Chemical and Sensory Characteristics of Fruit Juice and Fruit Fermented Beverages and Their Consumer Acceptance
Abstract
:1. Introduction
2. Fruit Juices
2.1. The Chemical Composition of Fruit
2.2. Juice Composition vs. Processing Technologies
3. Fruit Juice Fermented Beverage
3.1. Alcoolic, Acetic and Lactic Fermentation
3.1.1. Alcoholic Fermentation
3.1.2. Lactic Acid Fermentation
3.1.3. Acetic Acid Fermentation
4. Sensory Characteristics and Consumer Acceptance of Fruit Juice and Fermented Fruit Beverages
5. Final Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dasan, B.G.; Boyaci, I.H. Effect of cold atmospheric plasma on inactivation of Escherichia coli and physicochemical properties of apple, orange, tomato juices, and sour cherry nectar. Food Bioprocess Technol. 2018, 11, 334–343. [Google Scholar] [CrossRef]
- Vilela, A.; Bacelar, E.; Pinto, T.; Anjos, R.; Correia, E.; Gonçalves, B.; Cosme, F. Beverage and Food Fragrance Biotechnology, Novel Applications, Sensory and Sensor Techniques: An Overview. Foods 2019, 8, 643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Z.; Zhao, Z.; Wu, X.; Lin, W.; Qin, Y.; Chen, H.; Wan, Y.; Zhou, C.; Bu, T.; Chen, H.; et al. A Review on Fruit and Vegetable Fermented Beverage-Benefits of Microbes and Beneficial Effects. Food Rev. Int. 2022, 38, 1–38. [Google Scholar] [CrossRef]
- Corbo, M.R.; Bevilacqua, A.; Petruzzi, L.; Casanova, F.P.; Sinigaglia, M. Functional beverages: The emerging side of functional foods. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1192–1206. [Google Scholar] [CrossRef]
- Marsh, A.J.; O’Sullivan, O.; Hill, C.; Ross, R.P.; Cotter, P.D. Sequence-based analysis of the microbial composition of water kefir from multiple sources. FEMS Microbiol. Lett. 2013, 348, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Kandylis, P.; Pissaridi, K.; Bekatorou, A.; Kanellaki, M.; Koutinas, A.A. Dairy and Non-Dairy Probiotic Beverages. Curr. Opin. Food Sci. 2016, 7, 58–63. [Google Scholar] [CrossRef]
- Ranadheera, C.S.; Vidanarachchi, J.K.; Rocha, R.S.; Cruz, A.G.; Ajlouni, S. Probiotic Delivery through Fermentation: Dairy vs. Non-Dairy Beverages. Fermentation 2017, 3, 67. [Google Scholar] [CrossRef] [Green Version]
- Garcia, C.; Guerin, M.; Souidi, K.; Remize, F. Lactic Fermented Fruit or Vegetable Juices: Past, Present and Future. Beverages 2020, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Gomes-Rochette, N.F.; Da Silveira Vasconcelos, M.; Nabavi, S.M.; Mota, E.F.; Nunes-Pinheiro, D.C.; Daglia, M.; De Melo, D.F. Fruit as potent natural antioxidants and their biological effects. Curr. Pharm. Biotechnol. 2016, 17, 986–993. [Google Scholar] [CrossRef]
- Septembre-Malaterre, A.; Remize, F.; Poucheret, P. Fruits and Vegetables, as a Source of Nutritional Compounds and Phytochemicals: Changes in Bioactive Compounds during Lactic Fermentation. Food Res. Int. 2018, 104, 86–99. [Google Scholar] [CrossRef]
- Dhalaria, R.; Verma, R.; Kumar, D.; Puri, S.; Tapwal, A.; Kumar, V.; Nepovimova, E.; Kuca, K. Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life. Antioxidants 2020, 9, 1123. [Google Scholar] [CrossRef] [PubMed]
- Leite, A.V.; Malta, L.G.; Riccio, M.F.; Eberlin, M.N.; Pastore, G.M.; Maróstica Júnior, M.R. Antioxidant Potential of Rat Plasma by Administration of Freeze-dried Jaboticaba Peel (Myrciaria Jaboticaba Vell Berg). J. Agric. Food Chem. 2011, 59, 2277–2283. [Google Scholar] [CrossRef] [PubMed]
- Swain, M.R.; Anandharaj, M.; Ray, R.C.; Parveen Rani, R. Fermented Fruits and Vegetables of Asia: A Potential Source of Probiotics. Biotechnol. Res. Int. 2014, 2014, 250424. [Google Scholar] [CrossRef] [PubMed]
- Chan, L.; Tseng, Y.; Liu, C.; Liang, C. Anti-oxidant and Anti-aging Activities of Fermented Vegetable-Fruit Drink. J. Food Nutr. Res. 2021, 9, 240–250. [Google Scholar] [CrossRef]
- Cosme, F.; Pinto, T.; Aires, A.; Morais, M.C.; Bacelar, E.; Anjos, R.; Ferreira-Cardoso, J.; Oliveira, I.; Vilela, A.; Gonçalves, B. Red Fruits Composition and Their Health Benefits—A Review. Foods 2022, 11, 644. [Google Scholar] [CrossRef]
- Ephrem, E.; Najjar, A.; Charcosset, C.; Greige-Gerges, H. Encapsulation of Natural Active Compounds, Enzymes, and Probiotics for Fruit Juice Fortification, Preservation, and Processing: An Overview. J. Funct. Foods 2018, 48, 65–84. [Google Scholar] [CrossRef]
- Horácková, Š.; Rokytová, K.; Bialasová, K.; Klojdová, I.; Sluková, M. Fruit Juices with Probiotics–New Type of Functional Foods. Czech J. Food Sci. 2018, 36, 284–288. [Google Scholar] [CrossRef] [Green Version]
- Paula, F.J.A.; Guiné, R.P.F.; Cruz-Lopes, L.; Duarte, A.C.; Fragata, A.O.S.; Reis, M.A.L. Effects of pre- and post-parvest factors on the selected elements contents in fruit juices. Czech J. Food Sci. 2015, 33, 384–391. [Google Scholar] [CrossRef] [Green Version]
- Yunita, D.; Dodd, C.E.R. Microbial Community Dynamics of a Blue-veined Raw Milk Cheese from the United Kingdom. J. Dairy Sci. 2018, 101, 4923–4935. [Google Scholar] [CrossRef]
- Pawar, S.V.; Rathod, V.K. Role of Ultrasound in Assisted Fermentation Technologies for Process Enhancements. Prep. Biochem. Biotechnol. 2020, 50, 627–634. [Google Scholar] [CrossRef]
- Blandino, A.; Al-Aseeria, M.E.; Pandiellaa, S.S.; Canterob, D.; Webba, C. Cereal-based fermented foods and beverages. Int. Food Res. J. 2003, 36, 527–543. [Google Scholar] [CrossRef]
- Steinkraus, K.H. Fermentations in world food processing. Compr. Rev. Food Sci. Food Saf. 2002, 1, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Bose, S.; Wang, J.-H.; Yadav, M.K.; Mahajan, G.B.; Kim, H. Fermentation, a feasible strategy for enhancing bioactivity of herbal medicines. Int. Food Res. J. 2016, 81, 1–16. [Google Scholar] [CrossRef]
- Charlton, K.; Kowal, P.; Soriano, M.M.; Williams, S.; Banks, E.; Vo, K.; Byles, J. Fruit and Vegetable Intake and Body Mass Index in a Large Sample of Middle-Aged Australian Men and Women. Nutrients 2014, 6, 2305–2319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maldonado-Celis, M.E.; Yahia, E.M.; Bedoya, R.; Landázuri, P.; Loango, N.; Aguillón, J.; Restrepo, B.; Guerrero Ospina, J.C. Chemical Composition of Mango (Mangifera indica L.) Fruit: Nutritional and Phytochemical Compounds. Front. Plant Sci. 2019, 10, 1073. [Google Scholar] [CrossRef]
- Siriwardhana, N.; Kalupahana, N.S.; Cekanova, M.; LeMieux, M.; Greer, B.; MoustaidMoussa, N. Modulation of adipose tissue inflammation by bioactive food compounds. J. Nutr. Biochem. 2013, 24, 613–623. [Google Scholar] [CrossRef]
- De Souza, V.R.; Pereira, P.A.; Da Silva, T.L.; Lima, L.C.O.; Pio, R.; Queiroz, F. Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chem. 2014, 156, 362–368. [Google Scholar] [CrossRef] [Green Version]
- Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef]
- Sinha, P.S.; Rosen, H.N. Clinical Pharmacology of Bisphosphonates. In Encyclopedia of Bone Biology; Zaidi, M., Ed.; Academic Press: London, UK, 2020; pp. 579–589. ISBN 9780128140826. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. A Guide to Carotenoid Analysis in Foods; ILSI Press: Washington, DC, USA, 2001; ISBN 1-57881-072-8. [Google Scholar]
- USDA-ARS (US Department of Agriculture, Agricultural Research Service). USDA Nutrient Database for Standard Reference, Release 25, Software 1.2.2, from the Nutrient Data Laboratory. Available online: http://www.nal.usda.gov/fnic/foodcomp (accessed on 20 December 2021).
- Hakala, M.; Lapvetelainen, A.; Houpalahti Kallio, H.; Tahvonen, R. Effects of varieties and cultivation conditions on the composition of strawberries. J. Food Compos. Anal. 2003, 16, 67–80. [Google Scholar] [CrossRef]
- Djordjević, B.; Šavikin, K.; Zdunić, G.; Janković, T.; Vulić, T.; Pljevljakušić, D.; Oparnica, C. Biochemical properties of the fresh and frozen black currants and juices. J. Med. Food. 2013, 16, 73–81. [Google Scholar] [CrossRef]
- Fayet-Moore, F.; Cassettari, T.; Tuck, K.; McConnell, A.; Petocz, P. Dietary fibre intake in Australia. Paper II: Comparative examination of food sources of fibre among high and low fibre consumers. Nutrients 2018, 10, 1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eswaran, S.; Muir, J.; Chey, W.D. Fiber and functional gastrointestinal disorders. Am. J. Gastroenterol. 2013, 108, 718–727. [Google Scholar] [CrossRef] [PubMed]
- Terry, P.; Giovannucci, E.; Michels, K.B.; Bergkvist, L.; Hansen, H.; Holmberg, L.; Wolk, A. Fruit, vegetables, dietary fiber, and risk of colorectal cancer. J. Natl. Cancer Inst. 2001, 93, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Stampar, F.; Veberic, R. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. J. Food Sci. 2012, 77, 10. [Google Scholar] [CrossRef] [PubMed]
- Brat, P.; Georgé, S.; Bellamy, A.; Du Chaffaut, L.; Scalbert, A.; Mennen, L.; Amiot, M.J. Daily polyphenol intake in France from fruit and vegetables. J. Nutr. 2006, 136, 2368–2373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omoregie, E.S.; Osagie, A.U. Antioxidant properties of methanolic extracts of some Nigerian plants on nutritionally-stressed rats. Niger. J. Basic Appl. Sci. 2012, 20, 7–20. [Google Scholar]
- Mokhtar, M.; Bouamar, S.; Di Lorenzo, A.; Temporini, C.; Daglia, M.; Riazi, A. The Influence of Ripeness on the Phenolic Content, Antioxidant and Antimicrobial Activities of Pumpkins (Cucurbita moschata Duchesne). Molecules 2021, 26, 3623. [Google Scholar] [CrossRef]
- Carocho, M.; Ferreira, I. The role of phenolic compounds in the fight against cancer—A review. Anti-Cancer Agents Med. Chem. 2013, 13, 1236–1258. [Google Scholar] [CrossRef]
- Panickar, K.S.; Anderson, R.A. Effect of polyphenols on oxidative stress and mitochondrial dysfunction in neuronal death and brain edema in cerebral ischemia. Int. J. Mol. Sci. 2011, 12, 8181–8207. [Google Scholar] [CrossRef] [Green Version]
- Harnly, J.M.; Doherty, R.F.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Bhagwat, S.; Gebhardt, S. Flavonoid content of U.S. fruits, vegetables and nuts. J. Agric. Food Chem. 2006, 54, 9966–9977. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L.; Seruga, M.; Novak, I.; Medvidović-Kosanović, M. Flavonols, phenolic acids and antioxidant activity of some red fruits. Dtsch. Lebensm. Rundsch. 2007, 103, 369–378. [Google Scholar]
- Može, Š.; Polak, T.; Gašperlin, L.; Koron, D.; Vanzo, A.; Ulrih, N.P.; Abram, V. Phenolics in Slovenian bilberries (Vaccinium myrtillus L.) and blueberries (Vaccinium corymbosum L.). J. Agric. Food Chem. 2011, 59, 6998–7004. [Google Scholar] [CrossRef] [PubMed]
- Mattila, P.; Hellström, J.; Törrönen, R. Phenolic acids in berries, fruits and beverages. J. Agric. Food Chem. 2006, 54, 7193–7199. [Google Scholar] [CrossRef]
- Pilat, B.; Zadernowski, R.; Czaplicki, S.; Jez, M. Cold storage, freezing and lyophilisation and its effect on transformations of ˙phenolic compounds in lingonberry (Vaccinium vitis-idaea L.). Pol. J. Nat. Sci. 2018, 33, 101–113. [Google Scholar]
- D'Archivio, M.; Filesi, C.; Di Benedetto, R.; Gargiulo, R.; Giovannini, C.; Masella, R. Polyphenols, dietary sources and bioavailability. Ann. Ist. Super. Sanita 2007, 43, 348–361. [Google Scholar]
- Hara, Y. Tea catechins and their applications as supplements and pharmaceutics. Pharmacol. Res. 2011, 64, 100–104. [Google Scholar] [CrossRef]
- Gu, L.; Kelm, M.A. Hammerstone, J.F.; Beecher, G.; Holden, J.; Haytowitz, D.; Prior, R.L. Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J. Nutr. 2004, 134, 613–617. [Google Scholar] [CrossRef]
- Clifford, M.N. Anthocyanins-nature, occurrence and dietary burden. J. Sci. Food Agric. 2000, 80, 1063–1072. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [Green Version]
- Costa, E.; Cosme, F.; Jordão, A.M.; Mendes-Faia, A. Anthocyanin profile and antioxidant activity from 24 grape varieties cultivated in two Portuguese wine regions. OENO ONE 2014, 48, 51–62. [Google Scholar] [CrossRef]
- Rodríguez-García, C.; Sánchez-Quesada, C.; Toledo, E.; Delgado-Rodríguez, M.; Gaforio, J.J. Naturally Lignan-Rich Foods: A Dietary Tool for Health Promotion? Molecules 2019, 24, 917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothwell, J.A.; Perez-Jimenez, J.; Neveu, V.; Medina-Remón, A.; M'hiri, N.; García-Lobato, P.; Manach, C.; Knox, C.; Eisner, R.; Wishart, D.S.; et al. Phenol-Explorer 3.0: A major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013, 2013, bat070. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Mar, M.I.; Mateos, R.; Garcıa-Parrilla, M.C.; Puertas, B.; Cantos-Villar, E. Bioactive compounds in wine: Resveratrol, hydroxytyrosol and melatonin: A review. Food Chem. 2012, 130, 797. [Google Scholar] [CrossRef]
- Gambini, J.; Inglés, M.; Olaso, G.; Lopez-Grueso, R.; Bonet-Costa, V.; Gimeno-Mallench, L.; Mas-Bargues, C.; Abdelaziz, K.M.; Gomez-Cabrera, M.C.; Vina, J.; et al. Properties of Resveratrol: In Vitro and In Vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxidative Med. Cell. Longev. 2015, 2015, 837042. [Google Scholar] [CrossRef] [Green Version]
- Frémont, L. Biological effects of resveratrol. Life Sci. 2000, 66, 663–673. [Google Scholar] [CrossRef]
- Francis, I.L.; Newton, J.L. Determining wine aroma from compositional data. Aust. J. Grape Wine Res. 2005, 11, 114–126. [Google Scholar] [CrossRef]
- Jaros, D.; Thamke, I.; Raddatz, H.; Rohm, H. Single-cultivar cloudy juice made from table apples: An attempt to identify the driving force for sensory preference. Eur. Food Res. Technol. 2009, 229, 51–61. [Google Scholar] [CrossRef]
- Medina, S.; Perestrelo, R.; Santos, R.; Pereira, R.; Câmara, J.S. Differential volatile organic compounds signatures of apple juices from Madeira Island according to variety and geographical origin. Microchem. J. 2019, 150, 104094. [Google Scholar] [CrossRef]
- Estrada-Beltran, A.; Salas-Salazar, N.A.; Parra-Quezada, R.A.; Gonzalez-Franco, A.C.; Soto-Caballero, M.C.; Rodriguez-Roque, M.J.; Flores-Cordova, M.A.; Chavez-Martinez, A. Effect of conventional and organic fertilizers on volatile compounds of raspberry fruit. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 862–870. [Google Scholar] [CrossRef]
- Pinto, T.; Vilela, A.; Pinto, A.; Nunes, M.F.; Cosme, F.; Anjos, R. Influence of cultivar and conventional and organic agricultural practices on phenolic and sensory profile of blackberries (Rubus fruticosus). J. Sci. Food Agric. 2018, 98, 4616–4624. [Google Scholar] [CrossRef] [PubMed]
- Anjos, R.; Cosme, F.; Gonçalves, A.; Nunes, F.M.; Vilela, A.; Pinto, T. Effect of agricultural practices, conventional vs organic, on the phytochemical composition of 'Kweli' and 'Tulameen' raspberries (Rubus idaeus L.). Food Chem. 2020, 328, 126833. [Google Scholar] [CrossRef] [PubMed]
- Perestrelo, R.; Silva, C.; Silva, P.; Medina, S.; Câmara, J.S. Differentiation of fresh and processed fruit juices using volatile composition. Molecules 2019, 24, 974. [Google Scholar] [CrossRef] [Green Version]
- Kebede, B.; Ting, V.; Eyres, G.; Oey, I. Volatile changes during storage of shelf stable apple juice: Integrating GC-MS fingerprinting and chemometrics. Foods 2020, 9, 165. [Google Scholar] [CrossRef] [Green Version]
- Sobhana, A.; Mathew, J.; Ambili Appukutan, A.; Mredhula Raghavan, C. Blending of cashew apple juice with fruit juices and spices for improving nutritional quality and palatability. Acta Hortic. 2015, 1080, 369–375. [Google Scholar] [CrossRef]
- Curi, P.N.; Almeida, A.B.D.; Tavares, B.D.S.; Nunes, C.A.; Pio, R.; Pasqual, M.; Souza, V.R.D. Optimization of tropical fruit juice based on sensory and nutritional characteristics. Food Sci. Technol. 2017, 37, 308–314. [Google Scholar] [CrossRef] [Green Version]
- Buzrul, S.; Hami, A.; Largeteau, A.; Demazeau, G. Inactivation of Escherichia coli and Listeria innocua in kiwifruit and pineapple juices by high hydrostatic pressure. Int. J. Food Microbiol. 2008, 124, 275–278. [Google Scholar] [CrossRef]
- Aadil, R.M.; Zeng, X.-A.; Sun, D.-W.; Wang, M.-S.; Liu, Z.-W.; Zhang, Z.-H. Combined effects of sonication and pulsed electric field on selected quality parameters of grapefruit juice. LWT-Food Sci. Technol. 2015, 62, 890–893. [Google Scholar] [CrossRef]
- Alves Filho, E.G.; Silva, L.M.A.; de Brito, E.S.; Wurlitzer, N.J.; Fernandes, F.A.; Rabelo, M.C.; Rodrigues, S. Evaluation of thermal and non-thermal processing effect on non-prebiotic and prebiotic acerola juices using 1H qNMR and GC–MS coupled to chemometrics. Food Chem. 2018, 265, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Moyer, J.C.; Aitken, H.C. Apple juice. In Fruit and Vegetable Juice Processing Technology; Nelson, P.E., Tressler, D.K., Eds.; AVI: Westport, CT, USA, 1980; pp. 212–267. [Google Scholar]
- Braddock, R.J. Single-strength orange juice and concentrates. In Handbook of Citrus By-Products and Processing Technology; Braddock, R.J., Ed.; Wiley: New York, NY, USA, 1999; pp. 53–83. [Google Scholar]
- Plaza, L.; Sanchez-Moreno, C.; Elez-Martinez, P.; Ancos, B.; Martin-Belloso, O.; Cano, M.P. Effect of refrigerated storage on vitamin C and antioxidant activity of orange juice processed by high-pressure or pulsed electric fields with regard to low pasteurization. Eur. Food Res. Technol. 2006, 223, 487–493. [Google Scholar] [CrossRef]
- Vegara, S.; Mena, P.; Martí, N.; Saura, D.; Valero, M. Approaches to understanding the contribution of anthocyanins to the antioxidant capacity of pasteurized pomegranate juices. Food Chem. 2013, 141, 1630–1636. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Rosas, S.F.; Ballinas-Casarrubias, M.L.; Nevarez-Moorillon, G.V.; Martin-Belloso, O.; Ortega-Rivas, E. Thermal and pulsed electric fields pasteurization of apple juice: Effects on physicochemical properties and flavour compounds. J. Food Eng. 2007, 83, 41–46. [Google Scholar] [CrossRef]
- Mena, P.; Vegara, S.; Martí, N.; García-Viguera, C.; Saura, D. Changes on indigenous microbiota, colour, bioactive compounds and antioxidant activity of pasteurised pomegranate juice. Food Chem. 2013, 141, 2122–2129. [Google Scholar] [CrossRef]
- de Jesus, A.L.T.; Cristianini, M.; dos Santos, N.M.; Maróstica Júnior, M.R. Effects of high hydrostatic pressure on the microbial inactivation and extraction of bioactive compounds from açai (Euterpe oleracea Martius) pulp. Food Res. Int. 2020, 130, 108856. [Google Scholar] [CrossRef] [PubMed]
- de Jesus, A.L.T.; Leite, T.S.; Cristianini, M. High isostatic pressure and thermal processing of açai fruit (Euterpe oleracea Martius): Effect on pulp color and inactivation of peroxidase and polyphenol oxidase. Food Res. Int. 2018, 105, 853–862. [Google Scholar] [CrossRef] [PubMed]
- de Castro, D.R.G.; Mar, J.M.; da Silva, L.S.; da Silva, K.A.; Sanches, E.A.; de Araújo Bezerra, J.; Fernandes, F.A.N.; Campelo, P.H. Dielectric barrier atmospheric cold plasma applied on camu-camu juice processing: Effect of the excitation frequency. Food Res. Int. 2020, 131, 109044. [Google Scholar] [CrossRef]
- Linhares, M.F.D.; Alves Filho, E.G.; Silva, L.M.A.; Fonteles, T.V.; Wurlitzer, N.J.; Brito, E.S.; Fernandes, F.A.N.; Rodrigues, S. Thermal and non-thermal processing effect on açai juice composition. Food Res. Int. 2020, 136, 109506. [Google Scholar] [CrossRef]
- Aadil, R.M.; Zeng, X.-A.; Han, Z.; Sun, D.-W. Effects of ultrasound treatments on quality of grapefruit juice. Food Chem. 2013, 141, 3201–3206. [Google Scholar] [CrossRef]
- Shah, A.K.N.N.; Shamsudin, R.; Abdul Rahman, R.; Adzahan, N.M. Fruit Juice Production Using Ultraviolet Pasteurization: A Review. Beverages 2016, 2, 22. [Google Scholar] [CrossRef] [Green Version]
- Basak, S.; Ramaswamy, H.S.; Simpson, B.K. High pressure inactivation of pectin methyl esterase in orange juice using combination treatments. J. Food Biochem. 2001, 25, 509–552. [Google Scholar] [CrossRef]
- Fernández-García, A.; Butz, P.; Bognar, A.; Tauscher, B. Antioxidative capacity, nutrient content and sensory quality of orange juice and an orange–lemon–carrot juice product after high pressure treatment and storage in different packaging. Eur. Food Res. Technol. 2001, 213, 290–296. [Google Scholar] [CrossRef]
- Ferrari, G.; Maresca, P.; Ciccarone, R. The application of high hydrostatic pressure for the stabilization of functional foods: Pomegranate juice. J. Food Eng. 2010, 100, 245–253. [Google Scholar] [CrossRef]
- Varela-Santos, E.; Ochoa-Martinez, A.; Tabilo-Munizaga, G.; Reyes, J.E.; Pérez-Won, M.; Briones-Labarca, V.; Morales-Castro, J. Effect of high hydrostatic pressure (HHP) processing on physicochemical properties, bioactive compounds and shelf-life of pomegranate juice. Innov. Food Sci. Emerg. Technol. 2012, 13, 13–22. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C.; Plaza, L.; Elez-Martínez, P.; De Ancos, B.; Martín-Belloso, O. Impact of high pressure and pulsed electric fields on bioactive compounds and antioxidant activity of orange juice in comparison with traditional thermal processing. J. Agric. Food Chem. 2005, 53, 4403–4409. [Google Scholar] [CrossRef]
- Oms-Oliu, G.; Odriozola-Serrano, I.; Soliva-Fortuny, R.; Elez-Martinez, P.; Martin-Belloso, O. Stability of health related compounds in plant foods through the application of non thermal processes. Trends Food Sci. Technol. 2012, 23, 111–123. [Google Scholar] [CrossRef]
- Jin, Z.T.; Zhang, Q.H. Pulsed electric field inactivation of microorganisms and preservation of quality of cranberry juice. J. Food Process. Preserv. 1999, 23, 481–497. [Google Scholar] [CrossRef]
- Agcam, E.; Akyıldız, A.; Akdemir Evrendilek, G. Comparison of phenolic compounds of orange juice processed by pulsed electric fields (PEF) and conventional thermal pasteurization. Food Chem. 2014, 143, 354–361. [Google Scholar] [CrossRef]
- Shi, X.M.; Zhang, G.J.; Wu, X.L.; Li, Y.X.; Ma, Y.; Shao, X.J. Effect of low-temperature plasma on microorganism inactivation and quality of freshly squeezed orange juice. IEEE Trans. Plasma Sci. 2011, 39, 1591–1597. [Google Scholar] [CrossRef]
- Surowsky, B.; Frohling, A.; Gottschalk, N.; Schluter, O.; Knor, D. Impact of cold plasma on Citrobacter freundii in apple juice: Inactivation kinetics and mechanisms. Int. J. Food Microbiol. 2014, 174, 63–71. [Google Scholar] [CrossRef]
- Almeida, F.D.L.; Cavalcante, R.S.; Cullen, P.J.; Frias, J.M.; Bourke, P.; Fernandes, F.A.N.; Rodrigues, S. Effects of atmospheric cold plasma and ozone on prebiotic orange juice. Innov. Food Sci. Emerg. Technol. 2015, 32, 127–135. [Google Scholar] [CrossRef]
- Bursać Kovačević, D.; Putnik, P.; Dragović-Uzelac, V.; Pedisić, S.; Režek Jambrak, A.; Herceg, Z. Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chem. 2016, 190, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wang, R.; Gan, Z.; Shao, T.; Zhang, X.; He, M.; Sun, A. Effect of cold plasma on blueberry juice quality. Food Chem. 2019, 290, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Paixão, L.M.N.; Fonteles, T.V.; Oliveira, V.S.; Fernandes, F.A.N.; Rodrigues, S. Cold plasma effects on functional compounds of siriguela juice. Food Bioprocess Technol. 2019, 12, 110–121. [Google Scholar] [CrossRef]
- Herceg, Z.; Kovačević, D.B.; Kljusurić, J.G.; Jambrak, A.R.; Zorić, Z.; Dragović-Uzelac, V. Gas phase plasma impact on phenolic compounds in pomegranate juice. Food Chem. 2016, 190, 665–672. [Google Scholar] [CrossRef]
- Park, I.-K.; Ha, J.-W.; Kang, D.-H. Investigation of optimum ohmic heating conditions for inactivation of Escherichia coli O157: H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in apple juice. BMC Microbiol. 2017, 17, 117. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.; Ryang, J.; Lee, B.; Kim, C.; Rhee, M. Continuous ohmic heating of commercially processed apple juice using five sequential electric fields results in rapid inactivation of Alicyclobacillus acidoterrestris spores. Int. J. Food Microbiol. 2017, 246, 80–84. [Google Scholar] [CrossRef]
- Kim, S.-S.; Kang, D.-H. Comparison of pH effects on ohmic heating and conventional heating for inactivation of Escherichia coli O157: H7, Salmonella enterica Serovar Typhimurium and Listeria monocytogene s in orange juice. LWT-Food Sci. Technol. 2015, 64, 860–866. [Google Scholar] [CrossRef]
- Demirdöven, A.; Baysal, T. Optimization of Ohmic Heating Applications for Pectin Methylesterase Inactivation in Orange Juice. J. Food Sci. Technol. 2014, 51, 1817–1826. [Google Scholar] [CrossRef] [Green Version]
- Funcia, E.S.; Gut, J.A.W.; Sastry, S.K. Effect of Electric Field on Pectinesterase Inactivation during Orange Juice Pasteurization by Ohmic Heating. Food Bioprocess Technol. 2020, 13, 1206–1214. [Google Scholar] [CrossRef]
- Makroo, H.A.; Saxena, J.; Rastogi, N.K.; Srivastava, B. Ohmic heating assisted polyphenol oxidase inactivation of watermelon juice: Effects of the treatment on pH, lycopene, total phenolic content, and color of the juice. J. Food Processing Preserv. 2017, 41, e13271. [Google Scholar] [CrossRef]
- Elzubier, A.S.; Thomas, C.S.Y.; Sergie, S.Y.; Chin, N.L.; Ibrahim, O.M. The effect of buoyancy force in computational fluid dynamics simulation of a two-dimensional continuous ohmic heating process. Am. J. Appl. Sci. 2009, 6, 1902–1908. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, S.M.B.; Roohi, R. Ohmic heating of blended citrus juice: Numerical modeling of process and bacterial inactivation kinetics. Innov. Food Sci. Emerg. Technol. 2019, 52, 313–324. [Google Scholar] [CrossRef]
- Darvishi, H.; Salami, P.; Fadavi, A.; Saba, M.K. Processing kinetics, quality and thermodynamic evaluation of mulberry juice concentration process using Ohmic heating. Food Bioprod. Processing 2020, 123, 102–110. [Google Scholar] [CrossRef]
- Leizerson, S.; Shimoni, E. Effect of Ultrahigh-temperature Continuous Ohmic Heating Treatment on Fresh Orange Juice. J. Agric. Food Chem. 2005, 53, 3519–3524. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Coates, G.A. Effect of Thermal Pasteurization on Valencia Orange Juice Color and Pigments. LWT Food Sci. Technol. 2003, 36, 153–156. [Google Scholar] [CrossRef]
- Rupasinghe, H.V.; Yu, L.J. Emerging Preservation Methods for Fruit Juices and Beverages. In Food Additive; InTech.: Rijeka, Croatia, 2012. [Google Scholar]
- Min, S.; Jin, Z.T.; Min, S.K.; Yeom, H.; Zhang, Q.H. Commercial-scale pulsed electric field processing of orange juice. J. Food Sci. 2003, 68, 1265–1271. [Google Scholar] [CrossRef]
- Lee, H.; Choi, S.; Kim, E.; Kim, Y.-N.; Lee, J.; Lee, D.-U. Effects of Pulsed Electric Field and Thermal Treatments on Microbial Reduction, Volatile Composition, and Sensory Properties of Orange Juice, and Their Characterization by a Principal Component Analysis. Appl. Sci. 2021, 11, 186. [Google Scholar] [CrossRef]
- Evrendilek, G.A.; Jin, Z.T.; Ruhlman, K.T.; Qiu, X.; Zhang, Q.H.; Richter, E.R. Microbial safety and shelf-life of apple juice and cider processed by bench and pilot scale PEF systems. Innov. Food Sci. Emerg. Technol. 2000, 1, 77–86. [Google Scholar] [CrossRef]
- Polydera, A.C.; Stoforos, N.G.; Taoukis, P.S. Effect of high hydrostatic pressure treatment on post processing antioxidant activity of fresh Navel orange juice. Food Chem. 2005, 91, 495–503. [Google Scholar] [CrossRef]
- Deliza, R.; Rosenthal, A.; Abadio, F.B.D.; Silva, C.H.; Castillo, C. Application of High Pressure Technology in the Fruit Juice Processing: Benefits Perceived by Consumers. J. Food Eng. 2005, 67, 241–246. [Google Scholar] [CrossRef]
- Torres, B.; Tiwari, B.K.; Patras, A.; Cullen, P.J.; Brunton, N.; ODonnell, C.P. Stability of anthocyanins and ascorbic acid of high pressure processed blood orange juice during storage. Innov. Food Sci. Emerg. Technol. 2011, 12, 93–97. [Google Scholar] [CrossRef]
- Donsi, G.; Ferrari, G.; Di Matteo, M. High-pressure stabilization of orange juice: Evaluation of the effects of process conditions. Ital. J. Food Sci. 1996, 8, 99–106. [Google Scholar]
- Novotna, P.; Valentova, H.; Strohalm, J.; Kyhos, K.; Landfeld, A.; Houska, M. Sensory evaluation of high pressure treated apple juice during its storage. Czech J. Food Sci. 1999, 17, 196–198. [Google Scholar]
- Lambert, Y.; Demazeau, G.; Largeteau, A.; Bouvier, J.-M. Changes in aromatic volatile composition of strawberry after high pressure treatment. Food Chem. 1999, 67, 7–16. [Google Scholar] [CrossRef]
- Tiwari, B.K.; Muthukumarappan, K.; O’Donnell, C.P.; Cullen, P.J. Colour degradation and quality parameters of sonicated orange juice using response surface methodology. LWT-Food Sci. Technol. 2008, 41, 1876–1883. [Google Scholar] [CrossRef]
- Gómez-López, V.M.; Orsolani, L.; Martínez-Yépez, A.; Tapia, M.S. Microbiological and sensory quality of sonicated calcium-added orange juice. LWT-Food Sci. Technol. 2010, 43, 808–813. [Google Scholar] [CrossRef]
- Pala, C.U.; Toklucu, A.K. Microbial, physicochemical and sensory properties of UV-C processed orange juice and its microbial stability during refrigerated storage. LWT Food Sci. Technol. 2013, 50, 426–431. [Google Scholar] [CrossRef]
- Pala, C.U.; Toklucu, A.K. Effect of UV-C on anthocyanin content and other quality parameters of pomegranate juice. J. Food Compos. Anal. 2011, 24, 790–795. [Google Scholar] [CrossRef]
- Ishita, C.; Athmaselvi, K.A. Changes in pH and colour of watermelon juice during ohmic heating. Int. Food Res. J. 2017, 24, 741–746. [Google Scholar]
- Lopez, A.C.A.E.; Andrade, S.H.; Amorim, R.P.; Duarte, J.C.; Ferreira, W. New Alcoholic Fermented Beverages—Potentials and Challenges. In Fermented Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 577–603. [Google Scholar] [CrossRef]
- Swami, S.B.; Thakor, N.J.; Divate, A.D. Fruit wine production: A review. J. Food Res. Technol. 2014, 2, 93–100. [Google Scholar]
- Barrett, D.M.; Lloyd, B. Advanced preservation methods and nutrient retention in fruits and vegetables. J. Sci. Food Agric. 2012, 92, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Jagtap, U.B.; Bapat, V.A. Wines from fruits other than grapes: Current status and future prospectus. Food Biosci. 2015, 9, 80–96. [Google Scholar] [CrossRef]
- Ruiz-Rodríguez, L.G.; Gasga, V.M.Z.; Pescuma, M.; Van Nieuwenhove, C.; Mozzi, F.; Burgos, J.A.S. Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Int. Food Res. J. 2021, 140, 109854. [Google Scholar] [CrossRef] [PubMed]
- Fleet, G.H. Yeast interactions and wine flavour. Int. J. Food Microbiol. 2003, 86, 11–22. [Google Scholar] [CrossRef]
- Harding, G. A Wine Miscellany; Carkson Potter Publ.: New York, NY, USA, 2005. [Google Scholar]
- Maicas, S.; Mateo, J.J. Hydrolysis of terphenyl glycosides in grape juice and other fruit juices: A review. Appl. Microbiol. Biotechnol. 2005, 67, 322–335. [Google Scholar] [CrossRef]
- Bujna, E.; Farkas, N.A.; Tran, A.M.; Dam, M.S.; Nguyen, Q.D. Lactic acid fermentation of apricot juice by mono- and mixed cultures of probiotic Lactobacillus and Bifidobacterium strains. Food Sci. Biotechnol. 2017, 27, 547–554. [Google Scholar] [CrossRef]
- Wang, D.; Xu, Y.; Hu, J.; Zhao, G. Fermentation kinetics of different sugars by Apple wine Yeast Saccharomyces cerevisiae. J. Inst. Brew. 2004, 110, 340–346. [Google Scholar] [CrossRef]
- Robinson, J. The Oxford Companion to Wine, 3rd ed.; Oxford University Press: New York, NY, USA, 2006; p. 840. [Google Scholar]
- Selli, S.; Kürkçüoğlu, M.; Kafkas, E.; Cabaroglu, T.; Demirci, B.; Başer, K.H.C.; Canbas, A. Volatile flavour components of mandarin wine obtained from clementines (Citrus reticula Blanco) extracted by solid-phase microextraction. Flavour Fragr. J. 2004, 19, 413–416. [Google Scholar] [CrossRef]
- Morton, J.F. Jaboticabas. In Fruits of Warm Climates; Morton, J.F., Ed.; Creative Resource Systems: Winterville, NC, USA, 1987; pp. 371–374. [Google Scholar]
- Heatherbell, D.A.; Struebi, P.; Eschenbruch, R.; Withy, L.M. A New Fruit Wine from Kiwifruit: A Wine of Unusual Composition and Riesling Sylvaner Character. Am. J. Enol. Vitic. 1980, 31, 114–121. [Google Scholar]
- Lin, F. Florence Lin’s Chinese regional cookbook. In Hawthorn Books; Dutton Adult: New York, NY, USA, 1975; p. 39. ISBN 978-0-8015-2674-9. [Google Scholar]
- Adaikan, P.; Ganesan, A.A. Mechanism of the Oxytoxic activity of Comosus proteinases. J. Pharm. Biol. 2004, 42, 646–655. [Google Scholar] [CrossRef]
- Duarte, F.W.; Dragone, G.; Dias, R.D. Fermentative behavior of Saccharomyces strains during microvinification of raspberry juice (Rubus idaeus L.). Int. J. Food Microbiol. 2010, 143, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Duarte, F.W.; Dias, R.D.; Oliveira, M.J. Raspberry (Rubusidaeus L.) wine: Yeast selection, sensory evaluation, and instrumental analysis of volatile and other compounds. Food Res. Int. 2010, 43, 2303–2314. [Google Scholar] [CrossRef]
- Mena, P.; Gil-Izquierdo, A.; Moreno, D.A.; Martí, N.; García-Viguera, C. Assessment of the melatonin production in pomegranate wines. LWT-Food Sci. Technol. 2012, 47, 13–18. [Google Scholar] [CrossRef]
- Hu, L.; Wang, J.; Ji, X.; Liu, R.; Chen, F.; Zhang, X. Selection of non-Saccharomyces yeasts for orange wine fermentation based on their enological traits and volatile compounds formation. J. Food Sci. Technol. 2018, 55, 4001–4012. [Google Scholar] [CrossRef]
- Gschaedler, A.; Iñiguez-Muñoz, L.E.; Flores-Flores, F.F.; Kirchmayr, M.; Arellano-Plaza, M. Use of non-Saccharomyces yeasts in cider fermentation: Importance of the nutrients addition to obtain an efficient fermentation. Int. J. Food Microbiol. 2021, 347, 109169. [Google Scholar] [CrossRef] [PubMed]
- László, Z.; Hodúr, C.; Pálinka, J.C. Hungarian Distilled Fruit. Traditional Foods. In Integrating Food Science and Engineering Knowledge into the Food Chain; Kristbergsson, K., Oliveira, J., Eds.; Springer: Boston, MA, USA, 2016; Volume 10. [Google Scholar] [CrossRef]
- Fejzullahu, F.; Kiss, Z.; Kun-Farkas, G.; Kun, S. Influence of Non-Saccharomyces Strains on Chemical Characteristics and Sensory Quality of Fruit Spirit. Foods 2021, 10, 1336. [Google Scholar] [CrossRef]
- Kunyeit, L.; Anu-Appaiah, K.A.; Rao, R.P. Application of probiotic yeasts on candida species associated infection. J. Fungi 2020, 6, 189. [Google Scholar] [CrossRef]
- Cosme, F.; Inês, A.; Vilela, A. Consumer’s acceptability and health consciousness of probiotic and prebiotic of non-dairy products. Int. Food Res. J. 2022, 151, 110842. [Google Scholar] [CrossRef]
- Nazhand, A.; Souto, E.B.; Lucarini, M.; Souto, S.B.; Durazzo, A.; Santini, A. Ready to Use Therapeutical Beverages: Focus on Functional Beverages Containing Probiotics, Prebiotics and Synbiotics. Beverages 2020, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Szutowska, J. Functional properties of lactic acid bacteria in fermented fruit and vegetable juices: A systematic literature review. Eur. Food Res. Technol. 2020, 246, 357–372. [Google Scholar] [CrossRef]
- Bourdichon, F.; Casaregola, S.; Farrokh, C.; Frisvad, J.C.; Gerds, M.L.; Hammes, W.P. Food fermentations: Microorganisms with technological beneficial use. Int. J. Food Microbiol. 2012, 154, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Di Cagno, R.; Coda, R.; De Angelis, M.; Gobbetti, M. Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiol. 2013, 33, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ayed, L.; M’hir, S.; Hamdi, M. Microbiological, biochemical, and functional aspects of fermented vegetable and fruit beverages. J. Chem. 2020, 2020, 5790432. [Google Scholar] [CrossRef]
- Ong, Y.Y.; Tan, W.S.; Rosfarizan, M.; Chan, E.S.; Tey, B.T. Isolation and identification of lactic acid bacteria from fermented red dragon fruit juices. J. Food Sci. 2012, 77, M560-4. [Google Scholar] [CrossRef]
- Saelee, M.; Sivamaruthi, B.S.; Sirilun, S.; Kesika, P.; Peerajan, S.; Chaiyasut, C. Effect of Green Tea Extract during Lactic Acid Bacteria Mediated Fermentation of Morinda citrifolia Linn. (Noni) Fruit Juice. Pak. J. Biol. Sci. 2019, 22, 486–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Tao, Y.; Li, D.; Wen, G.; Zhou, J.; Manickam, S.; Han, Y.; Chai, W.S. Fermentation of blueberry juices using autochthonous lactic acid bacteria isolated from fruit environment: Fermentation characteristics and evolution of phenolic profiles. Chemosphere 2021, 276, 130090. [Google Scholar] [CrossRef] [PubMed]
- Ishii, M.; Matsumoto, Y.; Nishida, S.; Sekimizu, K. Decreased sugar concentration in vegetable and fruit juices by growth of functional lactic acid bacteria. Drug Discov. Ther. 2017, 11, 30–34. [Google Scholar] [CrossRef] [Green Version]
- De Roos, J.; De Vuyst, L. Acetic acid bacteria in fermented foods and beverages. Curr. Opin. Biotechnol. 2018, 49, 115–119. [Google Scholar] [CrossRef]
- Luzón-Quintana, L.M.; Castro, R.; Durán-Guerrero, E. Biotechnological Processes in Fruit Vinegar Production. Foods 2021, 10, 945. [Google Scholar] [CrossRef]
- Emiljanowicz, k.E.; Malinowska-Pańczyk, E. Kombucha from alternative raw materials—The review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3185–3194. [Google Scholar] [CrossRef]
- Vilela, A. The Importance of Yeasts on Fermentation Quality and Human Health-Promoting Compounds. Fermentation 2019, 5, 46. [Google Scholar] [CrossRef] [Green Version]
- Chakravorty, S.; Bhattacharya, S.; Chatzinotas, A.; Chakraborty, W.; Bhattacharya, D.; Gachhui, R. Kombucha tea fermentation: Microbial and biochemical dynamics. Int. J. Food Microbiol. 2016, 220, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Vina, I.; Semjonovs, P.; Linde, R.; Deniņa, I. Current evidence on physiological activity and expected health effects of kombucha fermented beverage. J. Med. Food 2014, 17, 179–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenwalt, C.J.; Steinkraus, K.H.; Ledford, R.A. Kombucha, the fermented tea: Microbiology, composition, and claimed health effects. J. Food Prot. 2000, 63, 976–981. [Google Scholar] [CrossRef]
- Jayabalan, R.; Malbaša, R.V.; Lončar, E.S.; Vitas, J.S.; Sathishkumar, M. A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr. Rev. Food Sci. Food Saf. 2014, 13, 538–550. [Google Scholar] [CrossRef]
- Kapp, J.M.; Sumner, W. Kombucha: A systematic review of the empirical evidence of human health benefit. Ann. Epidemiol. 2019, 30, 66–70. [Google Scholar] [CrossRef]
- Zubaidah, E.; Apriyadi, T.E.; Kalsum, U.; Widyastuti, E.; Estiasih, T.; Srianta, I.; Blanc, P.J. In vivo evaluation of snake fruit kombucha as hyperglycemia therapeutic agent. Int. Food Res. J. 2018, 25, 453–457. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Kim, H.; Cadwallader, K.R.; Feng, H.; Martin, S.E. Sonication in combination with heat and low pressure as an alternative pasteurization treatment – Effect on Escherichia coli K12 inactivation and quality of apple cider. Ultrason. Sonochem. 2013, 20, 1131–1138. [Google Scholar] [CrossRef]
- Kasikci, B.M.; Bagdatlioglu, N. High hydrostatic pressure treatment of fruit, fruit products and fruit juices: A review on phenolic compounds. J. Food Health Sci. 2016, 2, 27–39. [Google Scholar]
- Khandpur, P.; Gogate, P.R. Understanding the effect of novel approaches based on ultrasound on sensory profile of orange juice. Ultrason. Sonochem. 2015, 27, 87–95. [Google Scholar] [CrossRef]
- Santhirasegaram, V.; Razali, Z.; George, D.S.; Chandran, S. Effects of Thermal and Non-thermal Processing on Phenolic Compounds, Antioxidant Activity and Sensory Attributes of Chokanan Mango (Mangifera indica L.) Juice. Food Bioprocess Technol. 2015, 8, 2256–2267. [Google Scholar] [CrossRef]
- Muhialdin, B.J.; Kadum, H.; Zarei, M.; Hussin, A.S.M. Effects of metabolite changes during lacto-fermentation on the biological activity and consumer acceptability for dragon fruit juice. LWT-Food Sci. Technol. 2020, 121, 108992. [Google Scholar] [CrossRef]
- Do, T.; Fan, L. Probiotic Viability, Qualitative Characteristics, and Sensory Acceptability of Vegetable Juice Mixture Fermented with Lactobacillus Strains. Food Sci. Nutr. 2019, 10, 412–427. [Google Scholar] [CrossRef] [Green Version]
- Mandha, J.; Shumoy, H.; Devaere, J.; Schouteten, J.J.; Gellynck, X.; de Winne, A.; Matemu, A.O.; Raes, K. Effect of lactic acid fermentation of watermelon juice on its sensory acceptability and volatile compounds. Food Chem. 2021, 358, 129809. [Google Scholar] [CrossRef]
- Kasron, N.; Abdul Manan, M.; Mat Azmin, M.N.H.; Saari, N.A.; Abd Latip, M. Consumer Acceptance of Fermented Drinks in Malaysia. Malays. J. Soc. Sci. Humanit. 2021, 6, 306–314. [Google Scholar] [CrossRef]
- Skąpska, S.; Marszałek, K.; Woźniak, Ł.; Szczepańska, J.; Danielczuk, J.; Zawada, K. The Development and Consumer Acceptance of Functional Fruit-Herbal Beverages. Foods 2020, 9, 1819. [Google Scholar] [CrossRef]
- Cordelle, S.; Lange, C.; Schlich, P. On the consistency of liking scores: Insights from a study including 917 consumers from 10 to 80 years old. Food Qual. Prefer. 2004, 15, 831–841. [Google Scholar] [CrossRef]
Fruits | Minerals (mg/100 g of Fresh Weight) | Vitamins | References | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca | P | K | Mg | Na | Fe | Se | Cu | Mn | Zn | C | A | B6 | B2 | ||
Apple | 6 | 11 | 107 | 5 | 1 | 120 a | 0 | 30 a | 40 a | 40 a | 4.6 | 3 a | - | - | [31] |
Apricot | 13 | 23 | 259 | 10 | 1 | 390 a | 0.1 a | 80 a | 80 a | 200 a | 10 | 96 a | - | - | [31] |
Banana | 5 | 22 | 358 | 27 | 1 | 260 a | 1 a | 80 a | 270 a | 150 a | 8.7 | 3 a | - | - | [31] |
Blackberry | 6–29 | 2–29 d | 77–349 | 6–44.8 | 2–4 d | 0.28–1.28 | - | 0.02–0.04 d | 1.2–2.6 d | 0.07–0.44 | 34–52 | - | - | - | [15,28,31,32] |
Blackcurrant | 35–45 d | 35–40 d | 300–320 d | 15–18 d | 1.7–2.5 d | 1.3–2.5 d | - | 0.15–0.20 d | 0.35–0.52 d | 0.25–0.31 d | 122.4–193.2 | - | - | - | [28,33] |
Blueberry | 15–35 d | 8.6 | 56–80 d | 4.9 | 0.11–0.22 d | 1.24 | - | 0.02–0.04 d | - | 0.13 | 10–100 | - | 1999 c | 216 c | [15,28,31,32] |
Cherry | 13 | 12.2–15 | 90.9–173 | 11–12.2 | 0 | 1.16 | 0 | 60 a | - | 0.69 | 10–62.4 | 3 a | 790 c | 247 c | [15,31,32] |
Clementine | 30 | 21 | 177 | 10 | 1 | 140 a | 10 a | 40 a | 20 a | 60 a | 48.8 | - | - | - | [31] |
Cranberry | 15–30 d | 1–4 d | 24–30 d | 3–7 d | 4–6 d | 0.16–0.4 d | 0.13–0.2 d | 0.3–0.10 d | 0.02–0.04 d | 10 b | - | 606 c | 69 c | [15,28] | |
Fig | 35 | 14 | 14 | 17 | 1 | 370 a | 0.2 a | 70 a | 130 a | 150 a | 2 | 7 a | - | - | [31] |
Grapes | 10 | 20 | 191 | 7 | 2 | 360 a | 0.1 a | 130 a | 70 a | 70 a | 3.2 | 3 a | - | - | [31] |
Litchis | 5 | 31 | 171 | 10 | 1 | 310 a | 0.6 a | 150 a | 60 a | 70 | 71.5 | 0 | - | - | [31] |
Mango | 11 | 14 | 168 | 10 | 1 | 160 a | 0.6 a | 110 a | 60 a | 90 a | 36.4 | 54 a | 0.1–0.16 | 0.02–0.1 | [31] |
Melon | 9 | 15 | 267 | 12 | 16 | 210 a | 0.4 a | 40 a | - | 180 a | 36.7 | 169 a | - | - | [31] |
Orange | 41 | 14 | 181 | 10 | 0 | 100 a | 0.5 a | 40 a | 30 a | 70 a | 53.2 | 11 a | - | - | [31] |
Papaya | 20 | 10 | 182 | 21 | 8 | 250 a | 0.6 a | 40 a | 40 a | 80 a | 60.9 | 47 a | - | - | [31] |
Peach | 6 | 20 | 190 | 9 | 0 | 250 a | 0.1 a | 70 a | 60 a | 170 a | 6.6 | 16 a | - | - | [31] |
Pear | 9 | 12 | 116 | 7 | 1 | 180 a | 0.1 a | 80 a | 50 a | 100 a | 4.3 | 1 a | - | - | [31] |
Pineaplle | 13 | 8 | 109 | 12 | 1 | 290 a | 0.1 a | 110 a | 930 a | 120 a | 47.8 | 3 a | - | - | [31] |
Plum | 6 | 16 | 157 | 7 | 0 | 170 a | 0 | 60 a | 50 a | 100 a | 9.5 | 17 a | - | - | [31] |
Raspberry | 1.14 | 5.7 | 71.8 | 15.9 | 0.5–1 d | 1.06 | - | - | 1.5–2.0 d | .37 | 5–92.2 | - | - | - | [15,28,31,32] |
Strawberry | 2.2–16 | 6.6–24 | 51.2–153 | 13–15.9 | 1 | 410 | 0.4 | 50 | 390 | 140 | 5–90 | 1 | 1744 c | 93 c | [15,31,32] |
Watermelon | 7 | 11 | 112 | 10 | 1 | 240 | 0.4 | 40 | 40 | 100 | 8.1 | 28 | - | - | [31] |
Juice | Conditions | Effect | References |
---|---|---|---|
Pasteurization-Conventional heating | |||
Orange juice | 95 ℃, 1 min | Reduction of pectin methylesterase activities (88.3%) | [103] |
90 ℃, 50 s | Sensory quality was the limiting factor for the shelf life of conventionally pasteurized juice, at 50 days | [109] | |
90 ℃, 30 s | Significant loss of the content of total carotenoid pigment | [110] | |
Pulsed electric field (PEF) | |||
Orange juice | 35 kV/cm, 4 μs, 40 °C | 8% loss of vitamin A, 1% loss of citric acid no change in Brix, pH, vitamin C, and viscosity | [111] |
40 kV/cm, 97 ms, 45 °C | PEF-processed juice retained more ascorbic acid, flavor, and color than thermally processed juice (90 °C/90 s) PEF-processed juice sensory evaluation of texture, flavor, and overall acceptability was ranked highest than thermally processed juice | [112] | |
20 kV/cm, 25 µs | PEF treatments preserved the characteristic compounds associated with a fresh flavor (e.g., dl-limonene, β-myrcene, α-pinene, and valencene) more effectively than an intensive thermal treatment (121 °C/20 min) | [113] | |
Apple Juice | 35 kV/cm, 94 µs | No change in natural color and Vitamin C | [114] |
35 kV/cm, 4 µs | pH, total acidity, phenolic and volatile compounds were less affected by PEF than by HTST treatment (90 °C /30 s) | [77] | |
High-pressure processing (HHP) | |||
Orange juice | 600 MPa, 4 min at 40 °C | High-pressure treatment led to lower degradation of ascorbic acid compared with pasteurization (80 °C/60 s) | [115] |
500 MPa, 5 min at 25 °C | 2% loss of vitamin C, no change in Brix, pH, and color | [111] | |
400 MPa, 1 min at 40 °C | 5%-8% loss of vitamin C, no change in Brix, pH, and color | [116] | |
600 MPa, 15 min | 93.4% retention rate of anthocyanin (cyanidin-3-glucoside); 85% retention rate of ascorbic acid | [117] | |
Lemon juice | 450 MPa, 2, 5, or 10 min | Slight effects of HPP on the compounds and physicochemical properties | [118] |
Apple juice | 400 MPa, 10 min | High-pressure treated apple juice sensory quality was higher compared to pasteurization (80 °C, 20 min) | [119] |
Strawberry juice | 200–500 MPa, 20 min, 20 °C | No major changes in strawberry juice aromatic volatile profile composition after HP treatment. Changes appeared in the composition of aromatic compounds after sterilization (120 °C, 20 min) | [120] |
Ultra-sonication (US) | |||
Orange juice | 20 kHz, 1500 W, 10 min, 32–38 °C | No changes in pH, °Brix, and titratable acidity | [121] |
20 kHz, 1500 W, 8 min, 10 °C | Changes in color and ascorbic acid concentration during storage | [122] | |
Grapefruit juice | 28 kHz, 30, 60, and 90 min, 20 °C | Improvement in the ascorbic acid, total phenolics, flavonoids, and flavonols. No changes in the pH, acidity, and °Brix value. Differences in the color values with overall quality improved | [83] |
Cold plasma | |||
Pomegranate juice | 5 min; 4 cm3; 0.75 dm3/min | Pasteurization and plasma treatment resulted in total phenolic content increasing by 29.55% and 33.03%, respectively | [99] |
3 min; 5 cm3; 0.75 dm3/min | Anthocyanin content increased after cold plasma treatment by between 21% and 35% Higher anthocyanin stability | [96] | |
Ultraviolet-C radiation (UV-C) | |||
Orange juice | >230 J/L | No changes in aroma and color 11% loss of vitamin C | [111] |
12–48 kJ/L | Ascorbic acid losses increased with the UV-C application No changes in total phenols and antioxidant capacity No changes in pH, total soluble solids, and titration acidity | [123] | |
Pomegranate juice | 12–62 J/mL | No changes in total phenol content No changes in pH, total soluble solids, and titration acidity | [124] |
Ohmic heating (OH) | |||
Watermelon juice | 90 °C/15–60 s | No changes in lycopene High color stability Decrease in total phenolic compounds | [105] |
95 °C/1, 3 and 5 min/voltage gradients of 10, 13.33, 16.66, 20 and 23.33 V/cm at 50 Hz | Voltage gradient and treatment time was statistically significant with change in pH and total color difference | [125] |
Fruit Image | Fruit Name | References |
---|---|---|
Apricot (Prunus Armeniaca L.) | A stone fruit. Due to the various advantages of apricot, the development of apricot, non-alcoholic, fermented fruit juices has good potential for commercialization [133,134] | |
Apple (Malus domestica) | Due to the high fructose content in apple juice, the evaluation and selection of a fructophilic yeast strain could be significant to the apple fermented alcoholic fruit juice industry [135] | |
Banana (Musa sapientum L), | Due to its high sugar content, banana is suitable for the production of fermented banana juice called banana wine, an alcoholic drink [136] | |
Clementines (Citrus reticula Blanco) | Clementine fermented alcoholic fruit juice [137] | |
Elderberry (Sambucus nigra L.) | Elderberry fermented fruit has a moderate ethanol concentration, intense red coloration, and higher pH value compared to most red wines | |
Jabuticaba (Myrciaria jaboticaba) | The taste of the jabuticaba pulp was described as subacid to sweet, similar to grapes [138]. Fermentation of jabuticaba pulp produces an alcoholic fruit juice | |
Kiwi (Actinidia deliciosa and Actinidia chinensis) | Fermented alcoholic juice from kiwifruit (Chinese gooseberry, Actinidia chinensis Planch) [139] | |
Lychee (Litchi chinensis Sonn) | Lychee fermented juice (Chinese: lychee wine, lìzhījiǔ), is a full-bodied Chinese dessert wine (alcoholic fruit juice) made of 100% lychee fruit [140] | |
Pineapple (Ananas comosus) | Pineapples contain a good sugar proportion which makes them suitable for fermentation [141], giving a pleasant alcoholic juice | |
Raspberry (Rubus idaeus L.) | Fermented juices from raspberries present specific acid and sugar contents (pH 3.6 and 14.5 °Brix) that make them suitable for fruit wine production [142,143], an alcoholic fruit juice |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, T.; Vilela, A.; Cosme, F. Chemical and Sensory Characteristics of Fruit Juice and Fruit Fermented Beverages and Their Consumer Acceptance. Beverages 2022, 8, 33. https://doi.org/10.3390/beverages8020033
Pinto T, Vilela A, Cosme F. Chemical and Sensory Characteristics of Fruit Juice and Fruit Fermented Beverages and Their Consumer Acceptance. Beverages. 2022; 8(2):33. https://doi.org/10.3390/beverages8020033
Chicago/Turabian StylePinto, Teresa, Alice Vilela, and Fernanda Cosme. 2022. "Chemical and Sensory Characteristics of Fruit Juice and Fruit Fermented Beverages and Their Consumer Acceptance" Beverages 8, no. 2: 33. https://doi.org/10.3390/beverages8020033
APA StylePinto, T., Vilela, A., & Cosme, F. (2022). Chemical and Sensory Characteristics of Fruit Juice and Fruit Fermented Beverages and Their Consumer Acceptance. Beverages, 8(2), 33. https://doi.org/10.3390/beverages8020033