Current Trends in Fully Automated On-Line Analytical Techniques for Beverage Analysis
Abstract
:1. Introduction
2. On-Line Solid-Phase Extraction (On-Line SPE)
2.1. SPE Formats
2.2. SPE Sorbent Phases
2.3. Automated SPE
2.4. SPE Applications
3. Solid-Phase Microextraction (SPME)
3.1. SPME Extraction Materials
3.2. Automated SPME
3.3. SPME Applications
4. In-Tube Solid-Phase Microextraction (In-Tube SPME)
4.1. Extraction Modes and Operational Devices
4.2. Capillary Devices
4.3. In-Tube SPME Applications
5. Turbulent-Flow Chromatography (TFC)
TFC Applications
6. On-Line Fully Automated Extraction-Chromatography-Mass Spectrometry
7. Conclusions
Funding
Conflicts of Interest
References
- Sádecká, J.; Polonský, J. Electrophoretic methods in the analysis of beverages. J. Chromatogr. A 2000, 880, 243–279. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Szczepańska, N.; de la Guardia, M.; Namieśnik, J. Miniaturized solid-phase extraction techniques. TrAC Trends Anal. Chem. 2015, 73, 19–38. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Szczepańska, N.; de la Guardia, M.; Namieśnik, J. Modern trends in solid phase extraction: New sorbent media. TrAC Trends Anal. Chem. 2016, 77, 23–43. [Google Scholar] [CrossRef]
- Souza-Silva, É.A.; Gionfriddo, E.; Pawliszyn, J. A critical review of the state of the art of solid-phase microextraction of complex matrices II. Food analysis. TrAC Trends Anal. Chem. 2015, 71, 236–248. [Google Scholar] [CrossRef]
- Kataoka, H.; Ishizaki, A.; Nonaka, Y.; Saito, K. Developments and applications of capillary microextraction techniques: A review. Anal. Chim. Acta 2009, 655, 8–29. [Google Scholar] [CrossRef] [PubMed]
- Edge, T. Turbulent flow chromatography in bioanalysis. In Handbook of Analytical Separations; Wilson, I.D., Ed.; Elsevier Science: Buckinghamshire, UK, 2003; Volume 4, pp. 91–128. ISBN 9780444506580. [Google Scholar]
- Puig, P.; Borrull, F.; Calull, M.; Aguilar, C. Recent advances in coupling solid-phase extraction and capillary electrophoresis (SPE-CE). TrAC Trends Anal. Chem. 2007, 26, 664–678. [Google Scholar] [CrossRef]
- Hyötyläinen, T. Principles, developments and applications of on-line coupling of extraction with chromatography. J. Chromatogr. A 2007, 1153, 14–28. [Google Scholar] [CrossRef]
- Fumes, B.H.; Andrade, M.A.; Franco, M.S.; Lanças, F.M. On-line approaches for the determination of residues and contaminants in complex samples. J. Sep. Sci. 2017, 40, 183–202. [Google Scholar] [CrossRef]
- Franco, M.S.; Padovan, R.N.; Fumes, B.H.; Lanças, F.M. An overview of multidimensional liquid phase separations in food analysis. Electrophoresis 2016, 37, 1768–1783. [Google Scholar] [CrossRef]
- Farré, M.; Barceló, D. Analysis of emerging contaminants in food. TrAC Trends Anal. Chem. 2013, 43, 240–253. [Google Scholar] [CrossRef]
- Andrade-Eiroa, A.; Canle, M.; Leroy-Cancellieri, V.; Cerdà, V. Solid-phase extraction of organic compounds: A critical review (Part I). TrAC Trends Anal. Chem. 2016, 80, 641–654. [Google Scholar] [CrossRef]
- Andrade-Eiroa, A.; Canle, M.; Leroy-Cancellieri, V.; Cerdà, V. Solid-phase extraction of organic compounds: A critical review. part ii. TrAC Trends Anal. Chem. 2016, 80, 655–667. [Google Scholar] [CrossRef]
- Buszewski, B.; Szultka, M. Past, Present, and Future of Solid Phase Extraction: A Review. Crit. Rev. Anal. Chem. 2012, 42, 198–213. [Google Scholar] [CrossRef]
- Biziuk, M. Solid phase extraction technique—Trends, opportunities and applications. Pol. J. Environ. Stud. 2015, 15, 677–690. [Google Scholar]
- Islas, G.; Ibarra, I.S.; Hernandez, P.; Miranda, J.M.; Cepeda, A. Dispersive Solid Phase Extraction for the Analysis of Veterinary Drugs Applied to Food Samples: A Review. Int. J. Anal. Chem. 2017, 2017. [Google Scholar] [CrossRef]
- Ochiai, N.; Sasamoto, K.; David, F.; Sandra, P. Recent Developments of Stir Bar Sorptive Extraction for Food Applications: Extension to Polar Solutes. J. Agric. Food Chem. 2018, 66, 7249–7255. [Google Scholar] [CrossRef]
- Moein, M.M.; Said, R.; Abdel-Rehim, M. Microextraction by packed sorbent. Bioanalysis 2015, 7, 2155–2161. [Google Scholar] [CrossRef]
- Ariffin, M.M.; Miller, E.I.; Cormack, P.A.G.; Anderson, R.A. Molecularly Imprinted Solid-Phase Extraction of Diazepam and Its Metabolites from Hair Samples. Anal. Chem. 2007, 79, 256–262. [Google Scholar] [CrossRef]
- Háková, M.; Havlíková, L.C.; Chvojka, J.; Erben, J.; Solich, P.; Švec, F.; Šatínský, D. A comparison study of nanofiber, microfiber, and new composite nano/microfiber polymers used as sorbents for on-line solid phase extraction in chromatography system. Anal. Chim. Acta 2018, 1023, 44–52. [Google Scholar] [CrossRef]
- Háková, M.; Havlíková, L.C.; Chvojka, J.; Švec, F.; Solich, P.; Šatínský, D. Nanofiber polymers as novel sorbents for on-line solid phase extraction in chromatographic system: A comparison with monolithic reversed phase C18 sorbent. Anal. Chim. Acta 2018, 1018, 26–34. [Google Scholar] [CrossRef]
- Herrero-Latorre, C.; Barciela-García, J.; García-Martín, S.; Peña-Crecente, R.M.; Otárola-Jiménez, J. Magnetic solid-phase extraction using carbon nanotubes as sorbents: A review. Anal. Chim. Acta 2015, 892, 10–26. [Google Scholar] [CrossRef] [PubMed]
- Gritti, F.; Kazakevich, Y.V.; Guiochon, G. Effect of the surface coverage of endcapped C18-silica on the excess adsorption isotherms of commonly used organic solvents from water in reversed phase liquid chromatography. J. Chromatogr. A 2007, 1169, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Azzouz, A.; Ballesteros, E. Combined microwave-assisted extraction and continuous solid-phase extraction prior to gas chromatography–mass spectrometry determination of pharmaceuticals, personal care products and hormones in soils, sediments and sludge. Sci. Total Environ. 2012, 419, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Sasithorn, N.; Martinová, L. Fabrication of Silk Nanofibres with Needle and Roller Electrospinning Methods. J. Nanomater. 2014, 2014. [Google Scholar] [CrossRef]
- Reyes-Gallardo, E.M.; Lucena, R.; Cárdenas, S. Electrospun nanofibers as sorptive phases in microextraction. TrAC Trends Anal. Chem. 2016, 84, 3–11. [Google Scholar] [CrossRef]
- Ifegwu, O.C.; Anyakora, C.; Chigome, S.; Torto, N. Application of nanofiber-packed SPE for determination of urinary 1-hydroxypyrene level using HPLC. Anal. Chem. Insights 2014, 9, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, H.; Ayazi, Z. Polypyrrole nanowires network for convenient and highly efficient microextraction in packed syringe. Anal. Methods 2011, 3, 2630–2636. [Google Scholar] [CrossRef]
- Bagheri, H.; Piri-Moghadam, H.; Rastegar, S. Magnetic and electric field assisted electrospun polyamide nanofibers for on-line μ-solid phase extraction and HPLC. RSC Adv. 2014, 4, 52590–52597. [Google Scholar] [CrossRef]
- Cerdà, V.; Ferrer, L.; Avivar, J.; Cerdà, A. Flow Analysis: A Practical Guide; Elsevier Science: Boston, MA, USA, 2014; ISBN 0444626069. [Google Scholar]
- Streel, B.; Hubert, P.; Ceccato, A. Determination of fenofibric acid in human plasma using automated solid-phase extraction coupled to liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 2000, 742, 391–400. [Google Scholar] [CrossRef]
- Batchu, S.; Quinete, N.; Panditi, V.R.; Gardinali, P.R. Online solid phase extraction liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS) method for the determination of sucralose in reclaimed and drinking waters and its photo degradation in natural waters from South Florida. Chem. Cent. J. 2013, 7, 141. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Zhang, C.; Zhang, Z.; Li, G. Review of online coupling of sample preparation techniques with liquid chromatography. Anal. Chim. Acta 2014, 815, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Mazzoni, M.; Rusconi, M.; Valsecchi, S.; Martins, C.P.B.; Polesello, S. An On-Line Solid Phase Extraction-Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of Perfluoroalkyl Acids in Drinking and Surface Waters. J. Anal. Methods Chem. 2015, 2015, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mozaz, S.; Lopez de Alda, M.J.; Barceló, D. Advantages and limitations of on-line solid phase extraction coupled to liquid chromatography–mass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water. J. Chromatogr. A 2007, 1152, 97–115. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Ren, N.; Chen, L.; Ding, L. On-line coupling of solid-phase extraction to liquid chromatography-tandem mass spectrometry for the determination of macrolide antibiotics in environmental water. Anal. Chim. Acta 2009, 634, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Togola, A.; Baran, N.; Coureau, C. Advantages of online SPE coupled with UPLC/MS/MS for determining the fate of pesticides and pharmaceutical compounds. Anal. Bioanal. Chem. 2014, 406, 1181–1191. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, Q.; Zhang, L.; Liu, M.; Hu, N.; Zhang, W.; Zhu, W.; Wang, R.; Suo, Y.; Wang, J. A hybrid monolithic column based on layered double hydroxide-alginate hydrogel for selective solid phase extraction of lead ions in food and water samples. Food Chem. 2018, 257, 155–162. [Google Scholar] [CrossRef]
- Salazar-Beltrán, D.; Hinojosa-Reyes, L.; Ruiz-Ruiz, E.; Hernández-Ramírez, A.; Luis Guzmán-Mar, J. Determination of phthalates in bottled water by automated on-line solid phase extraction coupled to liquid chromatography with uv detection. Talanta 2017, 168, 291–297. [Google Scholar] [CrossRef]
- Shi, Y.; Wu, H.; Wang, C.; Guo, X.; Du, J.; Du, L. Determination of polycyclic aromatic hydrocarbons in coffee and tea samples by magnetic solid-phase extraction coupled with HPLC–FLD. Food Chem. 2016, 199, 75–80. [Google Scholar] [CrossRef]
- Xie, L.; Guo, J.; Zhang, Y.; Shi, S. Efficient Determination of Protocatechuic Acid in Fruit Juices by Selective and Rapid Magnetic Molecular Imprinted Solid Phase Extraction Coupled with HPLC. J. Agric. Food Chem. 2014, 62, 8221–8228. [Google Scholar] [CrossRef]
- Chai, W.; Wang, H.; Zhang, Y.; Ding, G. Preparation of polydopamine-coated magnetic nanoparticles for dispersive solid-phase extraction of water-soluble synthetic colorants in beverage samples with HPLC analysis. Talanta 2016, 149, 13–20. [Google Scholar] [CrossRef]
- Chong, M.H.; Sanagi, M.M.; Endud, S.; Ibrahim, W.A.W.; Lau, S.C.; Alharbi, O.M.L.; Ali, I. Determination of N-nitrosamines in water by nano iron-porphyrinated poly(amidoamine) dendrimer MCM-41 generation-3 through solid phase membrane tip extraction and HPLC. Environ. Technol. Innov. 2018, 10, 102–110. [Google Scholar] [CrossRef]
- Wu, J.; Xie, W.; Pawliszyn, J. Automated in-tube solid phase microextraction coupled with HPLC-ES-MS for the determination of catechins and caffeine in tea. Analyst 2000, 125, 2216–2222. [Google Scholar] [CrossRef]
- Souza-Silva, É.A.; Jiang, R.; Rodríguez-Lafuente, A.; Gionfriddo, E.; Pawliszyn, J. A critical review of the state of the art of solid-phase microextraction of complex matrices I. Environmental analysis. TrAC Trends Anal. Chem. 2015, 71, 224–235. [Google Scholar] [CrossRef]
- Bojko, B.; Cudjoe, E.; Pawliszyn, J.; Wasowicz, M. Solid-phase microextraction. How far are we from clinical practice? TrAC Trends Anal. Chem. 2011, 30, 1505–1512. [Google Scholar] [CrossRef]
- Xu, J.; Zheng, J.; Tian, J.; Zhu, F.; Zeng, F.; Su, C.; Ouyang, G. New materials in solid-phase microextraction. TrAC Trends Anal. Chem. 2013, 47, 68–83. [Google Scholar] [CrossRef]
- Aziz-Zanjani, M.O.; Mehdinia, A. A review on procedures for the preparation of coatings for solid phase microextraction. Microchim. Acta 2014, 181, 1169–1190. [Google Scholar] [CrossRef]
- Saraji, M.; Rezaei, B.; Boroujeni, M.K.; Bidgoli, A.A.H. Polypyrrole/sol–gel composite as a solid-phase microextraction fiber coating for the determination of organophosphorus pesticides in water and vegetable samples. J. Chromatogr. A 2013, 1279, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Gilart, N.; Marcé, R.M.; Borrull, F.; Fontanals, N. New coatings for stir-bar sorptive extraction of polar emerging organic contaminants. TrAC Trends Anal. Chem. 2014, 54, 11–23. [Google Scholar] [CrossRef]
- Tankiewicz, M.; Morrison, C.; Biziuk, M. Application and optimization of headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography–flame-ionization detector (GC–FID) to determine products of the petroleum industry in aqueous samples. Microchem. J. 2013, 108, 117–123. [Google Scholar] [CrossRef]
- Li, J.; Su, Q.; Li, K.-Y.; Sun, C.-F.; Zhang, W.-B. Rapid analysis of phthalates in beverage and alcoholic samples by multi-walled carbon nanotubes/silica reinforced hollow fibre-solid phase microextraction. Food Chem. 2013, 141, 3714–3720. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, G.C.; da Silva, A.A.S.; da Silva, L.S.N.; Godoy, R.L.D.O.; Nogueira, L.C.; Quitério, S.L.; Raices, R.S.L. Method development by GC–ECD and HS-SPME–GC–MS for beer volatile analysis. Food Chem. 2015, 167, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-F.; Xu, Y. Comparison of pyrazine compounds in seven Chinese liquors using headspace solid-phase micro-extraction and GC-nitrogen phosphourus detection. Food Sci. Biotechnol. 2013, 22, 1–6. [Google Scholar] [CrossRef]
- Liu, F.-J.; Liu, C.-T.; Li, W.; Tang, A.-N. Dispersive solid-phase microextraction and capillary electrophoresis separation of food colorants in beverages using diamino moiety functionalized silica nanoparticles as both extractant and pseudostationary phase. Talanta 2015, 132, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Moreira, N.; Araújo, A.M.; Rogerson, F.; Vasconcelos, I.; De Freitas, V.; de Pinho, P.G. Development and optimization of a HS-SPME-GC-MS methodology to quantify volatile carbonyl compounds in Port wines. Food Chem. 2019, 270, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Zhang, H.; Zhao, F.; Zeng, B. A novel poly(3,4-ethylenedioxythiophene)-ionic liquid composite coating for the headspace solid-phase microextraction and gas chromatography determination of several alcohols in soft drinks. Anal. Chim. Acta 2014, 850, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Wu, X.; Xi, X.; Zhang, P.; Yang, X.; Lu, R.; Zhou, W.; Zhang, S.; Gao, H.; Li, J. Using β-cyclodextrin/attapulgite-immobilized ionic liquid as sorbent in dispersive solid-phase microextraction to detect the benzoylurea insecticide contents of honey and tea beverages. Food Chem. 2016, 197, 1064–1072. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Qu, Y.; Zhang, Y.; Qiu, B.; Wang, Y.; Chen, X. Determination of nerolidol in teas using headspace solid phase microextraction–gas chromatography. Food Chem. 2014, 152, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Eisert, R.; Pawliszyn, J. Automated In-Tube Solid-Phase Microextraction Coupled to High-Performance Liquid Chromatography. Anal. Chem. 1997, 69, 3140–3147. [Google Scholar] [CrossRef]
- Kataoka, H. Automated sample preparation using in-tube solid-phase microextraction and its application—A review. Anal. Bioanal. Chem. 2002, 373, 31–45. [Google Scholar] [CrossRef]
- Moliner-Martinez, Y.; Herráez-Hernández, R.; Verdú-Andrés, J.; Molins-Legua, C.; Campíns-Falcó, P. Recent advances of in-tube solid-phase microextraction. TrAC Trends Anal. Chem. 2015, 71, 205–213. [Google Scholar] [CrossRef]
- Poorahong, S.; Thammakhet, C.; Thavarungkul, P.; Kanatharana, P. Online in-tube microextractor coupled with UV-Vis spectrophotometer for bisphenol a detection. J. Environ. Sci. Health Part A 2013, 48, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, X.; Li, Z.; Zhang, Y.; Bai, Y.; Liu, H. Online Coupling of In-Tube Solid-Phase Microextraction with Direct Analysis in Real Time Mass Spectrometry for Rapid Determination of Triazine Herbicides in Water Using Carbon-Nanotubes-Incorporated Polymer Monolith. Anal. Chem. 2014, 86, 4739–4747. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.H.; Zhao, Y.; Li, T.; Xu, C.; Xiao, K.; Feng, Y.Q.; Guo, L. The use of liquid phase deposition prepared phosphonate grafted silica nanoparticledeposited capillaries in the enrichment of phosphopeptides. J. Sep. Sci. 2010, 33, 1806–1815. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.T.; Wang, M.Y.; Su, X.; Yuan, B.F.; Feng, Y.Q. Facile preparation of SiO2/TiO2 composite monolithic capillary column and its application in enrichment of phosphopeptides. Anal. Chem. 2012, 84, 7763–7770. [Google Scholar] [CrossRef]
- Fernández-Amado, M.; Prieto-Blanco, M.C.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D. Strengths and weaknesses of in-tube solid-phase microextraction: A scoping review. Anal. Chim. Acta 2016, 906, 41–57. [Google Scholar] [CrossRef]
- Ishizaki, A.; Saito, K.; Hanioka, N.; Narimatsu, S.; Kataoka, H. Determination of polycyclic aromatic hydrocarbons in food samples by automated on-line in-tube solid-phase microextraction coupled with high-performance liquid chromatography-fluorescence detection. J. Chromatogr. A 2010, 1217, 5555–5563. [Google Scholar] [CrossRef]
- Ishizaki, A.; Sito, K.; Kataoka, H. Analysis of contaminant polycyclic aromatic hydrocarbons in tea products and crude drugs. Anal. Methods 2011, 3, 299–305. [Google Scholar] [CrossRef]
- Kataoka, H.; Itano, M.; Ishizaki, A.; Saito, K. Determination of patulin in fruit juice and dried fruit samples by in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. J. Chromatogr. A 2009, 1216, 3746–3750. [Google Scholar] [CrossRef]
- Tan, F.; Zhao, C.; Li, L.; Liu, M.; He, X.; Gao, J. Graphene oxide based in-tube solid-phase microextraction combined with liquid chromatography tandem mass spectrometry for the determination of triazine herbicides in water. J. Sep. Sci. 2015, 38, 2312–2319. [Google Scholar] [CrossRef]
- Maciel, E.V.S.; de Toffoli, A.L.; Lanças, F.M. Current status and future trends on automated multidimensional separation techniques employing sorbent-based extraction columns. J. Sep. Sci. 2018, 42, 258–272. [Google Scholar] [CrossRef]
- Andrade, M.A.; Lanc, F.M. Determination of Ochratoxin A in wine by packed in-tube solid phase microextraction followed by high performance liquid chromatography coupled to tandem mass spectrometry. 2017, 1493, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Fan, Y.; Li, G. Preparation and evaluation of a porous monolithic capillary column for microextraction of estrogens from urine and milk samples online coupled to high-performance liquid chromatography. J. Chromatogr. A 2012, 1228, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Wang, J.; Zhao, Q.; Jiang, N.; Lin, X.; Xie, Z.; Li, J.; Zhang, Q. Detection of trans-fatty acids by high performance liquid chromatography coupled with in-tube solid-phase microextraction using hydrophobic polymeric monolith. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1040, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.T.; Chen, Y.H.; Ma, J.F.; Hu, M.J.; Li, Y.; Fang, J.H.; Gao, H.Q. A novel ionic liquid-modified organic-polymer monolith as the sorbent for in-tube solid-phase microextraction of acidic food additives. Anal. Bioanal. Chem. 2014, 406, 4955–4963. [Google Scholar] [CrossRef] [PubMed]
- Ayrton, J.; Dear, G.J.; Leavens, W.J.; Mallett, D.N.; Plumb, R.S. The use of turbulent flow chromatography/mass spectrometry for the rapid, direct analysis of a novel pharmaceutical compound in plasma. Rapid Commun. Mass Spectrom. 1997, 11, 1953–1958. [Google Scholar] [CrossRef]
- Song, Q.; Zhao, Y.; Chen, X.; Li, J.; Li, P.; Jiang, Y.; Wang, Y.; Song, Y.; Tu, P. New instrumentation for large-scale quantitative analysis of components spanning a wide polarity range by column-switching hydrophilic interaction chromatography-turbulent flow chromatography-reversed phase liquid chromatography-tandem mass spectrometry. RSC Adv. 2017, 7, 31838–31849. [Google Scholar] [CrossRef]
- Giulivo, M.; Capri, E.; Eljarrat, E.; Barceló, D. Analysis of organophosphorus flame retardants in environmental and biotic matrices using on-line turbulent flow chromatography-liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2016, 1474, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Presta, M.A.; Bruyneel, B.; Zanella, R.; Kool, J.; Krabbe, J.G.; Lingeman, H. Determination of Flavonoids and Resveratrol in Wine by Turbulent-Flow Chromatography-LC-MS. Chromatographia 2009, 69, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Kinsella, B.; O’Mahony, J.; Malone, E.; Moloney, M.; Cantwell, H.; Furey, A.; Danaher, M. Current trends in sample preparation for growth promoter and veterinary drug residue analysis. J. Chromatogr. A 2009, 1216, 7977–8015. [Google Scholar] [CrossRef] [Green Version]
- Stolker, A.A.M.; Peters, R.J.B.; Zuiderent, R.; DiBussolo, J.M.; Martins, C.P.B. Fully automated screening of veterinary drugs in milk by turbulent flow chromatography and tandem mass spectrometry. Anal. Bioanal. Chem. 2010, 397, 2841–2849. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.X.; Yang, J.Z.; Wang, Z.X.; Wang, C.J.; Liu, Y.F.; Zhang, L. Rapid determination of 88 veterinary drug residues in milk using automated TurborFlow online clean-up mode coupled to liquid chromatography-tandem mass spectrometry. Talanta 2016, 148, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Bousova, K.; Senyuva, H.; Mittendorf, K. Multiresidue automated turbulent flow online LC-MS/MS method for the determination of antibiotics in milk. Food Addit. Contam. Part A 2012, 29, 1901–1912. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Li, Q.; Sun, L.; Du, Y.; Xia, J.; Zhang, Y. Simultaneous determination of aflatoxin B1 and M1 in milk, fresh milk and milk powder by LC-MS/MS utilising online turbulent flow chromatography. Food Addit. Contam. Part A 2015, 32, 1175–1184. [Google Scholar] [CrossRef] [PubMed]
- Molins-Delgado, D.; del Mar Olmo-Campos, M.; Valeta-Juan, G.; Pleguezuelos-Hernández, V.; Barceló, D.; Díaz-Cruz, M.S. Determination of UV filters in human breast milk using turbulent flow chromatography and babies’ daily intake estimation. Environ. Res. 2018, 161, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Barreiro, J.C.; Luiz, A.L.; Maciel, S.C.F.; Maciel, E.V.S.; Lanças, F.M. Recent approaches for on-line analysis of residues and contaminants in food matrices: A review. J. Sep. Sci. 2015, 38, 1721–1732. [Google Scholar] [CrossRef] [PubMed]
- Dass, C. Fundamentals of Contemporary Mass Spectrometry; John Wiley & Sons: Hoboken, NJ, USA, 2007; ISBN 9780471682295. [Google Scholar]
- De Toffoli, A.L.; Fumes, B.H.; Lanças, F.M. Packed in-tube solid phase microextraction with graphene oxide supported on aminopropyl silica: Determination of target triazines in water samples. J. Environ. Sci. Health Part B 2018, 53, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Roach, J.A.G.; Dibussolo, J.M.; Krynitsky, A.; Noonan, G.O. Evaluation and single laboratory validation of an on-line turbulent flow extraction tandem mass spectrometry method for melamine in infant formula. J. Chromatogr. A 2011, 1218, 4284–4290. [Google Scholar] [CrossRef]
- Da Silva, M.R.; Lanças, F.M. Evaluation of ionic liquids supported on silica as a sorbent for fully automated online solid-phase extraction with LC-MS determination of sulfonamides in bovine milk samples. J. Sep. Sci. 2018, 41, 2237–2244. [Google Scholar] [CrossRef]
- Campone, L.; Piccinelli, A.L.; Celano, R.; Pagano, I.; Russo, M.; Rastrelli, L. Rapid and automated analysis of aflatoxin M1 in milk and dairy products by online solid phase extraction coupled to ultra-high-pressure-liquid-chromatography tandem mass spectrometry. J. Chromatogr. A 2016, 1428, 212–219. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Sun, M.; Zhang, B.; Fan, C. Use of a Headspace Solid-Phase Microextraction-Based Methodology Followed by Gas Chromatography–Tandem Mass Spectrometry for Pesticide Multiresidue Determination in Teas. Chromatographia 2018, 81, 809–821. [Google Scholar] [CrossRef]
- Zheng, M.-M.; Ruan, G.-D.; Feng, Y.-Q. Evaluating polymer monolith in-tube solid-phase microextraction coupled to liquid chromatography/quadrupole time-of-flight mass spectrometry for reliable quantification and confirmation of quinolone antibacterials in edible animal food. J. Chromatogr. A 2009, 1216, 7510–7519. [Google Scholar] [CrossRef] [PubMed]
- Campone, L.; Piccinelli, A.L.; Celano, R.; Pagano, I.; Russo, M.; Rastrelli, L. Rapid and automated on-line solid phase extraction HPLC–MS/MS with peak focusing for the determination of ochratoxin A in wine samples. Food Chem. 2018, 244, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Barnaba, C.; Dellacassa, E.; Nicolini, G.; Nardin, T.; Malacarne, M.; Larcher, R. Identification and quantification of 56 targeted phenols in wines, spirits, and vinegars by online solid-phase extraction—Ultrahigh-performance liquid chromatography—Quadrupole-orbitrap mass spectrometry. J. Chromatogr. A 2015, 1423, 124–135. [Google Scholar] [CrossRef] [PubMed]
Matrix | Analyte | Stationary Phase | Separation/Detection | LOD 1 (µg/L) | Ref. |
---|---|---|---|---|---|
Apple, orange and sea-buckthorn juices, tap and mineral water | Pb(II) | Alginate hydrogel based hybrid monolithic | Flame atomic absorption spectrometer | 0.39 | [38] |
Beer | Ochratoxin A (OTA) | Polycaprolactone microfiber/polyvinylidene difluoride nanofibers | UPLC-FLD | 0.5 | [20] |
Bottled water | Phthalates | C18-bonded silica | HPLC-UV | 0.7–2.4 | [39] |
Coffee and tea | PAHs | Fe3O4@3-(Trimethoxysilyl)propyl methacrylate@ionic liquid nanoparticles | HPLC–FLD | 0.0001–0.01 | [40] |
Grape juice, apple juice, pineapple juice, orange juice, and peach juice | Protocatechuic Acid | PCA-MIPs | HPLC-UV | 500 | [41] |
Powdered beverages and juices | Synthetic colorants | Polydopamine coated Fe3O4 nanoparticles | HPLC-DAD | 0.20–0.25 | [42] |
Water | N-nitrosamines | Nano iron-porphyrinated poly(amidoamine) dendrimer MCM-41 Generation-3 | HPLC-UV | 0.6–0.75 | [43] |
Matrix | Analyte | Fiber Coating | Separation/Detection | LOD 1 (µg/L) | Ref. |
---|---|---|---|---|---|
Beer, carbonated drink, fresh milk, juice, red wine, and white wine. | Phthalate acid esters | Carbon nanotubes (MWCNTs)/silica | GC-MS | 0.006–0.03 | [52] |
Brazilian Pilsner beers | Off-flavors | DVB/CAR/PDMS | GC–ECD | 39.48– 0.61 | [53] |
Chinese liquors | Pyrazines | CAR/DVB/PDMS | GC-NPD | 0.035–0.142 | [54] |
Fruit juice | Food colorants | Diamino moiety functionalized silica nanoparticles | CE | 30–360 | [55] |
Port wines | Carbonyl compounds | PDMS/DVB | GC-MS | 0.006–0.089 | [56] |
Soft drinks | Alcohols | Poly(3,4-ethylenedioxythiophene)-ionic liquid | GC-FID | 0.0342–0.0813 | [57] |
Teas | Benzoylurea insecticide | β-cyclodextrin/attapulgite-immobilized ionic liquid | HPLC | 0.12–0.21 | [58] |
Teas | Nerolidol | PDMS/DVB | GC-FID | 0.3 (µg/kg) | [59] |
Matrix | Analyte | In-Tube Device | Mode | On-Line | Separation/Detection | LOD 1 (µg/L) | Ref. |
---|---|---|---|---|---|---|---|
Coca-cola and Sprite | Acidic additives | Ionic liquid-organic polymer monolith | Draw/eject | no | HPLC-UV | 1.2–13.5 | [76] |
Fruit juice | Patulin | Carboxen 1006 PLOT | Draw/eject cycles | yes | LC-MS | 0.0235 | [70] |
Instant coffee | Trans-fatty acids and esters | Poly OMA-co-EDMA monolith | Flow through | yes | HPLC-UV | 3.0–7.1 (µg/kg) | [75] |
Milk | Estrogens | Monolithic Poly(MAA-co-EGDMA) | Flow through | yes | HPLC-UV | 0.04–0.35 | [74] |
Nonfat milk | Phospho-peptides | Phosphonate grafted silica nanoparticle (NP-IMAC-Zr4+) | Draw/eject cycles in a syringe | no | MALDI-TOF | 50 (fmol) | [65] |
Nonfat milk | Phospho-peptides | Monolith SiO2/TiO2 | Draw/eject | no | MALDI-TOF-MS | 10–50 (fmol) | [66] |
Orange juice | Triazines | Carbon nanotubes in polymer monolith | Draw/eject | yes | DART-MS | 0.02–0.14 | [64] |
Teas | PAHs | CP-Sil 19CB | Draw/eject cycles | yes | HPLC-FLD | 0.00032–0.0046 | [69] |
Water | Triazines | GO in a silica tube | Flow through | no | HPLC-MS/MS | 0.0005–0.005 | [71] |
Water in baby bottles | Bisphenol A | CPANI in silica-steel tube | Flow through | yes | UV-vis | 20 (nM) | [63] |
Matrix | Analyte | Extraction Method/Device | Separation/Detection | LOD 1 (µg/L) | Ref. |
---|---|---|---|---|---|
Bottled Water | Triazines | In-tube SPME, packed GO-amino silica particles | UHPLC-ESI-MS/MS | 0.0011–0.0029 | [89] |
Breast milk | UV-Filters residues | TFC, Transcend™ TLX-1, Cyclone P column | TFC-HPLC-ESI-MS/MS | 0.1–1.5 (µg/kg) | [86] |
Infant formula | Melamine | TFC, Transcend TLX-2, Cyclone MCX-2 cation exchanger turboflow™ column | TFC-APCI-LC-MS/MS | 27 (µg/kg) | [90] |
Milk | Sulfonamide antibiotics | SPE, silica-based ionic liquid (IL) | SPE-LC-ESI-TOF-MS | 1.5–2.25 | [91] |
Milk | Veterinary drugs | TFC, Transcend™ TLX-1, Turboflow™ cyclone column (50 × 1.0 mm, 60 µm particle size, 60 Å pore size) | TFC-ESI-LC-MS/MS | 0.2–2.0 (µg/kg) | [83] |
Milk and dairy products | Aflatoxin M1 | SPE, C18 cartridge | UHPLC-ESI- MS/MS | 0.0005–0.0007 (µg/kg) | [92] |
Skimmed Milk | Antibiotics | TFC, Transcend™ TLX-1, Cyclone P column (50 × 0.5 mm, 60 µm particle size, 60 Å pore size) | TFC-LC-ESI-MS/MS | 0.3–25 (µg/kg) | [84] |
Tea | Pesticides | HS-SPME, PDMS/DVB fiber | GC-MS/MS | 1–5 (µg/kg) 2 | [93] |
Whole milk | Quinolone antibacterial | In-tube SPME, monolithic microcolumn Poly(MAA-co-EGDMA) | LC-ESI-QTOF-MS | 0.2–3.0 | [94] |
Wine | Ochratoxin A | In-tube SPME, packed C18 particles in a peek tube | UHPLC-ESI-MS/MS | 0.02 | [73] |
Wine | Ochratoxin A | SPE, Oasis MAX cartridge | HPLC-ESI- MS/MS | 0.012 | [95] |
Wine, spirits, vinegars | Phenols | SPE, HyperSep™ Retain PEP cartridge | UHPLC-ESI-Q-Orbitrap | 0.1–5 2 | [96] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mejía-Carmona, K.; Jordan-Sinisterra, M.; Lanças, F.M. Current Trends in Fully Automated On-Line Analytical Techniques for Beverage Analysis. Beverages 2019, 5, 13. https://doi.org/10.3390/beverages5010013
Mejía-Carmona K, Jordan-Sinisterra M, Lanças FM. Current Trends in Fully Automated On-Line Analytical Techniques for Beverage Analysis. Beverages. 2019; 5(1):13. https://doi.org/10.3390/beverages5010013
Chicago/Turabian StyleMejía-Carmona, Karen, Marcela Jordan-Sinisterra, and Fernando M. Lanças. 2019. "Current Trends in Fully Automated On-Line Analytical Techniques for Beverage Analysis" Beverages 5, no. 1: 13. https://doi.org/10.3390/beverages5010013
APA StyleMejía-Carmona, K., Jordan-Sinisterra, M., & Lanças, F. M. (2019). Current Trends in Fully Automated On-Line Analytical Techniques for Beverage Analysis. Beverages, 5(1), 13. https://doi.org/10.3390/beverages5010013