Assessing the Protein-Ligand Interaction and Thermally Induced Quality Changes in Tomato-Based Pineapple Beverage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Procurement and Preparation
2.2. Sensory Evaluation
2.3. Overall Liking and Food Action Rating Scale
2.4. Thermal Processing of Beverage
2.5. Quality Characterization
2.5.1. Total Soluble Solids (TSS)
2.5.2. Total Sugars
2.5.3. Titrable Acidity
2.5.4. Vitamin C
2.5.5. DPPH Antioxidant Capacity
2.5.6. Total Phenolics Content
2.6. Microbial Analysis
2.7. Non-Enzymatic Browning Index (NEBI)
2.8. Shelf-Life
2.9. Molecular Docking
2.10. Statistical Analysis
3. Results and Discussion
3.1. Sensory Evaluation of Tomato-Based Developed Pineapple Beverage
3.2. Protein-Ligand Interactions through Molecular Docking
3.3. Effect of Thermal Treatment on the Quality Characteristics of Beverage
3.4. Shelf-Life Evaluation Using Microbiological Analysis
3.4.1. Non-Enzymatic Browning Index (NEBI)
3.4.2. Total Plate Count (TPC)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, K.P.S.; Paswan, S.; Srivastava, S. Tomato-a natural medicine and its health benefits. J. Pharmacogn. Phytochem. 2012, 1, 33–43. [Google Scholar]
- Nasir, M.U.; Hussain, S.; Jabbar, S. Tomato processing, lycopene and health benefits: A review. Sci. Lett. 2015, 3, 1–5. [Google Scholar]
- Martí, R.; Roselló, S.; Cebolla-Cornejo, J. Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancers 2016, 8, 58. [Google Scholar] [CrossRef]
- Sharma, A.; Kaur, M.; Katnoria, J.K.; Nagpal, A.K. Polyphenols in food: Cancer prevention and apoptosis induction. Curr. Med. Chem. 2018, 25, 4740–4757. [Google Scholar] [CrossRef]
- Chaudhary, P.; Sharma, A.; Singh, B.; Nagpal, A.K. Bioactivities of phytochemicals present in tomato. J. Food Sci. Technol. 2018, 55, 2833–2849. [Google Scholar] [CrossRef]
- Bhatkar, N.S.; Shirkole, S.S.; Mujumdar, A.S.; Thorat, B.N. Drying of tomatoes and tomato processing waste: A critical review of the quality aspects. Drying Technol. 2021, 39, 1720–1744. [Google Scholar] [CrossRef]
- Kartini, K.; Krisnawan, A.H.; Silvanus, L.C.; Wijaya, T.P. Formulation of functional beverages from the combination of lime, tomato, and carrot using foam-mat drying method. Pharmaciana 2019, 9, 335–344. [Google Scholar] [CrossRef]
- Bansal, V.; Jabeen, K.; Rao, P.; Prasad, P.; Yadav, S.K. Effect of high pressure processing (HPP) on microbial safety, physicochemical properties, and bioactive compounds of whey-based sweet lime (whey-lime) beverage. J. Food Meas. Charact. 2019, 13, 454–465. [Google Scholar] [CrossRef]
- Shafreen, R.M.B.; Lakshmi, S.A.; Pandian, S.K.; Park, Y.S.; Kim, Y.M.; Paśko, P.; Deutsch, J.; Katrich, E.; Gorinstein, S. Unraveling the antioxidant, binding and health-protecting properties of phenolic compounds of beers with main human serum proteins: In vitro and in silico approaches. Molecules 2020, 25, 4962. [Google Scholar] [CrossRef]
- Shakour, N.; Cabezas, R.; Santos, J.G.; Barreto, G.E.; Jamialahmadi, T.; Hadizadeh, F.; Sahebkar, A. Curcumin can bind and interact with CRP: An in silico study. In Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health; Springer: Cham, Switzerland, 2021; pp. 91–100. [Google Scholar]
- Poloni, D.M.; Dangles, O.; Vinson, J.A. Binding of plant polyphenols to serum albumin and LDL: Healthy implications for heart disease. J. Agric. Food Chem. 2019, 67, 9139–9147. [Google Scholar] [CrossRef]
- Khandpur, P.; Gogate, P.R. Effect of novel ultrasound based processing on the nutrition quality of different fruit and vegetable juices. Ultrason. Sonochem. 2015, 27, 125–136. [Google Scholar] [CrossRef]
- Roobab, U.; Aadil, R.M.; Madni, G.M.; Bekhit, A.E.D. The impact of nonthermal technologies on the microbiological quality of juices: A review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 437–457. [Google Scholar] [CrossRef]
- Ribeiro, J.C.; Lima, R.C.; Maia, M.R.; Almeida, A.A.; Fonseca, A.J.M.; Cabrita, A.R.J.; Cunha, L.M. Impact of defatting freeze-dried edible crickets (Acheta domesticus and Gryllodes sigillatus) on the nutritive value, overall liking and sensory profile of cereal bars. LWT 2019, 113, 108335. [Google Scholar] [CrossRef]
- Arenas, T.; Osorio, A.; Ginez, L.D.; Camarena, L.; Poggio, S. Bacterial cell wall quantification by a modified low-volume Nelson–Somogyi method and its use with different sugars. Can. J. Microbiol. 2022, 68, 295–302. [Google Scholar] [CrossRef]
- Hernández-López, A.; Sánchez Félix, D.A.; Zuñiga Sierra, Z.; García Bravo, I.; Dinkova, T.D.; Avila-Alejandre, A.X. Quantification of reducing sugars based on the qualitative technique of Benedict. ACS Omega 2020, 5, 32403–32410. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersberg, MD, USA, 2000; Volume 95, pp. 1392–1397. [Google Scholar]
- Bansal, N.; Gupta, N.D.; Bey, A.; Sharma, V.K.; Gupta, N.; Trivedi, H. Impact of nonsurgical periodontal therapy on total antioxidant capacity in chronic periodontitis patients. J. Indian Soc. Periodontol. 2017, 21, 291. [Google Scholar] [CrossRef]
- Aguiló-Aguayo, I.; Soliva-Fortuny, R.; Martín-Belloso, O. Avoiding non-enzymatic browning by high-intensity pulsed electric fields in strawberry, tomato and watermelon juices. J. Food Eng. 2009, 92, 37–43. [Google Scholar] [CrossRef]
- Fernández-Ruiz, V.; Domínguez, L.; Sánchez-Mata, M.C.; Cámara, M. Consumer’s preferences towards six new Spanish commercial tomato juices. In Proceedings of the XV International Symposium on Processing Tomato, Athens, Greece, 11–15 June 2018; Volume 1233, pp. 217–224. [Google Scholar]
- Akusu, O.M.; Kiin-Kabari, D.B.; Ebere, C.O. Quality characteristics of orange/pineapple fruit juice blends. Am. J. Food Technol. 2016, 4, 43–47. [Google Scholar]
- Jan, A.; Masih, E.D. Development and quality evaluation of pineapple juice blend with carrot and orange juice. Int. J. Sci. Res. Publ. 2012, 2, 1–8. [Google Scholar]
- Petitpas, I.; Bhattacharya, A.A.; Twine, S.; East, M.; Curry, S. Crystal structure analysis of warfarin binding to human serum albumin: Anatomy of drug site I. J. Biol. Chem. 2001, 276, 22804–22809. [Google Scholar] [CrossRef]
- Gorinstein, S.; Zemser, M.; Berliner, M.; Goldstein, R.; Libman, I.; Trakhtenberg, S.; Caspi, A. Moderate beer consumption and positive biochemical changes in patients with coronary atherosclerosis. J. Intern. Med. 1997, 242, 219–224. [Google Scholar] [CrossRef]
- Tung, W.-C.; Rizzo, B.; Dabbagh, Y.; Saraswat, S.; Romanczyk, M.; Codorniu-Hernández, E.; Rebollido-Rios, R.; Needs, P.W.; Kroon, P.A.; Rakotomanomana, N. Polyphenols bind to low density lipoprotein at biologically relevant concentrations that are protective for heart disease. Arch. Biochem. Biophys. 2020, 694, 108589. [Google Scholar] [CrossRef]
- Mehta, D.; Sharma, N.; Bansal, V.; Sangwan, R.S.; Yadav, S.K. Impact of ultrasonication, ultraviolet and atmospheric cold plasma processing on quality parameters of tomato-based beverage in comparison with thermal processing. Innov. Food Sci. Emerg. Technol. 2019, 52, 343–349. [Google Scholar] [CrossRef]
- Caminiti, I.M.; Palgan, I.; Muñoz, A.; Noci, F.; Whyte, P.; Morgan, D.J.; Cronin, D.A.; Lyng, J.G. The effect of ultraviolet light on microbial inactivation and quality attributes of apple juice. Food Bioprocess Technol. 2012, 5, 680–686. [Google Scholar] [CrossRef]
- Ordóñez-Santos, L.E.; Martínez-Girón, J.; Arias-Jaramillo, M.E. Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chem. 2017, 233, 96–100. [Google Scholar] [CrossRef]
- Astuti, D.; Salengke, S.; Laga, A.; Mariyati Bilangd, M.; Mochtar, H.; Warisf, A. Characteristics of pH, total acid, total soluble solid on tomato juice by ohmic heating technology. Int. J. Sci. Basic Appl. Res. 2018, 39, 21–28. [Google Scholar]
- Chia, S.L.; Rosnah, S.; Noranizan, M.A.; WD, W.R. The effect of storage on the quality attributes of ultraviolet-irradiated and thermally pasteurised pineapple juices. Int. Food Res. J. 2012, 19, 1001–1010. [Google Scholar]
- Qiu, J.; Vuist, J.-E.; Boom, R.M.; Schutyser, M.A. Formation and degradation kinetics of organic acids during heating and drying of concentrated tomato juice. LWT 2018, 87, 112–121. [Google Scholar] [CrossRef]
- Dhakal, S.; Balasubramaniam, V.M.; Ayvaz, H.; Rodriguez-Saona, L.E. Kinetic modeling of ascorbic acid degradation of pineapple juice subjected to combined pressure-thermal treatment. J. Food Eng. 2018, 224, 62–70. [Google Scholar] [CrossRef]
- Vikram, V.B.; Ramesh, M.N.; Prapulla, S.G. Thermal degradation kinetics of nutrients in orange juice heated by electromagnetic and conventional methods. J. Food Eng. 2005, 69, 31–40. [Google Scholar] [CrossRef]
- Xu, L.; Garner, A.L.; Tao, B.; Keener, K.M. Microbial inactivation and quality changes in orange juice treated by high voltage atmospheric cold plasma. Food Bioprocess Technol. 2017, 10, 1778–1791. [Google Scholar] [CrossRef]
- Khare, A.; Behari Lal, A.; Singh, A.; Pratap Singh, A. Shelflife enhancement of sugarcane juice. Croatian J. Food Technol. Biotechnol. Nutr. 2012, 7, 179–183. [Google Scholar]
- Elez Garofulić, I.; Režek Jambrak, A.; Milošević, S.; Dragović-Uzelac, V.; Zorić, Z.; Herceg, Z. The effect of gas phase plasma treatment on the anthocyanin and phenolic acid content of sour cherry Marasca (Prunus cerasus var. Marasca) juice. LWT-Food Sci. Technol. 2015, 62, 894–900. [Google Scholar] [CrossRef]
- Vervoort, L.; Van der Plancken, I.; Grauwet, T.; Timmermans, R.A.; Mastwijk, H.C.; Matser, A.M.; Hendrickx, M.E.; Van Loey, A. Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice: Part II: Impact on specific chemical and biochemical quality parameters. Innov. Food Sci. Emerg. Technol. 2011, 12, 466–477. [Google Scholar] [CrossRef]
- Barba, F.J.; Cortés, C.; Esteve, M.J.; Frígola, A. Study of antioxidant capacity and quality parameters in an orange juice–milk beverage after high-pressure processing treatment. Food Bioprocess Technol. 2012, 5, 2222–2232. [Google Scholar] [CrossRef]
- Tian, Y.; Sun, L.; Yang, Y.; Gou, X.; Niu, P.; Guo, Y. Changes in the physicochemical properties, aromas and polyphenols of not from concentrate (NFC) apple juice during production. CyTA-J. Food 2018, 16, 755–764. [Google Scholar] [CrossRef]
- Buren, J.P.V. Causes and prevention of turbidity in apple juice. In Processed Apple Products; Springer: Cham, Switzerland, 1989; pp. 97–120. [Google Scholar]
- Mena, P.; Martí, N.; Saura, D.; Valero, M.; García-Viguera, C. Combinatory effect of thermal treatment and blending on the quality of pomegranate juices. Food Bioprocess Technol. 2013, 6, 3186–3199. [Google Scholar] [CrossRef]
- Moazzem, M.S.; Sikder, M.B.H.; Zzaman, W. Shelf-life extension of wood apple beverages maintaining consumption-safe parameters and sensory qualities. Beverages 2019, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Mahnoori, S.; Singh, J.; Gupta, N. Preparation and evaluation of litchi and beetroot blended ready to serve beverage. Pharm. Innov. J. 2020, 9, 33–37. [Google Scholar]
S. No. | Compound | Binding Energy (kcal/mol) | Vdw_hb_desolv_energy | Total Internal Energy | Ligand Efficiency | H-Bonds | Vander Waals Interaction |
---|---|---|---|---|---|---|---|
Vitamin C | |||||||
1 | VC, 1b09 | −5.66 | −7.27 | −3.13 | −0.47 | THR A:41 THR A:90 ALA A:92 | PRO A:93 TYR A:40 VAL A:91 VAL A:94 VAL A:89 SER A:44 TYR A:49 PHE A:39 |
2 | VC, 1h9z | −5.82 | −7.15 | −2.85 | −0.49 | LYS A:106 GLN A:29 ALA A:151 CYS A:245 | CYS A:246 GLY A:248 CYS A:253 TYR A:150 PHE A:149 LEU A:250 PRO A:147 TYR A:148 |
β-carotene | |||||||
3 | BC, 1b09 | −9.16 | −12.15 | −1.71 | −0.23 | HIS E:95 VAL E:94 ASP E:112 ARG E:6 GLYE:178 SER E:181 ARGE:188 GLYE:177 GLYE:177 ASNE:158 ILE E:174 TRP E:205 | TYR E:175 PRO E:93 ALA E:92 HIS E:38 PRO E:206 PHE E:180 PRO E:179 |
4 | BC, 1h9z | −2.95 | −5.92 | −1.66 | −0.07 | ASP A:108 CYS A:246 GLN A:104 GLU A:100 GLU A:97 | HIS A:247 LEU A:103 |
Lycopene | |||||||
5 | Lyco, 1b09 | −2.6 | −11.25 | −2.78 | −0.07 | LEU E:204 TRP E:205 ASP E:112 LEU E:176 ILE E:174 ASN E:158 ARG E:188 SER E:5 ALA E:92 HIS E:95 GLY E:177 ARG E:6 GLY E:178 PRO E:179 | PRO E:93 PRO E:206 PRO A:115 LYS A:114 HIS E:38 TYR E:175 PHE E:180 |
6 | Lyco, 1h9z | −7.98 | −13.35 | −1.74 | −0.2 | SER A:193 GLN A:196 GLY A:248 SER A:192 GLU A:292 GLU A:153 ARG A:160 GLU A:188 | HIS A:146 TYR A:148 ARG A:197 PHE A:149 CYS A:200 CYS A:245 CYS A:253 TYR A:150 ARG A:257 CYS A:246 VAL A:241 LYS A:195 PHE A:157 HIS A:288 PHE A:156 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaur, R.; Sharma, N.; Bansal, V.; Reenu, R.; Yadav, D.K.; Gupta, A.; Mahato, D.K. Assessing the Protein-Ligand Interaction and Thermally Induced Quality Changes in Tomato-Based Pineapple Beverage. Beverages 2023, 9, 12. https://doi.org/10.3390/beverages9010012
Kaur R, Sharma N, Bansal V, Reenu R, Yadav DK, Gupta A, Mahato DK. Assessing the Protein-Ligand Interaction and Thermally Induced Quality Changes in Tomato-Based Pineapple Beverage. Beverages. 2023; 9(1):12. https://doi.org/10.3390/beverages9010012
Chicago/Turabian StyleKaur, Rajinder, Nitya Sharma, Vasudha Bansal, Reenu Reenu, Dharmendra Kumar Yadav, Akansha Gupta, and Dipendra Kumar Mahato. 2023. "Assessing the Protein-Ligand Interaction and Thermally Induced Quality Changes in Tomato-Based Pineapple Beverage" Beverages 9, no. 1: 12. https://doi.org/10.3390/beverages9010012