Valorization of Waste Orange Peels: Aqueous Antioxidant Polyphenol Extraction as Affected by Organic Acid Addition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Waste Orange Peels
2.3. Aqueous Polyphenol Extraction
2.4. Response Surface Optimization
2.5. Determination of Total Polyphenols, Total Flavonoids, and Antioxidant Activity
2.6. Chromatographic Determinations
2.7. Statistical Processing
3. Results and Discussion
3.1. Single Factor Testing
3.2. Extraction Process Optimization
3.3. Effect of Organic Acid Addition
3.4. Polyphenolic Composition of the Extracts
3.5. Antioxidant Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jimenez-Lopez, C.; Fraga-Corral, M.; Carpena, M.; García-Oliveira, P.; Echave, J.; Pereira, A.; Lourenço-Lopes, C.; Prieto, M.; Simal-Gandara, J. Agriculture waste valorisation as a source of antioxidant phenolic compounds within a circular and sustainable bioeconomy. Food Funct. 2020, 11, 4853–4877. [Google Scholar] [CrossRef] [PubMed]
- Osorio, L.L.D.R.; Flórez-López, E.; Grande-Tovar, C.D. The potential of selected agri-food loss and waste to contribute to a circular economy: Applications in the food, cosmetic and pharmaceutical industries. Molecules 2021, 26, 515. [Google Scholar] [CrossRef] [PubMed]
- Ademosun, A.O. Citrus peels Odyssey: From the waste bin to the lab bench to the dining table. Appl. Food Res. 2022, 2, 100083. [Google Scholar] [CrossRef]
- Mohsin, A.; Hussain, M.H.; Zaman, W.Q.; Mohsin, M.Z.; Zhang, J.; Liu, Z.; Tian, X.; Salim-ur-Rehman; Khan, I.M.; Niazi, S. Advances in sustainable approaches utilizing orange peel waste to produce highly value-added bioproducts. Crit. Rev. Biotech. 2021. [Google Scholar] [CrossRef] [PubMed]
- Mahato, N.; Sharma, K.; Sinha, M.; Cho, M.H. Citrus waste derived nutra-/pharmaceuticals for health benefits: Current trends and future perspectives. J. Funct. Foods 2018, 40, 307–316. [Google Scholar] [CrossRef]
- Suri, S.; Singh, A.; Nema, P.K. Current applications of citrus fruit processing waste: A scientific outlook. Appl. Food Res. 2022, 2, 100050. [Google Scholar] [CrossRef]
- Khan, M.K.; Dangles, O. A comprehensive review on flavanones, the major citrus polyphenols. J. Food Compos. Anal. 2014, 33, 85–104. [Google Scholar] [CrossRef]
- M’hiri, N.; Ioannou, I.; Ghoul, M.; Mihoubi Boudhrioua, N. Phytochemical characteristics of citrus peel and effect of conventional and nonconventional processing on phenolic compounds: A review. Food Rev. Inter. 2017, 33, 587–619. [Google Scholar] [CrossRef]
- Tripoli, E.; La Guardia, M.; Giammanco, S.; Di Majo, D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007, 104, 466–479. [Google Scholar] [CrossRef]
- Yi, L.; Ma, S.; Ren, D. Phytochemistry and bioactivity of Citrus flavonoids: A focus on antioxidant, anti-inflammatory, anticancer and cardiovascular protection activities. Phytochem. Rev. 2017, 16, 479–511. [Google Scholar] [CrossRef]
- González-Gómez, D.; Cardoso, V.; Bohoyo, D.; Ayuso, M.; Delgado-Adamez, J. Application of experimental design and response surface methodology to optimize the procedure to obtain a bactericide and highly antioxidant aqueous extract from orange peels. Food Control 2014, 35, 252–259. [Google Scholar] [CrossRef]
- Chemat, F.; Abert Vian, M.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Fabiano Tixier, A.-S. Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef] [Green Version]
- Karakashov, B.; Grigorakis, S.; Loupassaki, S.; Mourtzinos, I.; Makris, D.P. Optimisation of organic solvent-free polyphenol extraction from Hypericum triquetrifolium Turra using Box–Behnken experimental design and kinetics. Inter. J. Ind. Chem. 2015, 6, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Cicco, N.; Lanorte, M.T.; Paraggio, M.; Viggiano, M.; Lattanzio, V. A reproducible, rapid and inexpensive Folin–Ciocalteu micro-method in determining phenolics of plant methanol extracts. Microchem. J. 2009, 91, 107–110. [Google Scholar] [CrossRef]
- Lakka, A.; Grigorakis, S.; Karageorgou, I.; Batra, G.; Kaltsa, O.; Bozinou, E.; Lalas, S.; Makris, D.P. Saffron processing wastes as a bioresource of high-value added compounds: Development of a green extraction process for polyphenol recovery using a natural deep eutectic solvent. Antioxidants 2019, 8, 586. [Google Scholar] [CrossRef] [Green Version]
- Anagnostopoulou, M.A.; Kefalas, P.; Kokkalou, E.; Assimopoulou, A.N.; Papageorgiou, V.P. Analysis of antioxidant compounds in sweet orange peel by HPLC–diode array detection–electrospray ionization mass spectrometry. Biomed. Chrom. 2005, 19, 138–148. [Google Scholar] [CrossRef]
- Lakka, A.; Lalas, S.; Makris, D.P. Hydroxypropyl-β-cyclodextrin as a green co-solvent in the aqueous extraction of polyphenols from waste orange peels. Beverages 2020, 6, 50. [Google Scholar] [CrossRef]
- Morsli, F.; Grigorakis, S.; Halahlah, A.; Poulianiti, K.P.; Makris, D.P. Appraisal of the combined effect of time and temperature on the total polyphenol yield in batch stirred-tank extraction of medicinal and aromatic plants: The extraction efficiency factor. J. Appl. Res. Med. Arom. Plants 2021, 25, 100340. [Google Scholar] [CrossRef]
- Abdoun, R.; Grigorakis, S.; Kellil, A.; Loupassaki, S.; Makris, D.P. Process optimization and stability of waste orange peel polyphenols in extracts obtained with organosolv thermal treatment using glycerol-based solvents. ChemEngineering 2022, 6, 35. [Google Scholar] [CrossRef]
- Yu, L.; Wu, Y.; Liu, D.; Sheng, Z.; Liu, J.; Chen, H.; Feng, W. The kinetic behavior of antioxidant activity and the stability of aqueous and organic polyphenol extracts from navel orange peel. Food Sci. Technol. 2022, 42, e90621. [Google Scholar] [CrossRef]
- Dalmau, E.; Rosselló, C.; Eim, V.; Ratti, C.; Simal, S. Ultrasound-assisted aqueous extraction of biocompounds from orange byproduct: Experimental kinetics and modeling. Antioxidants 2020, 9, 352. [Google Scholar] [CrossRef] [PubMed]
- Montenegro-Landívar, M.F.; Tapia-Quirós, P.; Vecino, X.; Reig, M.; Valderrama, C.; Granados, M.; Cortina, J.L.; Saurina, J. Recovery of added-value compounds from orange and spinach processing residues: Green extraction of phenolic compounds and evaluation of antioxidant activity. Antioxidants 2021, 10, 1800. [Google Scholar] [CrossRef] [PubMed]
- M’hiri, N.; Ioannou, I.; Boudhrioua, N.M.; Ghoul, M. Effect of different operating conditions on the extraction of phenolic compounds in orange peel. Food Bioprod. Proc. 2015, 96, 161–170. [Google Scholar] [CrossRef]
- M’hiri, N.; Irina, I.; Cédric, P.; Ghoul, M.; Boudhrioua, N. Antioxidants of Maltease orange peel: Comparative investigation of the efficiency of four extraction methods. J. Appl. Pharmaceut. Sci. 2017, 7, 126–135. [Google Scholar]
- Tzima, K.; Kallithraka, S.; Kotseridis, Y.; Makris, D.P. A comparative evaluation of aqueous natural organic acid media for the efficient recovery of flavonoids from red grape (Vitis vinifera) pomace. Waste Biomass Valorization 2015, 6, 391–400. [Google Scholar] [CrossRef]
- Tzima, K.; Kallithraka, S.; Kotseridis, Y.; Makris, D.P. Kinetic modelling for flavanol extraction from red grape (Vitis vinifera L.) pomace using aqueous organic acid solutions. Inter. Food Res. J. 2014, 21, 1919–1924. [Google Scholar]
- Pappas, V.M.; Athanasiadis, V.; Palaiogiannis, D.; Poulianiti, K.; Bozinou, E.; Lalas, S.I.; Makris, D.P. Pressurized liquid extraction of polyphenols and anthocyanins from saffron processing waste with aqueous organic acid solutions: Comparison with stirred-tank and ultrasound-assisted techniques. Sustainability 2021, 13, 12578. [Google Scholar] [CrossRef]
- Van den Bruinhorst, A.; Kouris, P.; Timmer, J.; de Croon, M.; Kroon, M. Exploring orange peel treatment with deep eutectic solvents and diluted organic acids. Nat. Prod. Chem. Res. 2016, 4, 1–5. [Google Scholar]
- Moreno, M.T.; Rodríguez Mellado, J.M. Spectrophotometric and electrochemical assessment of the antioxidant capacity of aqueous and ethanolic extracts of citrus flavedos. Oxygen 2022, 2, 99–108. [Google Scholar] [CrossRef]
- Magalhães, L.M.; Segundo, M.A.; Reis, S.; Lima, J.L. Methodological aspects about in vitro evaluation of antioxidant properties. Anal. Chim. Acta 2008, 613, 1–19. [Google Scholar] [CrossRef]
Independent Variables | Codes | Coded Variable Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
t (min) | X1 | 60 | 180 | 300 |
T (°C) | X2 | 55 | 70 | 85 |
Design Point | Independent Variables | Responses | ||
---|---|---|---|---|
YTP (mg GAE g−1 DM) | ||||
X1 (t, min) | X2 (T, °C) | Measured | Predicted | |
1 | −1 (60) | −1 (55) | 26.23 | 26.13 |
2 | −1 (60) | 1 (85) | 26.01 | 25.97 |
3 | 1 (300) | −1 (55) | 23.06 | 23.26 |
4 | 1 (300) | 1 (85) | 24.65 | 24.91 |
5 | −1 (60) | 0 (70) | 24.69 | 24.83 |
6 | 1 (300) | 0 (70) | 23.32 | 22.87 |
7 | 0 (180) | −1 (55) | 24.13 | 24.04 |
8 | 0 (180) | 1 (85) | 25.00 | 24.78 |
9 | 0 (180) | 0 (70) | 22.91 | 23.20 |
10 | 0 (180) | 0 (70) | 22.96 | 23.20 |
11 | 0 (180) | 0 (70) | 23.41 | 23.20 |
# | Compound | Yield (μg g−1 DM) | ||
---|---|---|---|---|
Water | 1% TA | 2.5% CA | ||
1 | Neochlorogenic acid | 125.95 ± 11.34 | 111.96 ± 7.35 | 103.55 ± 5.12 a |
2 | Chlorogenic acid | 237.52 ± 21.38 | 204.00 ± 9.22 a | 191.79 ± 6.72 a |
3 | Caffeic acid | 73.95 ± 2.22 | 74.66 ± 3.32 | 71.84 ± 2.99 |
4 | Ferulic acid | 89.24 ± 7.14 | 89.43 ± 4.31 | 85.91 ± 3.70 |
5 | Narirutin | 348.10 ± 27.85 | 353.34 ± 16.00 | 338.35 ± 11.72 |
6 | Hesperidin | 560.75 ± 44.86 | 591.50 ± 25.73 | 588.67 ± 19.07 |
7 | Didymin | 169.89 ± 10.80 | 167.73 ± 7.73 | 165.42 ± 5.13 |
8 | Sinensetin | 57.90 ± 4.51 | 57.84 ± 2.17 | 57.68 ± 1.40 |
9 | Nobiletin | 191.43 ± 14.06 | 194.95 ± 8.20 | 196.79 ± 5.56 |
10 | Demethylnobiletin | 78.96 ± 6.60 | 78.13 ± 3.81 | 81.02 ± 2.53 |
Sum | 1933.70 | 1923.54 | 1881.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalompatsios, D.; Athanasiadis, V.; Palaiogiannis, D.; Lalas, S.I.; Makris, D.P. Valorization of Waste Orange Peels: Aqueous Antioxidant Polyphenol Extraction as Affected by Organic Acid Addition. Beverages 2022, 8, 71. https://doi.org/10.3390/beverages8040071
Kalompatsios D, Athanasiadis V, Palaiogiannis D, Lalas SI, Makris DP. Valorization of Waste Orange Peels: Aqueous Antioxidant Polyphenol Extraction as Affected by Organic Acid Addition. Beverages. 2022; 8(4):71. https://doi.org/10.3390/beverages8040071
Chicago/Turabian StyleKalompatsios, Dimitris, Vassilis Athanasiadis, Dimitrios Palaiogiannis, Stavros I. Lalas, and Dimitris P. Makris. 2022. "Valorization of Waste Orange Peels: Aqueous Antioxidant Polyphenol Extraction as Affected by Organic Acid Addition" Beverages 8, no. 4: 71. https://doi.org/10.3390/beverages8040071
APA StyleKalompatsios, D., Athanasiadis, V., Palaiogiannis, D., Lalas, S. I., & Makris, D. P. (2022). Valorization of Waste Orange Peels: Aqueous Antioxidant Polyphenol Extraction as Affected by Organic Acid Addition. Beverages, 8(4), 71. https://doi.org/10.3390/beverages8040071