Enhancing the Antioxidant Ability of Momordica grosvenorii Saponin to Resist Gastrointestinal Stresses via Microcapsules of Sodium Alginate and Chitosan and Its Application in Beverage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of MGS Capsules
2.3. Analysis of Circular Dichroism Spectra (CD)
2.4. Characterization of MGS Capsules
2.5. Evaluation of Loading Efficiency
2.5.1. Loading Efficiency (LE)
2.5.2. Encapsulation Rate (ER)
2.6. Determination of MGS Antioxidant Capacity
2.7. Release of MGS
2.8. Protective Effect of Capsules under Gastric Acid Conditions
2.9. Production of the Momordica grosvenorii Beverage
2.10. Statistical Analysis
3. Results
3.1. Optimization Conditions
3.2. Analysis of Circular Dichroism Spectra
3.3. MGS Capsule Morphology
3.4. MGS Capsule Antioxidant Capacity
3.5. Improvement of Antioxidant Capacity in Acidic Conditions
3.6. Effects of Gastric and Intestinal Fluids on MGS Content
3.7. The Application of Momordica grosvenorii Beverage
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Su, B.; Chang, L.; Park, E.; Cuendet, M.; Santarsiero, B.; Mesecar, M.; Mehta, R.; Fong, H. Bioactive constituents of the seeds of Brucea javanica. Planta Med. 2002, 68, 730–733. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Yu, W.; Gao, M.; Liu, X.; Ma, X. Microencapsulated probiotics using emulsification technique coupled with internal or external gelation process. Carbohydr. Polym. 2013, 96, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Kasai, R.; Ohtani, K.; Tanaka, O. Minor cucurbitane glycosides from fruits of Siraitia grosvenori (Cucurbitaceae). Chem. Pharm. Bull. 1990, 38, 2030–2032. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.C.; Kinghorn, A.D. Highly sweet compounds of plant origin. Arch. Pharm. Res. 2002, 25, 725–746. [Google Scholar] [CrossRef]
- Biswas, T.; Dwivedi, U.N. Plant triterpenoid saponins: Biosynthesis, in vitro production, and pharmacological relevance. Protoplasma 2019, 256, 1463–1486. [Google Scholar] [CrossRef]
- Liu, X.; Ma, Z.; Xing, J.; Liu, H. Preparation and characterization of amino-silane modified superparamagnetic silica nanospheres. J. Magn. Magn. Mater. 2004, 270, 1–6. [Google Scholar] [CrossRef]
- Hossen, M.A.; Shinmei, Y.; Jiang, S.; Takubo, M.; Tsumura, T.; Murata, Y.; Sugiura, M.; Kamei, C. Effect of lo han kuo (Siraitia grosvenori Swingle) on nasal rubbing and scratching behavior in icr mice. Biol. Pharm. Bull. 2005, 28, 238. [Google Scholar] [CrossRef] [Green Version]
- Song, F.; Qi, X.; Chen, W.; Jia, W.; Yao, P.; Nussler, A.K.; Sun, X.; Liu, L. Effect of Momordica grosvenori on oxidative stress pathways in renal mitochondria of normal and alloxan-induced diabetic mice involvement of heme oxygenase-1. Eur. J. Nutr. 2010, 46, 61–69. [Google Scholar] [CrossRef]
- Weerawatanakorn, M.; Yang, J.; Tsai, M.; Lai, C.; Hod, C.; Pan, M. Inhibitory effects of Momordica grosvenori swingle extracts on 12-o-tetradecanoylphorbol 13-acetate-induced skin inflammation and tumor promotion in mouse skin. Food Funct. 2014, 5, 257–264. [Google Scholar] [CrossRef]
- Pan, M.; Yang, J.; Tsai, M.; Sang, S. Anti-inflammatory effect of Momordica grosvenori swingle extract through suppressed lps-induced upregulation of inos and cox-2 in murine macrophages. J. Funct. Foods 2009, 1, 145–152. [Google Scholar] [CrossRef]
- Takasakia, M.; Konoshimaa, T.; Muratab, Y.; Sugiurab, M.; Nishinoc, H.; Tokudac, H.; Matsumotod, K.; Kasaid, R.; Yamasaki, K. Anticarcinogenic activity of natural sweeteners, cucurbitane glycosides from Momordica grosvenori. Cancer Lett. 2003, 198, 37–42. [Google Scholar] [CrossRef]
- Dai, Z.R.; Liang, D.P.; Qin, H.Q.; Zhang, X.C.; Wang, P. Antioxidation and Stability of Compound Beverage of Momordica grosvenori and Carambola Fruit. J. Food. Res. Dev. 2019, 40, 31–35. [Google Scholar] [CrossRef]
- Han, B.; Park, M.; Han, Y.; Woo, L.; Sankawa, U.; Yahara, S. Degradation of ginseng saponins under mild acidic conditions. Planta Med. 1982, 44, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.L.; Huang, Z.C.; Yan, X.J.; Chen, Y.Y.; Xu, F.; Cai, S.Q.; Li, D.P. Stability of mogroside V in artificial gastric juice and its metabolism in vitro. J. Guihaia 2015, 35, 792–795. [Google Scholar] [CrossRef]
- Murata, Y.; Ogawa, T.; Suzuki, Y.A.; Yoshikawa, S.; Inui, H.; Sugiura, M.; Nakano, Y. Digestion and Absorption of Siraitia grosvenori Triterpenoids in the Rat. Biosci. Biotech. Biochem. 2010, 74, 673–676. [Google Scholar] [CrossRef] [Green Version]
- Cheow, W.; Kiew, T.; Hadinoto, K. Controlled release of Lactobacillus rhamnosus biofilm probiotics fromalginate-locust bean gum microcapsules. Carbohydr. Polym. 2014, 103, 587–595. [Google Scholar] [CrossRef]
- Laelorspoen, N.; Wongsasulak, S.; Yoovidhya, T.; Devahastin, S. Microencapsulation of Lactobacillus acidophilus in zein-alginate core shell microcapsules via electrospraying. J. Funct. Foods 2014, 7, 342–349. [Google Scholar] [CrossRef]
- Leong, M.; Tan, C.; Nyam, L. Effects of accelerated storage on the quality of kenaf seed oil in chitosan-coated high methoxyl pectin-alginate microcapsules. J. Food Sci. 2016, 81, 2367–2372. [Google Scholar] [CrossRef]
- Morishita, M.; Goto, T.; Peppas, N.A.; Joseph, J.I.; Torjman, M.C.; Munsick, C.; Nakamura, K.; Yamagata, T.; Takayama, K.; Lowman, A.M. Mucosal insulin delivery systems based on complexation polymer hydrogels: Effect of particle size on insulin enteral absorption. J. Control. Release 2004, 97, 115–124. [Google Scholar] [CrossRef]
- Sabikhi, L.; Babu, R.; Thompkinson, D.K.; Kapila, S. Resistance of microencapsulated Lactobacillus acidophilus LA1 to processing treatments and simulated gut conditions. Food Bioprocess Technol. 2010, 3, 586–593. [Google Scholar] [CrossRef]
- Ali, J.; Arora, S.; Ahuja, A. Formulation and development of floating capsules of celecoxib: In vitro and in vivo evaluation. AAPS PharmSciTech 2007, 8, 312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Consolini, M.; Sega, M.; Zanetti, C. Erratum to: Emulsification of Simulated Gastric Fluids Protects Wheat α-Amylase Inhibitor 0.19 Epitopes from Digestion. Food Anal. Methods 2011, 4, 446. [Google Scholar] [CrossRef] [Green Version]
- Dwamena, A.K.; Woo, S.H.; Kim, C.S. Enzyme immobilization on porous chitosan hydrogel capsules formed by anionic surfactant gelation. Biotechnol. Lett. 2020, 42, 845–852. [Google Scholar] [CrossRef]
- Cheng, Y.S.; Zheng, Y.; VanderGheynst, J.S. Rapid Quantitative Analysis of Lipids Using a Colorimetric Method in a Microplate Format. Lipids 2011, 46, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.J.; Evans, C.R.; Davies, M.J. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant statusin premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowicka, P.; Wojdyło, A.; Laskowski, P. Principal component analysis (PCA) of physicochemical compounds’ content in different cultivars of peach fruits, including qualification and quantification of sugars and organic acids by HPLC. Eur. Food Res. Technol. 2019, 245, 929–938. [Google Scholar] [CrossRef] [Green Version]
- Dabbagh, M.A.; Garavand, F.; Razavi, S. Production of saffron-based probiotic beverage by lactic acid bacteria. J. Food. Meas. Charact. 2018, 12, 2708–2717. [Google Scholar] [CrossRef]
- Ugurtan, Y.K.; Ercisli, S.; Cam, M. Fruit Weight, Total Phenolics, Acidity and Sugar Content of Edible Wild Pear (Pyrus elaeagnifolia Pall.) Fruits. Erwerbs Obstbau 2015, 57, 179–184. [Google Scholar] [CrossRef]
- Huck-Iriart, C.; Rincón-Cardona, J.A.; Herrera, M.L. Stability of Whey Protein Concentrate/Sunflower Oil Emulsions as Affected by Sucrose and Xanthan Gum. Food Bioprocess Technol. 2014, 7, 2646–2656. [Google Scholar] [CrossRef]
- Zhang, L.; Qi, X.; Chen, W.; Song, Y. Study on the antioxidant activity of Momordica grosvenorii extract. Food Sci. 2006, 206, 213–216. [Google Scholar] [CrossRef]
- Rama, G.R.; Führ, A.J.; da Silva, J.A.B.S. Encapsulation of Lactobacillus spp. using bovine and buffalo cheese whey and their application in orange juice. 3 Biotechnol. 2020, 10, 263. [Google Scholar] [CrossRef] [PubMed]
- Czerniak, A.; Kubiak, P.; Białas, W.; Jankowski, T. Improvement of oxidative stability of menhaden fish oil by microencapsulation within biocapsules formed of yeast cells. J. Food Eng. 2015, 167, 2–11. [Google Scholar] [CrossRef]
- Zhang, X.; Luo, J.; Zhang, D.; Jing, T.; Li, B.; Liu, F. Porous microcapsules with tunable pore sizes provide easily controllable release and bioactivity. J. Colloid Interface Sci. 2018, 517, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Atkin, R.; Davies, P.; Hardy, J.; Vincent, B. Preparation of aqueous core polymer shell microcapsules by internal phase separation. Macromolecules 2004, 37, 7979–7985. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Waterhouse, G.I.N.; Waterhouse, D.S. Co-extrusion encapsulation of canola oil with alginate: Effect of quercetin addition to oil core and pectin addition to alginate shell on oil stability. Food Res. Int. 2013, 54, 837–851. [Google Scholar] [CrossRef]
- Li, X.; Jin, L.; Mcallister, T.; Stanford, K.; Xu, J.; Lu, Y.; Zhen, Y.; Sun, Y.; Xu, Y. Chitosan-alginate microcapsules for oral delivery of egg yolk immunoglobulin (igy). J. Agric. Food Chem. 2017, 55, 2911. [Google Scholar] [CrossRef]
- Waterhouse, S.D.; Zhou, J.; Miskelly, G.M.; Wibisono, R.; Wadhwa, S.S. Stability of encapsulated olive oil in the presence of caffeic acid. Food Chem. 2011, 126, 1049–1056. [Google Scholar] [CrossRef]
- Kean, T.; Thanou, M. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Deliv. Rev. 2010, 62, 3–11. [Google Scholar] [CrossRef]
- Rakotozafy, L.; Mackova, B.; Delcros, J.F.; Boussard, A.; Davidou, S.; Potus, J.; Nicolas, J. Effect of adding exogenous oxidative enzymes on the activity of three endogenous oxidoreductases during mixing of wheat flour dough. Cereal Chem. 1999, 76, 213–218. [Google Scholar] [CrossRef]
- Gutiérrez, K.G.; Varaldo, H.M.P.; García, F.E.; Rendón, J.I.; Cortés, J.B. Small microcapsules of crystal proteins and spores of Bacillus thuringiensis by an emulsification/internal gelation method. Bioprocess Biosyst. Eng. 2011, 34, 701–708. [Google Scholar] [CrossRef]
- Silva, C.M.; Ribeiro, A.J.; Figueiredo, M.; Ferreira, D.; Veiga, F. Microencapsulation of hemoglobin in chitosan-coated alginate microspheres prepared by emulsification/internal gelation. AAPS J. 2006, 7, E903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Chen, J.; Zhang, Y.; Pan, P.; Zhang, Q. Magnetic auto-fluorescent microspheres for a drug delivery system. Mater. Lett. 2014, 119, 143–145. [Google Scholar] [CrossRef]
- Gray, A.; Egan, S.; Bakalis, S.; Zhang, Z. Determination of microcapsule physicochemical, structural and mechanical properties. Particuology 2016, 132, 24. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Qu, W.; Li, D.; Shi, K.; Li, R.; Han, Y.; Jing, E.; Ding, J.; Chen, X. Functional Polymer-Based Nerve Guide Conduits to Promote Peripheral Nerve Regeneration. Adv. Mater. Interfaces 2020, 7, 2000225. [Google Scholar] [CrossRef]
- Long, Y.; Zhang, J.Y.; Liu, H.M.; Ci, H. The Determination of Content of Ginseng Saponins in Ginseng Beverage. Mod. Food 2018, 2, 77–80. [Google Scholar] [CrossRef]
- Motlagh, A.H.; Nasirpour, A.; Saeidy, S. Physicochemical and sensory properties of malt beverage containing sugar beet saponins. J. Food Sci. Technol. 2022, 59, 4380–4389. [Google Scholar] [CrossRef]
- Pereira, A.L.F.; Almeida, F.D.L.; de Jesus, A.L.T. Storage Stability and Acceptance of Probiotic Beverage from Cashew Apple Juice. Food Bioprocess Technol. 2013, 6, 3155–3165. [Google Scholar] [CrossRef]
- Talón, E.; Lampi, A.M.; Vargas, M.; Chiralt, A.; Jouppila, K.; González-Martínez, C. Encapsulation of eugenol by spray-drying using whey protein isolate or lecithin: Release kinetics, antioxidant and antimicrobial properties. Food Chem. 2019, 295, 588–598. [Google Scholar] [CrossRef]
Gradient | No. 1 | No. 2 | No. 3 | No. 4 |
---|---|---|---|---|
cSA (mg/mL) | 10 | 15 | 20 | 25 |
cCTS (mg/mL) | 2 | 4 | 8 | 10 |
cCaCl2 (mg/mL) | 5 | 10 | 15 | 20 |
SS (r/min) | 600 | 1000 | 1400 | 1800 |
ST (min) | 15 | 30 | 45 | 60 |
REI | 1:2 | 1:3 | 1:4 | 1:5 |
RSM | 1:2 | 1:3 | 1:4 | 1:5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Wang, Y.; Xie, H.; Zhang, B.; Zhang, B. Enhancing the Antioxidant Ability of Momordica grosvenorii Saponin to Resist Gastrointestinal Stresses via Microcapsules of Sodium Alginate and Chitosan and Its Application in Beverage. Beverages 2022, 8, 70. https://doi.org/10.3390/beverages8040070
Liu L, Wang Y, Xie H, Zhang B, Zhang B. Enhancing the Antioxidant Ability of Momordica grosvenorii Saponin to Resist Gastrointestinal Stresses via Microcapsules of Sodium Alginate and Chitosan and Its Application in Beverage. Beverages. 2022; 8(4):70. https://doi.org/10.3390/beverages8040070
Chicago/Turabian StyleLiu, Lu, Yiqi Wang, Huaping Xie, Bo Zhang, and Bolin Zhang. 2022. "Enhancing the Antioxidant Ability of Momordica grosvenorii Saponin to Resist Gastrointestinal Stresses via Microcapsules of Sodium Alginate and Chitosan and Its Application in Beverage" Beverages 8, no. 4: 70. https://doi.org/10.3390/beverages8040070
APA StyleLiu, L., Wang, Y., Xie, H., Zhang, B., & Zhang, B. (2022). Enhancing the Antioxidant Ability of Momordica grosvenorii Saponin to Resist Gastrointestinal Stresses via Microcapsules of Sodium Alginate and Chitosan and Its Application in Beverage. Beverages, 8(4), 70. https://doi.org/10.3390/beverages8040070