Hyperbaric Storage at Room Temperature for Fruit Juice Preservation
Abstract
:1. Introduction
2. Effect of Hyperbaric Storage on Agents Responsible for Juice Deterioration
2.1. Microbial Load
2.2. Enzymatic and Chemical Reactions
3. Effect of Hyperbaric Storage on Juice Quality: Comparison with Conventional Cold Storage
4. Juice Stability after Hyperbaric Storage
5. Consumer Acceptability
6. Industrial Implementation
7. Environmental Impact of Hyperbaric Storage
8. Conclusions
Funding
Conflicts of Interest
References
- IMARC Group. Fruit Juice Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2019–2024. Available online: https://www.imarcgroup.com/fruit-juice-manufacturing-plant (accessed on 20 May 2019).
- AIJN. European Fruit Juice Association. 2018 Liquid Fruit Market Report. Available online: http://viewer.zmags.com/publication/bc62cfea#/bc62cfea/1 (accessed on 20 May 2019).
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S.I. Climate change and food systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef]
- Pelletier, N.; Audsley, E.; Brodt, S.; Garnett, T.; Henriksson, P.; Kendall, A.; Kramer, K.J.; Murphy, D.; Nemecek, T.; Troell, M. Energy intensity of agriculture and food Systems. Annu. Rev. Environ. Resour. 2011, 36, 223–246. [Google Scholar] [CrossRef]
- James, S.J.; James, C. The food cold-chain and climate change. Food Res. Int. 2010, 43, 1944–1956. [Google Scholar] [CrossRef]
- Charm, S.E.; Longmaid, H.E.; Carver, J. Simple system for extending refrigerated, nonfrozen preservation of biological-material using pressure. Cryobiology 1977, 14, 625–636. [Google Scholar] [CrossRef]
- Hirsch, G.P. Method of Pressure Preservation of Food Products. U.S. Patent 5,593,714, 14 January 1997. [Google Scholar]
- Hirsch, G.P. Hydraulic Pressure Sterilization and Preservation of Foodstuff and Feedstuff. U.S. Patent 6,033,701, 7 March 2000. [Google Scholar]
- Segovia-Bravo, K.A.; Guignon, B.; Bermejo-Prada, A.; Sanz, P.D.; Otero, L. Hyperbaric storage at room temperature for food preservation: A study in strawberry juice. Innov. Food Sci. Emerg. Technol. 2012, 15, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Freitas, P.; Pereira, S.A.; Santos, M.D.; Alves, S.P.; Bessa, R.J.B.; Delgadillo, I.; Saraiva, J.A. Performance of raw bovine meat preservation by hyperbaric storage (quasi energetically costless) compared to refrigeration. Meat Sci. 2016, 121, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.A.; Moreira, S.A.; Santos, M.D.; Duarte, R.V.; Santos, D.I.; Inacio, R.S.; Alves, S.P.; Bessa, R.J.; Delgadillo, I.; Saraiva, J.A. Hyperbaric storage at variable room temperature-a new preservation methodology for minced meat compared to refrigeration. J. Sci. Food Agric. 2019, 99, 3276–3282. [Google Scholar] [CrossRef]
- Fernandes, P.A.R.; Moreira, S.A.; Duarte, R.; Santos, D.I.; Queirós, R.P.; Fidalgo, L.G.; Santos, M.D.; Delgadillo, I.; Saraiva, J.A. Preservation of sliced cooked ham at 25, 30 and 37 °C under moderated pressure (hyperbaric storage) and comparison with refrigerated storage. Food Bioprod. Process. 2015, 95, 200–207. [Google Scholar] [CrossRef]
- Duarte, R.V.; Moreira, S.A.; Fernandes, P.A.R.; Fidalgo, L.G.; Santos, M.D.; Queirós, R.P.; Santos, D.I.; Delgadillo, I.; Saraiva, J.A. Preservation under pressure (hyperbaric storage) at 25 °C, 30 °C and 37 °C of a highly perishable dairy food and comparison with refrigeration. CyTA J. Food 2015, 13, 321–328. [Google Scholar] [CrossRef]
- Duarte, R.V.; Moreira, S.A.; Fernandes, P.A.R.; Santos, D.I.; Inácio, R.S.; Alves, S.P.; Bessa, R.J.B.; Saraiva, J.A. Whey cheese longer shelf-life achievement at variable uncontrolled room temperature and comparison to refrigeration. J. Food Process. Preserv. 2017, 41, e13307. [Google Scholar] [CrossRef]
- Moreira, S.A.; Fernandes, P.A.; Duarte, R.; Santos, D.I.; Fidalgo, L.G.; Santos, M.D.; Queiros, R.P.; Delgadillo, I.; Saraiva, J.A. A first study comparing preservation of a ready-to-eat soup under pressure (hyperbaric storage) at 25 °C and 30 °C with refrigeration. Food Sci. Nutr. 2015, 3, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Moreira, S.A.; Duarte, R.V.; Fernandes, P.A.R.; Alves, S.P.; Bessa, R.J.; Delgadillo, I.; Saraiva, J.A. Hyperbaric storage preservation at room temperature using an industrial-scale equipment: Case of two commercial ready-to-eat pre-cooked foods. Innov. Food Sci. Emerg. Technol. 2015, 32, 29–36. [Google Scholar] [CrossRef]
- Bates, R.P.; Morris, J.R.; Crandall, P.G. Principles and Practices of Small-and Medium-Scale Fruit Juice Processing; FAO Agricultural Services Bulletin; Food and Agriculture Organization of the United Nations: Rome, Italy, 2001; Volume 146. [Google Scholar]
- Lemos, Á.T.; Ribeiro, A.C.; Fidalgo, L.G.; Delgadillo, I.; Saraiva, J.A. Extension of raw watermelon juice shelf-life up to 58 days by hyperbaric storage. Food Chem. 2017, 231, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Pinto, C.; Moreira, S.A.; Fidalgo, L.G.; Santos, M.D.; Vidal, M.; Delgadillo, I.; Saraiva, J.A. Impact of different hyperbaric storage conditions on microbial, physicochemical and enzymatic parameters of watermelon juice. Food Res. Int. 2017, 99, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Pinto, C.; Moreira, S.A.; Fidalgo, L.G.; Santos, M.D.; Delgadillo, I.; Saraiva, J.A. Shelf-life extension of watermelon juice preserved by hyperbaric storage at room temperature compared to refrigeration. LWT Food Sci. Technol. 2016, 72, 78–80. [Google Scholar] [CrossRef]
- Abe, F. Exploration of the effects of high hydrostatic pressure on microbial growth, physiology and survival: Perspectives from piezophysiology. Biosci. Biotechnol. Biochem. 2007, 71, 2347–2357. [Google Scholar] [CrossRef]
- Bartlett, D.H. Pressure effects on in vivo microbial processes. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 2002, 1595, 367–381. [Google Scholar] [CrossRef]
- Mota, M.J.; Lopes, R.P.; Delgadillo, I.; Saraiva, J.A. Microorganisms under high pressure—Adaptation, growth and biotechnological potential. Biotechnol. Adv. 2013, 31, 1426–1434. [Google Scholar] [CrossRef]
- Aoyama, Y.; Shigeta, Y.; Okazaki, T.; Hagura, Y.; Suzuki, K. Growth inhibition of microorganisms by hydrostatic pressure. Food Sci. Technol. Res. 2004, 10, 268–272. [Google Scholar] [CrossRef]
- Bermejo-Prada, A.; López-Caballero, M.E.; Otero, L. Hyperbaric storage at room temperature: Effect of pressure level and storage time on the natural microbiota of strawberry juice. Innov. Food Sci. Emerg. Technol. 2016, 33, 154–161. [Google Scholar] [CrossRef]
- Fidalgo, L.; Santos, M.; Queirós, R.; Inácio, R.; Mota, M.; Lopes, R.; Gonçalves, M.; Neto, R.; Saraiva, J. Hyperbaric storage at and above room temperature of a highly perishable food. Food Bioprocess Technol. 2014, 7, 2028–2037. [Google Scholar] [CrossRef]
- Lado, B.H.; Yousef, A.E. Alternative food-preservation technologies: Efficacy and mechanisms. Microbes Infect. 2002, 4, 433–440. [Google Scholar] [CrossRef]
- Queirós, R.P.; Santos, M.D.; Fidalgo, L.G.; Mota, M.J.; Lopes, R.P.; Inácio, R.S.; Delgadillo, I.; Saraiva, J.A. Hyperbaric storage of melon juice at and above room temperature and comparison with storage at atmospheric pressure and refrigeration. Food Chem. 2014, 147, 209–214. [Google Scholar] [CrossRef]
- Santos, M.D.; Queirós, R.P.; Fidalgo, L.G.; Inácio, R.S.; Lopes, R.P.; Mota, M.J.; Sousa, S.G.; Delgadillo, I.; Saraiva, J.A. Preservation of a highly perishable food, watermelon juice, at and above room temperature under mild pressure (hyperbaric storage) as an alternative to refrigeration. LWT Food Sci. Technol. 2015, 62, 901–905. [Google Scholar] [CrossRef]
- Matsumura, P.; Keller, D.; Marquis, R. Restricted pH ranges and reduced yields for bacterial growth under pressure. Microb. Ecol. 1974, 1, 176–189. [Google Scholar] [CrossRef]
- Crelier, S.; Robert, M.C.; Claude, J.; Juillerat, M.A. Tomato (Lycopersicon esculentum) pectin methylesterase and polygalacturonase behaviors regarding heat- and pressure-induced inactivation. J. Agric. Food. Chem. 2001, 49, 5566–5575. [Google Scholar] [CrossRef]
- Farkas, D.F.; Hoover, D.G. High pressure processing. J. Food Sci. 2000, 65, 47–64. [Google Scholar] [CrossRef]
- Linton, M.; McClements, J.M.J.; Patterson, M.F. Inactivation of Escherichia coli O157:H7 in orange juice using a combination of high pressure and mild heat. J. Food Prot. 1999, 62, 277–279. [Google Scholar] [CrossRef]
- Patterson, M.F. Microbiology of pressure-treated foods. J. Appl. Microbiol. 2005, 98, 1400–1409. [Google Scholar] [CrossRef]
- Sarker, M.R.; Akhtar, S.; Torres, J.A.; Paredes-Sabja, D. High hydrostatic pressure-induced inactivation of bacterial spores. Crit. Rev. Microbiol. 2015, 41, 18–26. [Google Scholar] [CrossRef]
- Wuytack, E.Y.; Michiels, C.W. A study on the effects of high pressure and heat on Bacillus subtilis spores at low pH. Int. J. Food Microbiol. 2001, 64, 333–341. [Google Scholar] [CrossRef]
- Wuytack, E.Y.; Soons, J.; Poschet, F.; Michiels, C.W. Comparative study of pressure- and nutrient-induced germination of Bacillus subtilis spores. Appl. Environ. Microbiol. 2000, 66, 257–261. [Google Scholar] [CrossRef]
- Borch-Pedersen, K.; Mellegård, H.; Reineke, K.; Boysen, P.; Sevenich, R.; Lindbäck, T.; Aspholm, M. Effects of high pressure on Bacillus licheniformis germination and inactivation. Appl. Environ. Microbiol. 2017, 83, e00503–e00517. [Google Scholar] [CrossRef]
- Pinto, C.A.; Santos, M.D.; Fidalgo, L.G.; Delgadillo, I.; Saraiva, J.A. Enhanced control of Bacillus subtilis endospores development by hyperbaric storage at variable/uncontrolled room temperature compared to refrigeration. Food Microbiol. 2018, 74, 125–131. [Google Scholar] [CrossRef]
- Pinto, C.A.; Martins, A.P.; Santos, M.D.; Fidalgo, L.G.; Delgadillo, I.; Saraiva, J.A. Growth inhibition and inactivation of Alicyclobacillus acidoterrestris endospores in apple juice by hyperbaric storage at ambient temperature. Innov. Food Sci. Emerg. Technol. 2019, 52, 232–236. [Google Scholar] [CrossRef]
- Torres, J.A.; Sanz, P.D.; Otero, L.; Pérez Lamela, M.C.; Aranda Saldaña, M.D. Temperature distribution and chemical reactions in foods treated by pressure-assisted thermal processing. In Processing Effects on Safety and Quality of Foods; CRC Press: Boca Raton, FL, USA, 2009; pp. 415–440. [Google Scholar]
- Eisenmenger, M.J.; Reyes de Corcuera, J.I. High pressure enhancement of enzymes: A review. Enzyme Microb. Technol. 2009, 45, 331–347. [Google Scholar] [CrossRef]
- Duvetter, T.; Fraeye, I.; Sila, D.N.; Verlent, I.; Smout, C.; Clynen, E.; Schoofs, L.; Schols, H.; Hendrickx, M.; Van Loey, A. Effect of temperature and high pressure on the activity and mode of action of fungal pectin methyl esterase. Biotechnol. Prog. 2006, 22, 1313–1320. [Google Scholar] [CrossRef]
- Sila, D.N.; Smout, C.; Satara, Y.; Truong, V.; Van Loey, A.; Hendrickx, M. Combined thermal and high pressure effect on carrot pectinmethylesterase stability and catalytic activity. J. Food Eng. 2007, 78, 755–764. [Google Scholar] [CrossRef]
- Van Den Broeck, I.; Ludikhuyze, L.R.; Van Loey, A.M.; Hendrickx, M.E. Effect of temperature and/or pressure on tomato pectinesterase activity. J. Agric. Food Chem. 2000, 48, 551–558. [Google Scholar] [CrossRef]
- Verlent, I.; Van Loey, A.; Smout, C.; Duvetter, T.; Hendrickx, M.E. Purified tomato polygalacturonase activity during thermal and high-pressure treatment. Biotechnol. Bioeng. 2004, 86, 63–71. [Google Scholar] [CrossRef]
- Bermejo-Prada, A.; Segovia-Bravo, K.A.; Guignon, B.; Otero, L. Effect of hyperbaric storage at room temperature on pectin methylesterase activity and serum viscosity of strawberry juice. Innov. Food Sci. Emerg. Technol. 2015, 30, 170–176. [Google Scholar] [CrossRef]
- Verlent, I.; Loey, A.V.; Smout, C.; Duvetter, T.; Nguyen, B.L.; Hendrickx, M.E. Changes in purified tomato pectinmethylesterase activity during thermal and high pressure treatment. J. Sci. Food Agric. 2004, 84, 1839–1847. [Google Scholar] [CrossRef]
- Castro, S.M.; Loey, A.V.; Saraiva, J.A.; Smout, C.; Hendrickx, M. Identification of pressure/temperature combinations for optimal pepper (Capsicum annuum) pectin methylesterase activity. Enzyme Microb. Technol. 2006, 38, 831–838. [Google Scholar] [CrossRef]
- Bermejo-Prada, A. Hyperbric Storage of Foods at Room Temperature: Characterization in Strawberry Juice. Ph.D. Thesis, Complutense University of Madrid, Madrid, Spain, 2015. [Google Scholar]
- Verlent, I.; Smout, C.; Duvetter, T.; Hendrickx, M.E.; Van Loey, A. Effect of temperature and pressure on the activity of purified tomato polygalacturonase in the presence of pectins with different patterns of methyl esterification. Innov. Food Sci. Emerg. Technol. 2005, 6, 293–303. [Google Scholar] [CrossRef]
- Bermejo-Prada, A.; Otero, L. Effect of hyperbaric storage at room temperature on color degradation of strawberry juice. J. Food Eng. 2016, 169, 141–148. [Google Scholar] [CrossRef]
- Bermejo-Prada, A.; Vega, E.; Pérez-Mateos, M.; Otero, L. Effect of hyperbaric storage at room temperature on the volatile profile of strawberry juice. LWT Food Sci. Technol. 2015, 62, 906–914. [Google Scholar] [CrossRef]
- Gupta, R.; Balasubramaniam, V.M. High-pressure processing of fluid foods. In Novel Thermal and Non-Thermal Technologies for Fluid Foods; Cullen, P.J., Brijesh, K.T., Valdramidis, V.P., Eds.; Academic Press: San Diego, CA, USA, 2012; pp. 109–133. [Google Scholar]
- Koutchma, T.; Popović, V.; Ros-Polski, V.; Popielarz, A. Effects of ultraviolet light and high-pressure processing on quality and health-related constituents of fresh juice products. Compr. Rev. Food Sci. Food Saf. 2016, 15, 844–867. [Google Scholar] [CrossRef]
- Chakraborty, S.; Kaushik, N.; Rao, P.S.; Mishra, H.N. High-pressure inactivation of enzymes: A review on its recent applications on fruit purees and juices. Compr. Rev. Food Sci. Food Saf. 2014, 13, 578–596. [Google Scholar] [CrossRef]
- Huang, H.-W.; Lung, H.-M.; Yang, B.B.; Wang, C.-Y. Responses of microorganisms to high hydrostatic pressure processing. Food Control 2014, 40, 250–259. [Google Scholar] [CrossRef]
- Bermejo-Prada, A.; Colmant, A.; Otero, L.; Guignon, B. Industrial viability of the hyperbaric method to store perishable foods at room temperature. J. Food Eng. 2017, 193, 76–85. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otero, L. Hyperbaric Storage at Room Temperature for Fruit Juice Preservation. Beverages 2019, 5, 49. https://doi.org/10.3390/beverages5030049
Otero L. Hyperbaric Storage at Room Temperature for Fruit Juice Preservation. Beverages. 2019; 5(3):49. https://doi.org/10.3390/beverages5030049
Chicago/Turabian StyleOtero, Laura. 2019. "Hyperbaric Storage at Room Temperature for Fruit Juice Preservation" Beverages 5, no. 3: 49. https://doi.org/10.3390/beverages5030049