- Martirosyan, D.; Kanya, H.; Nadalet, C. Can functional foods reduce the risk of disease? Advancement of functional food definition and steps to create functional food products. Funct. Foods Health Dis. 2021, 11, 213–221. [Google Scholar] [CrossRef]
- Functional Foods Definition and Products, FFC Certification—Danik Martirosyan. Available online: https://www.functionalfoodscenter.net/ (accessed on 22 February 2023).
- Functional Food and Beverage Market Size—Global Report, 2028. Available online: https://www.fortunebusinessinsights.com/functional-foods-market-102269 (accessed on 3 February 2023).
- Kombucha Market Size, Share & Growth—Analysis (2020–2027). Available online: https://www.fortunebusinessinsights.com/industry-reports/kombucha-market-100230 (accessed on 3 February 2023).
- Verni, M.; Demarinis, C.; Rizzello, C.G.; Baruzzi, F. Design and characterization of a novel fermented beverage from lentil grains. Foods 2020, 9, 893. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, M.; Singh, D.; Aseri, G.K.; Sohal, J.S.; Vij, S.; Sharma, D. Role of lacto-fermentation in reduction of antinutrients in plant-based foods. J. Appl. Biol. Biotech. 2021, 9, 7–16. [Google Scholar] [CrossRef]
- Durazzo, A.; Carocho, M.; Heleno, S.A.; Pedrosa, M.C.; Ueda, J.M.; Barros, L.; Souto, E.B.; Santini, A.; Lucarini, M. Fermented food/beverage and health: Current perspectives. Rend. Fis. Acc. Lincei 2022, 33, 729–738. [Google Scholar] [CrossRef]
- Lian, J. Health benefit of plant-base fermented food and beverage on type 2 diabetes mellitus. Highlights Sci. Eng. Technol. 2022, 11, 229–238. [Google Scholar] [CrossRef]
- Aparicio-García, N.; Martínez-Villaluenga, C.; Frias, J.; Crespo Perez, L.; Fernández, C.F.; Alba, C.; Rodríguez, J.M.; Peñas, E. A novel sprouted oat fermented beverage: Evaluation of safety and health benefits for celiac individuals. Nutrients 2021, 13, 2522. [Google Scholar] [CrossRef]
- Giromini, C.; Givens, D.I. Benefits and risks associated with meat consumption during key life processes and in relation to the risk of chronic diseases. Foods 2022, 11, 2063. [Google Scholar] [CrossRef]
- Varraso, R.; Dumas, O.; Boggs, K.M.; Willett, W.C.; Speizer, F.E.; Camargo, C.A. Processed meat intake and risk of chronic obstructive pulmonary disease among middle-aged women. eClinicalMedicine 2019, 14, 88–95. [Google Scholar] [CrossRef] [Green Version]
- de Castro, A.; Sánchez, A.H.; Beato, V.M.; Casado, F.J.; Montaño, A. Stability of monosodium glutamate in green table olives and pickled cucumbers as a function of packing conditions and storage time. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2014, 31, 1158–1164. [Google Scholar] [CrossRef] [PubMed]
- EFSA Reviews Safety of Glutamates Added to Food—EFSA. Available online: https://www.efsa.europa.eu/en/press/news/170712 (accessed on 24 May 2023).
- Dairy vs. Plant-Based Milk: What Are the Environmental Impacts? Available online: https://ourworldindata.org/environmental-impact-milks (accessed on 28 February 2023).
- Carlsson Kanyama, A.; Hedin, B.; Katzeff, C. Differences in environmental impact between plant-based alternatives to dairy and dairy products: A systematic literature review. Sustainability 2021, 13, 12599. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Microorganisms & Microbial-Derived Ingredients Used in Food (Partial List). Available online: https://www.fda.gov/food/generally-recognized-safe-gras/microorganisms-microbial-derived-ingredients-used-food-partial-list (accessed on 17 May 2023).
- Novel Food—EFSA. Available online: https://www.efsa.europa.eu/en/topics/topic/novel-food (accessed on 24 May 2023).
- Ali, T.; Ali, J. Factors affecting the consumers’ willingness to pay for health and wellness food products. J. Agric. Food Res. 2020, 2, 100076. [Google Scholar] [CrossRef]
- Papaefstathiou, E.; Agapiou, A.; Giannopoulos, S.; Kokkinofta, R. Nutritional characterization of carobs and traditional carob products. Food Sci. Nutr. 2018, 6, 2151–2161. [Google Scholar] [CrossRef]
- FoodData Central. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/173755/nutrients (accessed on 22 February 2023).
- Sosa-Fernández, P.A.; Velizarov, S. Performance comparison of precipitation strategies for recovering succinic acid from carob pod-based fermentation broths. Sep. Sci. Technol. 2018, 53, 2813–2825. [Google Scholar] [CrossRef]
- Azaizeh, H.; Abu Tayeh, H.N.; Schneider, R.; Venus, J. Pilot scale for production and purification of lactic acid from Ceratonia siliqua L. (carob) bagasse. Fermentation 2022, 8, 424. [Google Scholar] [CrossRef]
- Bahry, H.; Abdallah, R.; Chezeau, B.; Pons, A.; Taha, S.; Vial, C. Biohydrogen production from carob waste of the lebanese industry by dark fermentation. Biofuels 2022, 13, 219–229. [Google Scholar] [CrossRef]
- Akdeniz, E.; Yakışık, E.; Rasouli Pirouzian, H.; Akkın, S.; Turan, B.; Tipigil, E.; Toker, O.S.; Ozcan, O. Carob powder as cocoa substitute in milk and dark compound chocolate formulation. J. Food Sci. Technol. 2021, 58, 4558–4566. [Google Scholar] [CrossRef]
- Thallaj, N.; Agha, M.I.H.; Nattouf, A.H.; Khatib, C.; Karaali, A.; Moustapha, A.; Labban, L. Evaluation of antimicrobial activities and bioactive compounds of different extracts related to syrian traditional products of damask rose (Rosa damascena). Open Access Libr. 2020, 7, e6302. [Google Scholar] [CrossRef]
- Elfazazi, K.; Harrak, H.; Achchoub, M.; Benbati, M. Physicochemical criteria, bioactive compounds and sensory quality of moroccan traditional carob drink. Mater. Today Proc. 2020, 27, 3249–3253. [Google Scholar] [CrossRef]
- Said, E.M.; Emara, M.; Soliman, H.; Zaher, T.; Elbatae, H.; Abdel-Razik, A.; Tawfik, S.; Elnadry, M. Nutritional value and health implications of traditional foods and drinks consumed during ramadan: A narrative review: Dietary habits and ramadan. Prog. Nutr. 2022, 24, e2022025. [Google Scholar] [CrossRef]
- Herrera Cano, A.N.; Suárez, M.E. Ethnobiology of algarroba beer, the ancestral fermented beverage of the wichí people of the gran chaco i: A detailed recipe and a thorough analysis of the process. J. Ethn. Food 2020, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, I.F.; Cattaneo, F.; Zech, X.V.; Svavh, E.; Pérez, M.J.; Zampini, I.C.; Isla, M.I. Aloja and Añapa, two traditional beverages obtained from prosopis alba pods: Nutritional and functional characterization. Food Biosci. 2020, 35, 100546. [Google Scholar] [CrossRef]
- Castillo, R.J.A. Fermented Carob Alcoholic Drink. ES2801948A1, 4 July 2019. [Google Scholar]
- Srour, N.; Daroub, H.; Toufeili, I.; Olabi, A. Developing a carob-based milk beverage using different varieties of carob pods and two roasting treatments and assessing their effect on quality characteristics. J. Sci. Food Agric. 2016, 96, 3047–3057. [Google Scholar] [CrossRef] [PubMed]
- Chait, Y.A.; Gunenc, A.G.; Bendali, F.B.; Hosseinian, F. Functional fermented carob milk: Probiotic variability and polyphenolic profile. J. Food Bioact. 2021, 14. [Google Scholar] [CrossRef]
- M’hir, S.; Filannino, P.; Mejri, A.; Tlais, A.Z.A.; Di Cagno, R.; Ayed, L. Functional exploitation of carob, oat flour, and whey permeate as substrates for a novel kefir-like fermented beverage: An optimized formulation. Foods 2021, 10, 294. [Google Scholar] [CrossRef]
- Goulas, V.; Stylos, E.; Chatziathanasiadou, M.V.; Mavromoustakos, T.; Tzakos, A.G. Functional components of carob fruit: Linking the chemical and biological space. Int. J. Mol. Sci. 2016, 17, 1875. [Google Scholar] [CrossRef] [Green Version]
- Vilas-Boas, A.M.; Brassesco, M.E.; Quintino, A.C.; Vieira, M.C.; Brandão, T.R.S.; Silva, C.L.M.; Azevedo, M.; Pintado, M. Particle size effect of integral carob flour on bioaccessibility of bioactive compounds during simulated gastrointestinal digestion. Foods 2022, 11, 1272. [Google Scholar] [CrossRef]
- Serairi-Beji, R.; Mekki-Zouiten, L.; Tekaya-Manoubi, L.; Loueslati, M.H.; Guemira, F.; Ben Mansour, A. Can carob powder be used with oral rehydration solutions for the treatment of acute diarrhea? Med. Trop. 2000, 60, 125–128. [Google Scholar]
- Akşit, S.; Çağlayan, S.; Cukan, R.; Yaprak, I. Carob bean juice: A powerful adjunct to oral rehydration solution treatment in diarrhoea. Paediatr. Perinat. Epidemiol. 1998, 12, 176–181. [Google Scholar] [CrossRef]
- Rtibi, K.; Jabri, M.A.; Selmi, S.; Souli, A.; Sebai, H.; El-Benna, J.; Amri, M.; Marzouki, L. Gastroprotective effect of carob (Ceratonia siliqua L.) Against ethanol-induced oxidative stress in rat. BMC Complement. Med. 2015, 15, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rtibi, K.; Marzouki, K.; Salhi, A.; Sebai, H. Dietary supplementation of carob and whey modulates gut morphology, hemato-biochemical indices, and antioxidant biomarkers in rabbits. J. Med. Food 2021, 24, 1124–1133. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Lopez, C.; Manolaraki, F.; Saratsis, A.; Saratsi, K.; Stefanakis, A.; Skampardonis, V.; Voutzourakis, N.; Hoste, H.; sotiraki, s. Anthelmintic effect of carob pods and sainfoin hay when fed to lambs after experimental trickle infections with haemonchus contortus and trichostrongylus colubriformis. Parasite 2014, 21, 71. [Google Scholar] [CrossRef] [Green Version]
- Fidan, H.; Mihaylova, D.; Petkova, N.; Sapoundzhieva, T.; Slavov, A.; Krastev, L. Determination of chemical composition, antibacterial and antioxidant properties of products obtained from carob and honey locust. Turkish J. Biochem. 2019, 44, 316–322. [Google Scholar] [CrossRef]
- Tokede, O.A.; Gaziano, J.M.; Djoussé, L. Effects of cocoa products/dark chocolate on serum lipids: A meta-analysis. Eur. J. Clin. Nutr. 2011, 65, 879–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassanein, K.M.A.; Youssef, M.K.E.; Ali, H.M.; El-Manfaloty, M.M. The influence of carob powder on lipid profile and histopathology of some organs in rats. Comp. Clin. Pathol. 2015, 24, 1509–1513. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, R.; Navarro-Alarcón, M.; Rodríguez-Martínez, C.; Fonollá-Joya, J. Effects on the lipid profile in humans of a polyphenol-rich carob (Ceratonia siliqua L.) extract in a dairy matrix likeb a functional food; A pilot study. Nutr. Hosp. 2013, 28, 2107–2114. [Google Scholar] [CrossRef]
- Valero-Muñoz, M.; Martín-Fernández, B.; Ballesteros, S.; Lahera, V.; de las Heras, N. Carob pod insoluble fiber exerts anti-atherosclerotic effects in rabbits through sirtuin-1 and peroxisome proliferator-activated receptor-γ coactivator-1α. J. Nutr. 2014, 144, 1378–1384. [Google Scholar] [CrossRef] [Green Version]
- Zunft, H.J.F.; Lüder, W.; Harde, A.; Haber, B.; Graubaum, H.J.; Koebnick, C.; Grünwald, J. Carob pulp preparation rich in insoluble fibre lowers total and ldl cholesterol in hypercholesterolemic patients. Eur. J. Nutr. 2003, 42, 235–242. [Google Scholar] [CrossRef]
- Gruendel, S.; Garcia, A.L.; Otto, B.; Wagner, K.; Bidlingmaier, M.; Burget, L.; Weickert, M.O.; Dongowski, G.; Speth, M.; Katz, N.; et al. Increased acylated plasma ghrelin, but improved lipid profiles 24-h after consumption of carob pulp preparation rich in dietary fibre and polyphenols. Br. J. Nutr. 2007, 98, 1170–1177. [Google Scholar] [CrossRef] [Green Version]
- Milek Dos Santos, L.; Tomzack Tulio, L.; Fuganti Campos, L.; Ramos Dorneles, M.; Carneiro Hecke Krüger, C. Glycemic response to carob (Ceratonia siliqua L.) in healthy subjects and with the in vitro hydrolysis index. Nutr. Hosp. 2014, 31, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Custódio, L.; Fernandes, E.; Escapa, A.L.; López-Avilés, S.; Fajardo, A.; Aligué, R.; Alberício, F.; Romano, A. Antioxidant activity and in vitro inhibition of tumor cell growth by leaf extracts from the carob tree (Ceratonia siliqua). Pharm. Biol. 2009, 47, 721–728. [Google Scholar] [CrossRef]
- Ghanemi, F.Z.; Belarbi, M.; Fluckiger, A.; Nani, A.; Dumont, A.; De Rosny, C.; Aboura, I.; Khan, A.S.; Murtaza, B.; Benammar, C.; et al. Carob leaf polyphenols trigger intrinsic apoptotic pathway and induce cell cycle arrest in colon cancer cells. J. Funct. Foods 2017, 33, 112–121. [Google Scholar] [CrossRef]
- Khani, H.M.; Shariati, M.; Forouzanfar, M.; Hosseini, S.E. Protective effects of Ceratonia Siliqua extract on protamine gene expression, testicular function, and testicular histology in doxorubicin-treated adult rats: An experimental study. Int. J. Reprod. Biomed. 2020, 18, 667–682. [Google Scholar] [CrossRef] [PubMed]
- Mehraban, Z.; Gaffari Novin, M.; Golmohammadi, M.G.; Nazarian, H. Effect of Ceratonia Siliqua L. extract on DNA fragmentation of sperm in adult male mice treated with cyclophosphamide. Reprod. Sci. 2021, 28, 974–981. [Google Scholar] [CrossRef]
- Sanagoo, S.; Farshbaf-Khalili, A.; Asgharian, P.; Hazhir, S.; Oskouei, B.S. Comparison of the effect of Ceratonia Siliqua L. Fruit oral capsule and vitamin e on semen parameters in men with idiopathic infertility: A triple-blind randomized controlled clinical trial. J. Complement. Integr. Med. 2021, 18, 791–796. [Google Scholar] [CrossRef]
- Mahdiani, E.; Khadem Haghighian, H.; Javadi, M.; Karami, A.A.; Kavianpour, M. Effect of carob (Ceratonia siliqua L.) Oral supplementation on changes of semen parameters, oxidative stress, inflammatory biomarkers and reproductive hormones in infertile men. Sci. J. Kurdistan Univ. Med. Sci. 2018, 23, 56–66. [Google Scholar] [CrossRef]
- Aghajani, M.M.R.; Mahjoub, S.; Mojab, F.; Namdari, M.; Gorji, N.M.; Dashtaki, A.; Mirabi, P. Comparison of the effect of Ceratonia siliqua L. (carob) syrup and vitamin E on sperm parameters, oxidative stress index, and sex hormones in infertile men: A randomized controlled trial. Reprod. Sci. 2021, 28, 766–774. [Google Scholar] [CrossRef]
- Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; Ghissassi, F.E.; Bouvard, V.; Altieri, A.; Cogliano, V. Carcinogenicity of Alcoholic Beverages. Lancet Oncol. 2007, 8, 292–293. [Google Scholar] [CrossRef]
- Roselló-Soto, E.; Garcia, C.; Fessard, A.; Barba, F.J.; Munekata, P.E.S.; Lorenzo, J.M.; Remize, F. Nutritional and microbiological quality of tiger nut tubers (Cyperus sculentus), derived plant-based and lactic fermented beverages. Fermentation 2019, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Codina-Torrella, I.; Guamis, B.; Trujillo, A.J. Characterization and comparison of tiger nuts (Cyperus esculentus L.) from different geographical origin: Physico-chemical characteristics and protein fractionation. Ind. Crops Prod. 2015, 65, 406–414. [Google Scholar] [CrossRef]
- Base de Datos BEDCA. Available online: https://www.bedca.net/bdpub/index.php (accessed on 22 February 2023).
- Real Decreto 1338/1988, de 28 de Octubre, por el que se Aprueba la Reglamentación Técnico-Sanitaria para la Elaboración y Venta de Horchata de Chufa; Agencia Estatal Boletín Oficial del Estado: Madrid, Spain, 1988; Volume Boe-a-1988-25809, pp. 32069–32073.
- Sanful, R.E. The Use of tiger-nut (Cyperus Esculentus), cow milk and their composite as substrates for yoghurt production. Pak. J. Nutr. 2009, 8, 755–758. [Google Scholar] [CrossRef]
- Bukola, R.A.; Olusegun, V.O.; Okhonloye, A.O. Assessment of the microbial and physico-chemical composition of tigernut subjected to different fermentation. Pak. J. Nutr. 2015, 14, 742–748. [Google Scholar] [CrossRef] [Green Version]
- Madsen, S.K.; Thulesen, E.T.; Mohammadifar, M.A.; Bang-Berthelsen, C.H. Chufa drink: Potential in developing a new plant-based fermented dessert. Foods 2021, 10, 3010. [Google Scholar] [CrossRef] [PubMed]
- Martinez, G.P.; Aracil, M.C.M.; Vidagany, A.M.; Ortiz, I.M. Producto Fermentado sin Lactosa a Partir de Batido de Frutos Secos no Legumbres y/o Horchata. ES200401043, 5 April 2010. [Google Scholar]
- Wakil, S.M.; Ayenuro, O.T.; Oyinlola, K.A. Microbiological and nutritional assessment of starter-developed fermented tigernut milk. Food Sci. Nutr. 2014, 5, 495–506. [Google Scholar] [CrossRef] [Green Version]
- Kizzie-Hayford, N.; Jaros, D.; Zahn, S.; Rohm, H. Effects of protein enrichment on the microbiological, physicochemical and sensory properties of fermented tiger nut milk. LWT 2016, 74, 319–324. [Google Scholar] [CrossRef]
- Kayode, R.M.; Joseph, J.K.; Adegunwa, M.O.; Dauda, A.O.; Akeem, S.A.; Kayode, B.I.; Babayeju, A.A.; Olabanji, S.O. Effects of addition of different spices on the quality attributes of tiger-nut milk (kunun-aya) during storage. J. Microbiol. Biotechnol. Food Sci. 2017, 7, 1–6. [Google Scholar] [CrossRef]
- El-Shenawy, M.; Fouad, T.M.; Hassan, K.L.; Seelet, L.F.; El-Aziz, M.A. A probiotic beverage made from tiger-nut extract and milk permeate. Pak. J. Bio. Sci. 2019, 22, 180–187. [Google Scholar] [CrossRef] [Green Version]
- Francis, C.F.; Umeh, S.O. Mashing Studies Using Tiger Nut (Cyperus esculentus) Flour as Adjunct in Brewing. 2021. Available online: https://identifier.visnav.in/1.0001/ijacbs-21i-02001/ (accessed on 7 February 2023).
- Eke-Ejiofor, J.; Nnodim, L.C. Quality evaluation of wine produced from tiger nut (Cyperus esculentus L.) Drink. Am. J. Food Sci. Technol. 2019, 7, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Satir, G. The effects of fermentation with water kefir grains on two varieties of tigernut (Cyperus esculentus L.) Milk. LWT 2022, 171, 114164. [Google Scholar] [CrossRef]
- Nwaiwu, O.; Aduba, C.C.; Igbokwe, V.C.; Sam, C.E.; Ukwuru, M.U. Traditional and artisanal beverages in Nigeria: Microbial diversity and safety issues. Beverages 2020, 6, 53. [Google Scholar] [CrossRef]
- Yu, Y.; Lu, X.; Zhang, T.; Zhao, C.; Guan, S.; Pu, Y.; Gao, F. Tiger nut (Cyperus esculentus L.): Nutrition, processing, function and applications. Foods 2022, 11, 601. [Google Scholar] [CrossRef]
- Selma-Royo, M.; García-Mantrana, I.; Collado, M.C.; Perez-Martínez, G. Intake of natural, unprocessed tiger nuts (Cyperus esculentus L.) Drink significantly favors intestinal beneficial bacteria in a short period of time. Nutrients 2022, 14, 1709. [Google Scholar] [CrossRef] [PubMed]
- Gambo, A.; Da’u, A. Tiger nut (Cyperus esculentus): Composition, products, uses and health benefits—A review. Bayero J. Pure Appl. Sci. 2014, 7, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Olivas, E.; Asensio-Grau, A.; Calvo-Lerma, J.; García-Hernández, J.; Heredia, A.; Andrés, A. Content and bioaccessibility of bioactive compounds with potential benefits for macular health in tiger nut products. Food Biosci. 2022, 49, 101879. [Google Scholar] [CrossRef]
- Zhang, S.; Li, P.; Wei, Z.; Cheng, Y.; Liu, J.; Yang, Y.; Wang, Y.; Mu, Z. Cyperus (Cyperus esculentus L.): A review of its compositions, medical efficacy, antibacterial activity and allelopathic potentials. Plants 2022, 11, 1127. [Google Scholar] [CrossRef]
- Carcea, M. Value of wholegrain rice in a healthy human nutrition. Agriculture 2021, 11, 720. [Google Scholar] [CrossRef]
- Mishra, S.; Mithul Aravind, S.; Charpe, P.; Ajlouni, S.; Ranadheera, C.S.; Chakkaravarthi, S. Traditional rice-based fermented products: Insight into their probiotic diversity and probable health benefits. Food Biosci. 2022, 50, 102082. [Google Scholar] [CrossRef]
- Ray, M.; Ghosh, K.; Singh, S.; Chandra Mondal, K. Folk to functional: An explorative overview of rice-based fermented foods and beverages in india. J. Ethn. Food 2016, 3, 5–18. [Google Scholar] [CrossRef] [Green Version]
- McGovern, P.E.; Zhang, J.; Tang, J.; Zhang, Z.; Hall, G.R.; Moreau, R.A.; Nuñez, A.; Butrym, E.D.; Richards, M.P.; Wang, C.-S.; et al. Fermented beverages of pre- and proto-historic China. Proc. Natl. Acad. Sci. USA 2004, 101, 17593–17598. [Google Scholar] [CrossRef] [Green Version]
- Akaike, M.; Miyagawa, H.; Kimura, Y.; Terasaki, M.; Kusaba, Y.; Kitagaki, H.; Nishida, H. Chemical and bacterial components in sake and sake production process. Curr. Microbiol. 2020, 77, 632–637. [Google Scholar] [CrossRef]
- Koyanagi, T.; Nakagawa, A.; Kiyohara, M.; Matsui, H.; Tsuji, A.; Barla, F.; Take, H.; Katsuyama, Y.; Tokuda, K.; Nakamura, S.; et al. Tracing microbiota changes in yamahai-moto, the traditional japanese sake starter. Biosci. Biotechnol. Biochem. 2016, 80, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Kajiwara, Y.; Futagami, T.; Goto, M.; Takashita, H. Making traditional japanese distilled liquor, Shochu and Awamori, and the contribution of white and black koji fungi. J. Fungi 2021, 7, 517. [Google Scholar] [CrossRef]
- Kurahashi, A. Ingredients, functionality, and safety of the japanese traditional sweet drink Amazake. J. Fungi 2021, 7, 469. [Google Scholar] [CrossRef] [PubMed]
- Prakash Tamang, J.; Thapa, S. Fermentation dynamics during production of Bhaati jaanr, a traditional fermented rice beverage of the eastern himalayas. Food Biotechnol. 2006, 20, 251–261. [Google Scholar] [CrossRef]
- Jimenez, M.E.; O’Donovan, C.M.; de Ullivarri, M.F.; Cotter, P.D. Microorganisms present in artisanal fermented food from south america. Front. Microbiol. 2022, 13, 941866. [Google Scholar] [CrossRef]
- Bassi, D.; Orrù, L.; Cabanillas Vasquez, J.; Cocconcelli, P.S.; Fontana, C. Peruvian chicha: A focus on the microbial populations of this ancient maize-based fermented beverage. Microorganisms 2020, 8, 93. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-H.; Lee, W.-P.; Oh, C.-H.; Yoon, S.-S. Production of a fermented organic rice syrup with higher isomalto-oligosaccharide using Lactobacillus plantarum. Food Sci. Biotechnol. 2017, 26, 1343–1347. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, X.; Wen, A.; Qin, L. Development of probiotics beverage using cereal enzymatic hydrolysate fermented with Limosilactobacillus reuteri. Food Sci. Nutr. 2022, 10, 3143–3153. [Google Scholar] [CrossRef]
- Giri, S.S.; Sen, S.S.; Saha, S.; Sukumaran, V.; Park, S.C. Use of a potential probiotic, Lactobacillus plantarum l7, for the preparation of a rice-based fermented beverage. Front. Microbiol. 2018, 9, 473. [Google Scholar] [CrossRef]
- Kittibunchakul, S.; Yuthaworawit, N.; Whanmek, K.; Suttisansanee, U.; Santivarangkna, C. Health beneficial properties of a novel plant-based probiotic drink produced by fermentation of brown rice milk with gaba-producing Lactobacillus pentosus isolated from thai pickled weed. J. Funct. Foods 2021, 86, 104710. [Google Scholar] [CrossRef]
- Manus, J.; Millette, M.; Dridi, C.; Salmieri, S.; Aguilar Uscanga, B.R.; Lacroix, M. Protein quality of a probiotic beverage enriched with pea and rice protein. J. Food Sci. 2021, 86, 3698–3706. [Google Scholar] [CrossRef] [PubMed]
- Allahdad, Z.; Manus, J.; Aguilar-Uscanga, B.R.; Salmieri, S.; Millette, M.; Lacroix, M. Physico-chemical properties and sensorial appreciation of a new fermented probiotic beverage enriched with pea and rice proteins. Plant Foods Hum. Nutr. 2022, 77, 112–120. [Google Scholar] [CrossRef]
- Nascimento, M.G.; de SOUZA, H.M.; Delani, T.C.O.; Crozatti, T.T.D.S.; Marcolino, V.A.; Ruiz, S.P.; Sampaio, A.R.; Miyoshi, J.H.; Matioli, G. Fermented beverage obtained from soy and rice incorporated with inulin and oligosaccharides derived from succinoglycan. Food Sci. Technol. 2022, 42, e22922. [Google Scholar] [CrossRef]
- Zou, J.; Hu, Y.; Li, K.; Liu, Y.; Li, M.; Pan, X.; Chang, X. Chestnuts in fermented rice beverages increase metabolite diversity and antioxidant activity while reducing cellular oxidative damage. Foods 2023, 12, 164. [Google Scholar] [CrossRef] [PubMed]
- Magala, M.; Kohajdová, Z.; Karovičová, J.; Greifová, M.; Hojerová, J. Application of lactic acid bacteria for production of fermented beverages based on rice flour. Czech J. Food Sci. 2015, 33, 458–463. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, H. Koji starter and koji world in japan. J. Fungi 2021, 7, 569. [Google Scholar] [CrossRef]
- Kishimoto, R.; Ueda, M.; Kawakami, M.; Goda, K.; Park, S.S.; Nakata, Y. Effect of chronic administration of alcoholic beverages and seasoning containing alcohol on hepatic ethanol metabolism in mice. J. Nutr. Sci. Vitaminol. 1997, 43, 613–626. [Google Scholar] [CrossRef] [Green Version]
- Futagami, T. The white koji fungus aspergillus luchuensis mut. Kawachii. Biosci. Biotechnol. Biochem. 2022, 86, 574–584. [Google Scholar] [CrossRef]
- Kurahashi, A.; Enomoto, T.; Oguro, Y.; Kojima-Nakamura, A.; Kodaira, K.; Watanabe, K.; Ozaki, N.; Goto, H.; Hirayama, M. Intake of koji Amazake improves defecation frequency in healthy adults. J. Fungi 2021, 7, 782. [Google Scholar] [CrossRef]
- Nagao, Y.; Takahashi, H.; Kawaguchi, A.; Kitagaki, H. Effect of fermented rice drink “Amazake” on patients with nonalcoholic fatty liver disease and periodontal disease: A pilot study. Reports 2021, 4, 36. [Google Scholar] [CrossRef]
- Kageyama, S.; Inoue, R.; Hosomi, K.; Park, J.; Yumioka, H.; Suka, T.; Kurohashi, Y.; Teramoto, K.; Syauki, A.Y.; Doi, M.; et al. Effects of malted rice amazake on constipation symptoms and gut microbiota in children and adults with severe motor and intellectual disabilities: A pilot study. Nutrients 2021, 13, 4466. [Google Scholar] [CrossRef] [PubMed]
- Akamine, Y.; Millman, J.F.; Uema, T.; Okamoto, S.; Yonamine, M.; Uehara, M.; Kozuka, C.; Kaname, T.; Shimabukuro, M.; Kinjo, K.; et al. Fermented brown rice beverage distinctively modulates the gut microbiota in Okinawans with metabolic syndrome: A randomized controlled trial. Nutr. Res. 2022, 103, 68–81. [Google Scholar] [CrossRef] [PubMed]
- Malagón, J. Cultivo del Algarrobo. Formación y Trasferencia. Ficha Técnica. 2020. Conselleria de Agricultura Desarrollo Rural Emergencia Climática Y Transición Ecológica Contacto. Edited by Roca, D. Available online: https://agroambient.gva.es/documents/163228750/173203657/CULTIVO+del+ALGARROBO..Ficha+T%C3%A9cnica..pdf/998914b1-869e-44df-9b92-c4af2821cd97 (accessed on 28 February 2023).
- Consejo Regulador D.O. Chufa de Valencia. Chufa de Valencia—Cultivo. Available online: http://www.chufadevalencia.org/ver/14/Cultivo.html (accessed on 28 February 2023).
- Arroz. Available online: https://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/cultivos-herbaceos/arroz/ (accessed on 28 February 2023).
- Wang, D.D.; Li, Y.; Afshin, A.; Springmann, M.; Mozaffarian, D.; Stampfer, M.J.; Hu, F.B.; Murray, C.J.L.; Willett, W.C. Global improvement in dietary quality could lead to substantial reduction in premature death. J. Nutr. 2019, 149, 1065–1074. [Google Scholar] [CrossRef] [Green Version]
- do Valle, I.F.; Roweth, H.G.; Malloy, M.W.; Moco, S.; Barron, D.; Battinelli, E.; Loscalzo, J.; Barabási, A.-L. Network medicine framework shows that proximity of polyphenol targets and disease proteins predicts therapeutic effects of polyphenols. Nat. Food 2021, 2, 143–155. [Google Scholar] [CrossRef]
- Tresserra-Rimbau, A.; Rimm, E.B.; Medina-Remón, A.; Martínez-González, M.A.; López-Sabater, M.C.; Covas, M.I.; Corella, D.; Salas-Salvadó, J.; Gómez-Gracia, E.; Lapetra, J.; et al. Polyphenol intake and mortality risk: A re-analysis of the PREDIMED Trial. BMC Med. 2014, 12, 77. [Google Scholar] [CrossRef] [Green Version]
- Fuloria, S.; Mehta, J.; Talukdar, M.P.; Sekar, M.; Gan, S.H.; Subramaniyan, V.; Rani, N.N.I.M.; Begum, M.Y.; Chidambaram, K.; Nordin, R. Synbiotic Effects of Fermented Rice on Human Health and Wellness: A natural beverage that boosts immunity. Front. Microbiol. 2022, 13, 950913. [Google Scholar] [CrossRef]
- Battistini, C.; Gullón, B.; Ichimura, E.S.; Gomes, A.M.P.; Ribeiro, E.P.; Kunigk, L.; Moreira, J.U.V.; Jurkiewicz, C. Development and characterization of an innovative synbiotic fermented beverage based on vegetable soybean. Braz. J. Microbiol. 2018, 49, 303–309. [Google Scholar] [CrossRef]
- Salmerón, I. Fermented Cereal Beverages: From probiotic, prebiotic and synbiotic towards nanoscience designed healthy drinks. Lett. Appl. Microbiol. 2017, 65, 114–124. [Google Scholar] [CrossRef] [Green Version]
- Ramli, A.N.M.; Hong, P.K.; Abdul Manas, N.H.; Wan Azelee, N.I. Chapter 25—An overview of enzyme technology used in food industry. In Value-Addition in Food Products and Processing through Enzyme Technology; Kuddus, M., Aguilar, C.N., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 333–345. ISBN 978-0-323-89929-1. [Google Scholar]
Energy | 220 kcal |
Carbohydrates | 89 g |
Lipids | 3 g |
Proteins | 4.7 g |
Fiber | 40 g |
Calcium | 380 mg |
Iron | 2.4 mg |
Potassium | 820 mg |
Choline | 11 mg |
Name | Origin | Composition | Microorganism | Production Method | References |
---|---|---|---|---|---|
Jallab | Syria/Palestine/Lebanon | Carob, dates, grape molasses, rose water. | Not present, unfermented | Bring a mixture of the ingredients to a boil, filter and drink with ice. | [30] |
Khar-rub | Morocco | Carob and water. | Not present, unfermented | Chopping the pulp, immersion in water at 80 °C with stirring for 45 min. Filtration and cooling. | [31,32] |
Aloja (carob beer) | Argentina/Chile | Water, carob pods, sugar (optional). | Spontaneous fermentation (LAB and Saccharomyces cerevisiae) | The pods are crushed with a pestle and left to soak in the dark for more than 48 h. | [33,34] |
Fermented carob-based alcoholic drink | Laboratory | Water, carob, sugar, enofer (potassium bisulfite meta, biphasic ammonium phosphate, ammonium sulfate) and levital®. | S. cerevisiae | Mix sugar with water. Add yeast to ferment the first broth, and add chopped carob and additives. Fermentation. | [35] |
Carob-based dairy drink | Laboratory | Water, free fat milk powder, carob powder 4% (unroasted or roasted), no caloric sweeteners, soy lecithin, vanilla extract, carrageenan gum. | Not present, unfermented | Toast the pods for 60 min at 150 °C and crush. Mix the ingredients and bring to 75 °C for two minutes. Filter the mixture and store at 4 °C. | [36] |
Fermented carob-based milk drink | Laboratory | Water, carob powder, powdered milk and cultures. | Lactococcus lactis | Add 4% (w/v) of carob powder to a reconstituted skimmed milk drink inoculated with Lactobacillus and incubate at 30 °C for 16 h. | [37] |
Carob-based kefir-like beverage with whey permeate and oat flour | Laboratory | Carob pods. Kefir grains, whey permeate and oat flour. | Not present, unfermented | Bring a mixture of the ingredients to a boil, filter and drink with ice. | [38] |
Energy | 409 kcal |
Carbohydrates | 42.5 g |
Lipids | 23.7 g |
Proteins | 6.1 g |
Fiber | 17.4 g |
Calcium | 69.5 mg |
Iron | 3.4 mg |
Potassium | 519.2 mg |
Zinc | 4.19 mg |
Name | Origin | Composition | Microorganism | Production Method | References |
---|---|---|---|---|---|
Lactose-free fermented product from horchata | Spain | UHT tiger nut drink and various bacterial inoculum. | S. thermophilus BS5b and L. acidophilus BL228 | Inoculate the culture in milk and ferment for 3 h and 45 min. | [69] |
Fermented tiger nut drink milk | Nigeria | Tiger nut drink + inoculums isolated from tiger nuts. | S. cerevisiae and Candida kefyr, L. plantarum, Lactococcus lactis, L. brevis, Lactococcus cremoris, L. bulgaricus and Lactococcus thermophilus | Preparation of tiger nut milk, pasteurization at 90 °C for 15 min, fermentation at 45 °C for 18 h. | [70] |
Fermented tiger nut beverage with different proteins | Germany | Tiger nuts, whey protein, sodium caseinate, goma xantana and tiger nut protein. | L. delbrueckii ssp. bulgaricus and S. thermophilus | Wash tiger nuts, grind, separation of the porridge by rotary evaporator, addition of 1/10 in water, add 0.1 g of xanthan gum and between 1–3 g of protein. Add 0.1 g of starter culture and let ferment for 16.5 h at 38 °C. | [71] |
Kunun-Aya | Nigeria | Tiger nuts, palm date, coconut water and spices. | Without fermentation or spontaneous fermentation | Washing of the tiger nuts, soaking for more than 5 h, crushed together with the other ingredients and filtering through meshes. | [72] |
Milk drink with tiger nuts | Pakistan | Milk permeate (60%), tiger nut drink (30%), sugar (5%). | L. plantarum, L. acidophilus; L. brevis | Mixing of ingredients heating to 90 °C for 5 min and then cooled to 40 °C. | [73] |
Tiger nut beer | Nigeria | Tiger nuts, barley, water, commercial enzyme and yeast. | S. cerevisiae | Tiger nut flour, heat to 70 °C to get gelling, add enzymes to convert starch into sugars, add barley, water and yeast. | [74] |
Tiger nut wine | Nigeria | Tiger nut drink, zobo flower, sugar, yeast extract, ammonium phosphate and potassium phosphate. | S. cerevisiae | Mix of ingredients and alcoholic fermentation for 7 days. | [75] |
Tiger nut kefir | Turkey | Yellow or brown tiger nut drink together with kefir granules. | Lactobacillus paracasei, L. casei, L. hilgardii, L. nagelii and S. cerevisiae | Inoculation of 2% kefir grains in tiger nut drink and fermentation until pH 4.6 and cooling to 4 °C. | [76] |
Energy | 387 kcal |
Carbohydrates | 86.0 g |
Lipids | 0.9 g |
Proteins | 7.0 g |
Fiber | 0.2 g |
Folate | 20.0 µg |
Niacine | 3.1 mg |
Calcium | 10.0 mg |
Potassium | 110.0 mg |
Name | Origin | Composition | Microorganism | Production Method | References |
---|---|---|---|---|---|
Sake and Mirin | Japan | Rice, water, koji, yeast and water. | Commercial: Aspergillus oryzae and S. cerevisiae Artisanal: Lactobacillus spp., Acinetobacter spp., Staphylococcus spp., Bacillus spp. and Planococcaceae spp. | Clean, cook the rice, let it ferment with the koji fungus for 24–48 h and add a solution of water and yeast. Ferment for at least 5 days. | [87,88] |
Shochu | Japan | Rice or other cereals, white koji and yeast. | Aspergillus luchuensis and S. cerevisiae | Similar to sake but adding a distillation stage at the end of the process. | [89] |
Amazake | Japan | Rice, water and koji. | A. oryzae | Cook the rice, allow to cool until reaching 50 °C, add rice/koji and leave to ferment for at least one day. | [90] |
Rice beer/Bhaati jaanr/Makegeolli | Korea/India and other Asian countries | Rice, water, a variety of plants and artisanal inoculum. | Different inoculum and fermentation methods, Lactobacillus and Bifidobacterium most present together with S. cerevisiae | Mix the rice with the plants, water and inoculum and leave to ferment for a minimum of a week. | [85,91] |
Chicha | Various countries in South America | Corn or rice, water and inoculum or spontaneous fermentation. | Many varieties of phyla (Formicute, Proteobacteria, Bacteroides and Actinobacteria) | Soak and cook the corn or rice to obtain a thick mixture. Then leave it to ferment and decant. | [92,93] |
Isomalto-oligosaccharide (IMO) Organic Rice Syrup Fermentation. | Laboratory | Organic rice, distilled water, blending enzyme (BAN), saccharifying enzyme (FUNGAMYL, PROMOZYME), transglucosidase and reconstituted skimmed milk. | L. plantarum KCCM 12116 L. casei KCCM 12452 L. acidophilus KCCM 32820 L. fermentum KCCM 35269 L. rhamnosus KCCM 3241 | Suspend organic rice in distilled water, heat raw rice to 95 °C for 40 min, inject liquefying enzyme at 0.02%, and inject saccharifying enzymes at 0.05% and 0.01%. Ferment with five starter strains. | [94] |
Probiotic beverage using cereal enzymatic hydrolysate | Laboratory | Rice, water, 0.05% α-amylase, 0.05% amyloglucosidase and probiotic culture. | Limosilactobacillus reuteri | The cereals were soaked for 10 h, milled, gelatinized, added enzymes, filtered, evaporated, and cooled. Finally, it was inoculated. | [95] |
Fermented rice beverage | Laboratory | Rice, water, and microorganisms. | L. plantarum L7 | 100 g of boiled rice was inoculated with L7 strain and incubated for 6 days. Samples stored at −20 °C. | [96] |
Probiotic beverage of whole rice | Laboratory | Whole rice, water lipase, alpha-glucosidase, alpha-amylase, yeast extract, isolated soy protein, pyridoxine hydrochloride and inoculum. | GABA-producing lactic acid bacteria (L. pentosus) | Brown rice is milled into fine flour, mixed with water in a 1:3 ratio, digested with heat-stable α-amylase and glucoamylase, filtered through a sterilized muslin cloth, and inoculated with probiotics. | [97] |
Probiotic beverage enriched with pea and rice protein | Laboratory | Inoculum, organic pea protein concentrate, organic brown rice protein, and water. | L. acidophilus CL1285, L. casei LBC80R, L. rhamnosus CLR2 | Preparation of protein drink, 50/50 mix, pasteurization, reduction, inoculation of probiotic bacteria, packaging, incubation. | [98,99] |
Fermented beverage obtained from soy and rice incorporated with succinoglycan | Laboratory | Nontransgenic bulk soybean, sugar, polished rice, inulin, succinoglycan, lactic culture, viscozyme and commercial enzyme. | Streptococcus thermophillus, L. delbrueckii ssp. bulgaricus and L. paracasei | Mix soybean and rice (70:30), process, filter and cool the product, add lactic culture, homogenize, distribute in containers, add sucrose and succinoglycan, homogenize, pasteurize, cool, add culture, incubate and store. | [100] |
Fermented rice beverage with chestnuts | Laboratory | Glutinous rice, Chinese chestnuts, fungus, and three strains of lactic acid bacteria. | Rhizopus oryzae Pediococcus pentosaceus (DH16, DH20 and DH24) | Glutinous rice is washed and soaked, boiled. Add yeast and lactic acid bacteria. Ferment, add water, homogenize and bottle. Sterilize and add chopped chestnuts to the sticky rice before cooking. | [101] |
Production of fermented beverages based on rice flour | Laboratory | Powdered rice (12% by weight), water, red grape must (10% by volume) and starter culture. | L. plantarum CCM 7039, L. brevis CCM 1815, L. fermentum CCM 7192, Bifidobacterium longum CCM 4990 | Mix rice flour with water and red grape must, homogenize and cool. Then the starter strain was added and fermented at 30 °C for 24 h. | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitali, M.; Gandía, M.; Garcia-Llatas, G.; Tamayo-Ramos, J.A.; Cilla, A.; Gamero, A. Exploring the Potential of Rice, Tiger Nut and Carob for the Development of Fermented Beverages in Spain: A Comprehensive Review on the Production Methodologies Worldwide. Beverages 2023, 9, 47. https://doi.org/10.3390/beverages9020047
Vitali M, Gandía M, Garcia-Llatas G, Tamayo-Ramos JA, Cilla A, Gamero A. Exploring the Potential of Rice, Tiger Nut and Carob for the Development of Fermented Beverages in Spain: A Comprehensive Review on the Production Methodologies Worldwide. Beverages. 2023; 9(2):47. https://doi.org/10.3390/beverages9020047
Chicago/Turabian StyleVitali, Matteo, Mónica Gandía, Guadalupe Garcia-Llatas, Juan Antonio Tamayo-Ramos, Antonio Cilla, and Amparo Gamero. 2023. "Exploring the Potential of Rice, Tiger Nut and Carob for the Development of Fermented Beverages in Spain: A Comprehensive Review on the Production Methodologies Worldwide" Beverages 9, no. 2: 47. https://doi.org/10.3390/beverages9020047