Listeria monocytogenes in Milk: Occurrence and Recent Advances in Methods for Inactivation
Abstract
:1. Introduction
2. Occurrence of L. monocytogenes in Fluid Milk
3. Technological Approaches for Inactivation of L. monocytogenes in Fluid Milk
4. Conclusions and Future Trends
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Muthulakshmi, K.; Uma, C.; Sivagurunathan, P. Occurrence of Listeria monocytogenes in milk and milk products. Int. J. Rec. Res. Life Sci. 2018, 7, 1572–1574. [Google Scholar]
- Geigl, E.-M. Palaeogenetics of cattle domestication: Methodological challenges for the study of fossil bones preserved in the domestication centre in Southwest Asia. C. R. Palevol 2008, 7, 99–112. [Google Scholar] [CrossRef]
- Bando, E.; Oliveira, R.C.; Ferreira, G.M.Z.; Machinski, M., Jr. Occurrence of antimicrobial residues in pasteurized milk commercialized in the state of Paraná, Brazil. J. Food Prot. 2009, 72, 911–914. [Google Scholar] [CrossRef] [PubMed]
- Balthazar, C.F.; Pimentel, T.C.; Ferrão, L.L.; Almada, C.N.; Santillo, A.; Albenzio, M.; Mollakhalili, N.; Mortazavian, A.M.; Nascimento, J.S.; Silva, M.C.; et al. Sheep milk: Physicochemical characteristics and relevance for functional food development. Compr. Rev. Food Sci. 2017, 16, 247–262. [Google Scholar] [CrossRef]
- Adams, M.R.; Moss, M.O. Food Microbiology; Royal Society of Chemistry: Cambridge, UK, 2008. [Google Scholar]
- Amagliani, G.; Petruzzelli, A.; Omiccioli, E.; Tonucci, F.; Magnani, M.; Brandi, G. Microbiological surveillance of a bovine raw milk farm through multiplex real-time PCR. Foodborne Pathog. Dis. 2012, 9, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Hill, B.; Smythe, B.; Lindsay, D.; Shepherd, J. Microbiology of raw milk in New Zealand. Int. J. Food Microbiol. 2012, 157, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Headrick, M.L.; Korangy, S.; Bean, N.H.; Angulo, F.J.; Altekruse, S.F.; Potter, M.E.; Klontz, K.C. The epidemiology of raw milk-associated foodborne disease outbreaks reported in the United States, 1973 through 1992. Am. J. Public Health 1998, 88, 1219–1221. [Google Scholar] [CrossRef]
- Martin, B.; Chamba, J.F.; Coulon, J.B.; Perreard, E. Effect of milk chemical composition and clotting characteristics on chemical and sensory properties of Reblochon de Savoie cheese. J. Dairy Res 1997, 64, 157–162. [Google Scholar] [CrossRef]
- Claeys, W.L.; Cardoen, S.; Daube, G.; De Block, J.; Dewettinck, K.; Dierick, K.; de Zutter, L.; Huyghebaert, A.; Imberechts, H.; Thiange, P.; et al. Raw or heated cow milk consumption: Review of risks and benefits. Food Control 2013, 31, 251–262. [Google Scholar] [CrossRef]
- Perkiomäki, J.; Leimi, A.; Tuominen, P. Suomessa tuotetun raakamaidon biologiset vaarat–riskiprofiili. [Biological hazards of raw milk produced in Finland–risk profile]. Eviran tutkimuksia 2012, 4, 1–131. [Google Scholar]
- Rahn, W.M.; Gollust, S.E.; Tang, X. Framing Food Policy: The Case of Raw Milk. Policy Stud. J. 2016. [Google Scholar] [CrossRef]
- Castro, H.; Ruusunen, M.; Lindström, M. Occurrence and growth of Listeria monocytogenes in packaged raw milk. Int. J. Food Microbiol. 2017, 261, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Latorre, A.A.; Van Kessel, J.A.S.; Karns, J.S.; Zurakowski, M.J.; Pradhan, A.K.; Zadoks, R.N.; Boor, K.J.; Schukken, Y.H. Molecular ecology of Listeria monocytogenes: Evidence for a reservoir in milking equipment on a dairy farm. Appl. Environ. Microbiol 2009, 75, 1315–1323. [Google Scholar] [CrossRef] [PubMed]
- Gougouli, M.; Angelidis, A.S.; Koutsoumanis, K. A study on the kinetic behavior of Listeria monocytogenes in ice cream stored under static and dynamic chilling and freezing conditions. J. Dairy Sci. 2008, 91, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Rosshaug, P.S.; Detmer, A.; Ingmer, H.; Larsen, M.H. Modeling the growth of Listeria monocytogenes in soft blue-white cheese. Appl. Environ. Microbiol. 2012, 78, 8508–8514. [Google Scholar] [CrossRef] [PubMed]
- Olszewska, M.A.; Panfil-Kuncewicz, H.; Łaniewska-Trokenheim, L. Detection of viable but nonculturable cells of L. monocytogenes with the use of directepifluorescent filter technique. J. Food Saf. 2015, 35, 86–90. [Google Scholar] [CrossRef]
- Sukhadeo, B.B.; Trinad, C. Molecular mechanisms of bacterial infection via the gut. Curr. Top. Microbiol. Immunol. 2009, 337, 173–195. [Google Scholar]
- Buchanan, R.L.; Gorris, L.G.; Hayman, M.M.; Jackson, T.C.; Whiting, R.C. A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control 2017, 75, 1–13. [Google Scholar] [CrossRef]
- Moosavy, M.H.; Esmaeili, S.; Mostafavi, E.; Amiri, F.B. Isolation of Listeria monocytogenes from milks used for Iranian traditional cheese in Lighvan cheese factories. Ann. Agric. Environ. Med. 2014, 21, 728–729. [Google Scholar] [CrossRef]
- Davis, B.J.; Li, C.X.; Nachman, K.E. A Literature Review of the Risks and Benefits of Consuming Raw and Pasteurized Cow’s Milk; A Response to the Request from The Maryland House of Delegates’ Health and Government Operations Committee; John Hopkins Report; Johns Hopkins University: Baltimore, MD, USA, 2014. [Google Scholar]
- Gould, L.H.; Walsh, K.A.; Vieira, A.R.; Herman, K.; Williams, I.T.; Hall, A.J.; Cole, D. Surveillance for foodborne disease outbreaks—United States, 1998–2008. MMWR CDC Surveill. Summ. 2013, 62, 1–34. [Google Scholar]
- Auvolat, A.; Besse, N.G. The challenge of enumerating Listeria monocytogenes in food. Food Microbiol. 2016, 53, 135–149. [Google Scholar] [CrossRef] [PubMed]
- De Vries, H.; Mikolajczak, M.; Salmon, J.M.; Abecassis, J.; Chaunier, L.; Guessasma, S.; Trystram, G. Small-Scale Food Process Engineering—Challenges and Perspectives. Innov. Food Sci. Emerg. Technol. 2017. [Google Scholar] [CrossRef]
- Norton, T.; Sun, D.W. Recent advances in the use of high pressure as an effective processing technique in the food industry. Food Bioprocess Technol. 2008, 1, 2–34. [Google Scholar] [CrossRef]
- Tomasula, P.M.; Renye, J.A.; Van Hekken, D.L.; Tunick, M.H.; Kwoczak, R.; Toht, M.; Leggett, L.N.; Luchansky, J.B.; Porto-Fett, A.C.S.; Phillips, J.G. Effect of high-pressure processing on reduction of Listeria monocytogenes in packaged Queso Fresco. J. Dairy Sci. 2014, 97, 1281–1295. [Google Scholar] [CrossRef] [PubMed]
- Patterson, M.F. Microbiology of pressure-treated foods. J. Appl. Microbiol. 2005, 98, 1400–1409. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.; Huang, Y.; Gurtler, J.B.; Niemira, B.A.; Sites, J.E.; Chen, H. Effects of preor post-processing storage conditions on high-hydrostatic pressure inactivation of Vibrio parahaemolyticus and V. vulnificus in oysters. Int. J. Food Microbiol. 2013, 163, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Beltrán, J.Á.; Sepulveda, D.R.; Góngora-Nieto, M.M.; Swanson, B.; Barbosa-Cánovas, G.V. Milk thermization by pulsed electric fields (PEF) and electrically induced heat. J. Food Eng. 2010, 100, 56–60. [Google Scholar] [CrossRef]
- Caminiti, I.M.; Palgan, I.; Noci, F.; Muñoz, A.; Whyte, P.; Cronin, D.A.; Morgan, D.J.; Lyng, J.G. The effect of pulsed electric fields (PEF) in combination with high intensity light pulses (HILP) on Escherichia coli inactivation and quality attributes in apple juice. Innov. Food Sci. Emerg. Technol. 2011, 12, 118–123. [Google Scholar] [CrossRef]
- Giacometti, F.; Bonilauri, P.; Serraino, A.; Peli, A.; Amatiste, S.; Arrigoni, N.; Bianchi, M.; Bilei, S.; Cascone, G.; Comin, D.; et al. Four-year monitoring of foodborne pathogens in raw milk sold by vending machines in Italy. J. Food Prot. 2013, 76, 1902–1907. [Google Scholar] [CrossRef]
- Giacometti, F.; Bonilauri, P.; Albonetti, S.; Amatiste, S.; Arrigoni, N.; Bianchi, M.; Bertasi, B.; Bilei, S.; Bolzoni, G.; Cascone, G.; et al. Quantitative risk assessment of human salmonellosis and listeriosis related to the consumption of raw milk in Italy. J. Food Prot. 2015, 78, 13–21. [Google Scholar] [CrossRef]
- Barancelli, G.V.; Camargo, T.M.; Reis, C.M.; Porto, E.; Hofer, E.; Oliveira, C.A. Incidence of Listeria monocytogenes in cheese manufacturing plants from the northeast region of São Paulo, Brazil. J. Food Prot. 2011, 74, 816–819. [Google Scholar] [CrossRef] [PubMed]
- Cavicchioli, V.Q.; Scatamburlo, T.M.; Yamazi, A.K.; Pieri, F.A.; Nero, L.A. Occurrence of Salmonella, Listeria monocytogenes, and enterotoxigenic Staphylococcus in goat milk from small and medium-sized farms located in Minas Gerais State, Brazil. J. Dairy Sci. 2015, 98, 8386–8390. [Google Scholar] [CrossRef] [PubMed]
- Cerva, C.; Bremm, C.; Dos Reis, E.M.; Bezerra, A.V.A.; Loiko, M.R.; da Cruz, C.E.F.; Cenci, A.; Mayer, F.Q. Food safety in raw milk production: Risk factors associated to bacterial DNA contamination. Trop. Anim. Health Prod. 2014, 46, 877–882. [Google Scholar] [CrossRef] [PubMed]
- Nero, L.A.; De Mattos, M.R.; de Aguiar Ferreira Barros, M.; Ortolani, M.B.T.; Beloti, V.; de Melo Franco, B.D.G. Listeria monocytogenes and Salmonella spp. in raw milk produced in Brazil: Occurrence and interference of indigenous microbiota in their isolation and development. Zoonoses Public Health 2008, 55, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.J.B.; Hisrich, E.R.; Moura, J.F.P.; Givisiez, P.E.N.; Costa, R.G.; Gebreyes, W.A. On farm risk factors associated with goat milk quality in Northeast Brazil. Small Rumin. Res. 2011, 98, 64–69. [Google Scholar] [CrossRef]
- Ortolani, M.B.T.; Yamazi, A.K.; Moraes, P.M.; Viçosa, G.N.; Nero, L.A. Microbiological quality and safety of raw milk and soft cheese and detection of autochthonous lactic acid bacteria with antagonistic activity against Listeria monocytogenes, Salmonella spp., and Staphylococcus aureus. Foodborne Pathog. Dis. 2010, 7, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Parisi, A.; Latorre, L.; Fraccalvieri, R.; Miccolupo, A.; Normanno, G.; Caruso, M.; Santagada, G. Occurrence of Listeria spp. in dairy plants in Southern Italy and molecular subtyping of isolates using AFLP. Food Control 2013, 29, 91–97. [Google Scholar] [CrossRef]
- Costa Sobrinho, P.D.S.; Marcal de Faria, C.A.; Silva Pinheiro, J.; Gonçalves de Almeida, H.; Vieira Pires, C.; Silva Santos, A. Bacteriological quality of raw milk used for production of a Brazilian farmstead raw milk cheese. Foodborne Pathog. Dis. 2012, 9, 138–144. [Google Scholar] [CrossRef]
- Vanegas, M.C.; Vásquez, E.; Martinez, A.J.; Rueda, A.M. Detection of Listeria monocytogenes in raw whole milk for human consumption in Colombia by real-time PCR. Food Control 2009, 20, 430–432. [Google Scholar] [CrossRef]
- D’Amico, D.J.; Donnelly, C.W. Detection, isolation, and incidence of Listeria spp. in small-scale artisan cheese processing facilities: A methods comparison. J. Food Prot. 2009, 72, 2499–2507. [Google Scholar] [CrossRef]
- Mohammed, H.O.; Stipetic, K.; McDonough, P.L.; Gonzalez, R.N.; Nydam, D.V.; Atwill, E.R. Identification of potential on-farm sources of Listeria monocytogenes in herds of dairy cattle. Am. J. Vet. Res. 2009, 70, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Van Kessel, J.A.S.; Karns, J.S.; Lombard, J.E.; Kopral, C.A. Prevalence of Salmonella enterica, Listeria monocytogenes, and Escherichia coli virulence factors in bulk tank milk and in-line filters from US dairies. J. Food Prot. 2011, 74, 759–768. [Google Scholar] [CrossRef] [PubMed]
- Schoder, D.; Melzner, D.; Schmalwieser, A.; Zangana, A.; Winter, P.; Wagner, M. Important vectors for Listeria monocytogenes transmission at farm dairies manufacturing fresh sheep and goat cheese from raw milk. J. Food Prot. 2011, 74, 919–924. [Google Scholar] [CrossRef] [PubMed]
- Cupáková, Š.; Pospíšilová, M.; Karpíšková, R.; Janštová, B.; Vorlová, L. Microbiological quality and safety of goat’s milk from one farm. Acta Univ. Agric. Silvic. Mendel. Brun. 2013, 60, 33–38. [Google Scholar] [CrossRef]
- Roubal, P.; JagliC, Z. Microbial contamination after sanitation of food contact surfaces in dairy and meat processing plants. Czech J. Food Sci. 2010, 28, 450–461. [Google Scholar] [Green Version]
- Kalmus, P.; Kramarenko, T.; Roasto, M.; Meremäe, K.; Viltrop, A. Quality of raw milk intended for direct consumption in Estonia. Food Control 2015, 51, 135–139. [Google Scholar] [CrossRef]
- Kramarenko, T.; Roasto, M.; Meremäe, K.; Kuningas, M.; Põltsama, P.; Elias, T. Listeria monocytogenes prevalence and serotype diversity in various foods. Food Control 2013, 30, 24–29. [Google Scholar] [CrossRef]
- Ruusunen, M.; Salonen, M.; Pulkkinen, H.; Huuskonen, M.; Hellström, S.; Revez, J.; Hänninen, M.L.; Fredriksson-Ahomaa, M.; Lindström, M. Pathogenic bacteria in Finnish bulk tank milk. Foodborne Pathog. Dis. 2013, 10, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Dalzini, E.; Bernini, V.; Bertasi, B.; Daminelli, P.; Losio, M.N.; Varisco, G. Survey of prevalence and seasonal variability of Listeria monocytogenes in raw cow milk from Northern Italy. Food Control 2016, 60, 466–470. [Google Scholar] [CrossRef]
- Almeida, G.; Magalhães, R.; Carneiro, L.; Santos, I.; Silva, J.; Ferreira, V.; Hogg, T.; Teixeira, P. Foci of contamination of Listeria monocytogenes in different cheese processing plants. Int. J. Food. Microbiol 2013, 167, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Botsaris, G.; Nikolaou, K.; Liapi, M.; Pipis, C. Prevalence of Listeria spp. and Listeria monocytogenes in cattle farms in Cyprus using bulk tank milk samples. J. Food Saf. 2016, 36, 482–488. [Google Scholar] [CrossRef]
- Durmaz, H.; Avcı, M.; Aygün, O. The presence of Listeria species in corn silage and raw milk produced in Southeast region of Turkey. Kafkas Univ. Vet. Fak. Derg. 2015, 21, 41–44. [Google Scholar]
- Taşçi, F.; Türütoğlu, H.; Öğütçü, H. Investigations of Listeria species in milk and silage produced in Burdur province. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 2010, 16, 93–97. [Google Scholar]
- Morobe, I.C.; Obi, C.L.; Nyila, M.A.; Gashe, B.A.; Matsheka, M.I. Prevalence, antimicrobial resistance profiles of Listeria monocytogenes from various foods in Gaborone, Botswana. Afr. J. Biotechnol. 2009, 8, 6383–6387. [Google Scholar] [CrossRef]
- Abeer, A.A.; Gouda, A.S.; Dardir, H.; Ibrahim, A. Prevalence of some milk borne bacterial pathogens threatening camel milk consumers in Egypt. Glob. Vet. 2012, 8, 76–82. [Google Scholar]
- Ismaiel, A.A.R.; Ali, A.E.S.; Enan, G. Incidence of Listeria in Egyptian meat and dairy samples. Food Sci. Biotechnol. 2014, 23, 179–185. [Google Scholar] [CrossRef]
- Osman, K.M.; Zolnikov, T.R.; Samir, A.; Orabi, A. Prevalence, pathogenic capability, virulence genes, biofilm formation, and antibiotic resistance of Listeria in goat and sheep milk confirms need of hygienic milking conditions. Pathog. Glob. Health 2014, 108, 21–29. [Google Scholar] [CrossRef]
- Derra, F.A.; Karlsmose, S.; Monga, D.P.; Mache, A.; Svendsen, C.A.; Félix, B.; Granier, S.A.; Geyid, A.; Taye, G.; Hendriksen, R.S. Occurrence of Listeria spp. in retail meat and dairy products in the area of Addis Ababa, Ethiopia. Foodborne Pathog. Dis. 2013, 10, 577–579. [Google Scholar] [CrossRef]
- Garedew, L.; Taddese, A.; Biru, T.; Nigatu, S.; Kebede, E.; Ejo, M.; Fikru, A.; Birhanu, T. Prevalence and antimicrobial susceptibility profile of Listeria species from ready-to-eat foods of animal origin in Gondar Town, Ethiopia. BMC Microbiol. 2015, 15, 100. [Google Scholar] [CrossRef]
- Gebretsadik, S.; Kassa, T.; Alemayehu, H.; Huruy, K.; Kebede, N. Isolation and characterization of Listeria monocytogenes and other Listeria species in foods of animal origin in Addis Ababa, Ethiopia. J. Infect. Public Health 2011, 4, 22–29. [Google Scholar] [CrossRef]
- Seyoum, E.T.; Woldetsadik, D.A.; Mekonen, T.K.; Gezahegn, H.A.; Gebreyes, W.A. Prevalence of Listeria monocytogenes in raw bovine milk and milk products from central highlands of Ethiopia. J. Infect. Dev. Ctries. 2015, 9, 1204–1209. [Google Scholar] [CrossRef] [PubMed]
- El Marnissi, B.; Bennani, L.; Cohen, N.; Lalami, A.E.O.; Belkhou, R. Presence of Listeria monocytogenes in raw milk and traditional dairy products marketed in the north-central region of Morocco. Afr. J. Food Sci. 2013, 7, 87–91. [Google Scholar] [CrossRef]
- Hadrya, F.; Elouardi, A.; Benali, D.; Hami, H.; Soulaymani, A.; Senouci, S. Bacterial quality of informally marketed raw milk in Kenitra city, Morocco. Pakistan J. Nutr. 2012, 11, 662–669. [Google Scholar] [CrossRef]
- Yakubu, Y.; Salihu, M.D.; Faleke, O.O.; Abubakar, M.B.; Junaidu, A.U.; Magaji, A.A.; Gulumbe, M.L.; Aliyu, R.M. Prevalence and antibiotic susceptibility of Listeria monocytogenes in raw milk from cattle herds within Sokoto Metropolis, Nigeria. Sokoto J. Vet. 2012, 10. [Google Scholar] [CrossRef]
- Ning, P.; Guo, K.; Cheng, L.; Xu, L.; Zhang, C.; Cui, H.; Cheng, Y.; Xu, R.; Liu, W.; Lv, Q.; et al. Pilot survey of raw whole milk in China for Listeria monocytogenes using PCR. Food Control 2013, 31, 176–179. [Google Scholar] [CrossRef]
- Kalorey, D.R.; Warke, S.R.; Kurkure, N.V.; Rawool, D.B.; Barbuddhe, S.B. Listeria species in bovine raw milk: A large survey of Central India. Food Control 2008, 19, 109–112. [Google Scholar] [CrossRef]
- Karthikeyan, R.; Gunasekaran, P.; Rajendhran, J. Molecular serotyping and pathogenic potential of Listeria monocytogenes isolated from milk and milk products in Tamil Nadu, India. Foodborne Pathog. Dis. 2015, 12, 522–528. [Google Scholar] [CrossRef]
- Nayak, D.N.; Savalia, C.V.; Kalyani, I.H.; Kumar, R.; Kshirsagar, D.P. Isolation, identification, and characterization of Listeria spp. from various animal origin foods. Vet. World 2015, 8, 695–701. [Google Scholar] [CrossRef]
- Sarangi, L.N.; Panda, H.K.; Priyadarshini, A.; Sahoo, S.; Palai, T.K.; Ranabijuli, S.; Senapati, S.; Mohanty, D.N. Prevalence of Listeria species in milk samples of cattle of Odisha. Indian J. Comp. Microbiol. Immunol. Infect. Dis. 2009, 30, 135–136. [Google Scholar]
- Shamloo, E.; Jalali, M.; Mirlohi, M.; Madani, G.; Metcalf, D.; Merasi, M.R. Prevalence of Listeria species in raw milk and traditional dairy products in Isfahan, Iran. Int. J. Environ. Health Eng. 2015, 4, 1. [Google Scholar]
- Sharma, S.; Sharma, V.; Dahiya, D.K.; Khan, A.; Mathur, M.; Sharma, A. Prevalence, virulence potential, and antibiotic susceptibility profile of Listeria monocytogenes isolated from bovine raw milk samples obtained from Rajasthan, India. Foodborne Pathog. Dis. 2017, 14, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Soni, D.K.; Singh, R.K.; Singh, D.V.; Dubey, S.K. Characterization of Listeria monocytogenes isolated from Ganges water, human clinical and milk samples at Varanasi, India. Infect. Genet. Evol. 2013, 14, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Mansouri-Najand, L.; Kianpour, M.; Sami, M.; Jajarmi, M. Prevalence of Listeria monocytogenes in raw milk in Kerman, Iran. Vet. Res. Forum 2015, 6, 223–226. [Google Scholar] [PubMed]
- Shamloo Aghakhani, E.; Jalali, M.; Mirlohi, M.; Abdi Moghadam, Z.; Shamloo Aghakhani, E.; Reza Maracy, M.; Yaran, M. Prevalence of Listeria species in raw milk in Isfahan, Iran. J. Isfahan Med. Sch. 2012, 30, 204. [Google Scholar]
- Akya, A.; Najafi, F.; Moradi, J.; Mohebi, Z.; Adabagher, S. Prevalence of food contamination with Listeria spp. in Kermanshah, Islamic Republic of Iran. East. Mediterr. Health J. 2013, 19, 474–477. [Google Scholar] [CrossRef] [PubMed]
- Jamshidi, A.; Khanzadi, S. The presence of Listeria monocytogenes in raw milk samples in Mashhad, Iran. Iran. J. Vet. Res. 2011, 11, 363–367. [Google Scholar]
- Jalali, M.; Abedi, D. Prevalence of Listeria species in food products in Isfahan, Iran. Int. J. Food Microbiol. 2008, 122, 336–340. [Google Scholar] [CrossRef]
- Jamali, H.; Radmehr, B.; Thong, K.L. Prevalence, characterization, and antimicrobial resistance of Listeria species and Listeria monocytogenes isolates from raw milk in farm bulk tanks. Food Control 2013, 34, 121–125. [Google Scholar] [CrossRef]
- Mahmoodi, M.M. Occurrence of Listeria monocytogenes in raw milk and dairy products in Noorabad, Iran. J. Anim. Vet. Adv. 2010, 9, 16–19. [Google Scholar]
- Rahimi, E.; Ameri, M.; Momtaz, H. Prevalence and antimicrobial resistance of Listeria species isolated from milk and dairy products in Iran. Food Control 2010, 21, 1448–1452. [Google Scholar] [CrossRef]
- Vahedi, M.; Nasrolahei, M.; Sharif, M.; Mirabi, A.M. Bacteriological study of raw and unexpired pasteurized cow’s milk collected at the dairy farms and super markets in Sari city in 2011. J. Prev. Med. Hyg. 2013, 54, 120–123. [Google Scholar] [PubMed]
- Abbas, B.A.; Jaber, G.M. Occurrence of Listeria monocytogenes in raw milk of ruminants. Iraqi J. Vet. Sci. 2012, 26, 47–51. [Google Scholar]
- Al-Tahiri, R.I.A.D.H.; Omar, S.; Rewashdeh, A. A study of the occurrence of Listeria species in raw sheep milk. Int. J. Dairy Technol. 2008, 61, 347–351. [Google Scholar] [CrossRef]
- Al-Mariri, A.; Younes, A.; Ramadan, L. Prevalence of Listeria spp. in raw milk in Syria. Bulg. J. Vet. Med. 2013, 16, 112–122. [Google Scholar]
- Mugampoza, D.; Muyanja, C.M.; Ogwok, P.; Serunjogi, M.L.; Nasinyama, G.W. Occurrence of Listeria monocytogenes in bulked raw milk and traditionally fermented dairy products in Uganda. Afr. J. Food Agric. Nutr. Dev. 2011, 11, 4610–4622. [Google Scholar] [CrossRef]
- Barba, F.J.; Koubaa, M.; do Prado-Silva, L.; Orlien, V.; de Souza Sant’Ana, A. Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review. Trends Food Sci. Technol. 2017, 66, 20–35. [Google Scholar] [CrossRef]
- Cebrian, G.; Manas, P.; Condon, S. Comparative resistance of bacterial foodborne pathogens to non-thermal technologies for food preservation. Front. Microbiol. 2016, 7, 734. [Google Scholar] [CrossRef]
- Jermann, C.; Koutchma, T.; Margas, E.; Leadley, C.; Ros-Polski, V. Mapping trends in novel and emerging food processing technologies around the world. Innov. Food Sci. Emerg. Technol. 2015, 31, 14–27. [Google Scholar] [CrossRef]
- Lu, G.; Li, C.; Liu, P. UV inactivation of milk-related microorganisms with a novel electrodeless lamp apparatus. Eur. Food. Res. Technol. 2011, 233, 79–87. [Google Scholar] [CrossRef]
- Cameron, M.; McMaster, L.D.; Britz, T.J. Impact of ultrasound on dairy spoilage microbes and milk components. Dairy Sci. Technol. 2009, 89, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Välimaa, A.-L.; Tilsala-Timisjärvi, A.; Virtanen, E. Rapid detection and identification methods for Listeria monocytogenes in the food chain—A review. Food Control 2015, 55, 103–114. [Google Scholar] [CrossRef]
- Waite-Cusic, J.G.; Diono, B.H.; Yousef, A.E. Screening for Listeria monocytogenes surrogate strains applicable to food processing by ultrahigh pressure and pulsed electric field. J. Food Prot. 2011, 74, 1655–1661. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez-Aguirre, D.; Corradini, M.G.; Mawson, R.; Barbosa-Cánovas, G.V. Modeling the inactivation of Listeria innocua in raw whole milk treated under thermo-sonication. Innov. Food Sci. Emerg. Technol. 2009, 10, 172–178. [Google Scholar] [CrossRef]
- FDA (Food and Drug Administration). Kinetics of Microbial Inactivation for Alternative food Processing Technologies; FDA Center for Food Safety and Applied Nutrition Report—A Report of the IFT for the FDA of the US Department of Health and Human Services; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2000.
- Tenenhaus-Aziza, F.; Ellouze, M. Software for predictive microbiology and risk assessment: A description and comparison of tools presented at the ICPMF8 Software Fair. Food Microbiol. 2015, 45, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Perez-Rodriguez, F.; Valero, A. Predictive Microbiology in Foods; Springer: New York, NY, USA, 2013; pp. 1–10. [Google Scholar]
- Geeraerd, A.H.; Valdramidis, V.P.; Van Impe, J.F. GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. Int. J. Food Microbiol. 2005, 102, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Gérard, A.; El-Hajjaji, S.; Niyonzima, E.; Daube, G.; Sindic, M. Prevalence and survival of Listeria monocytogenes in various types of cheese—A review. Int. J. Dairy Technol. 2018, 71, 825–843. [Google Scholar] [CrossRef]
- Cadavez, V.A.P.; Campagnollo, F.B.; Silva, R.A.; Duffner, C.M.; Schaffner, D.W.; Sant’Ana, A.; Gonzales-Barron, U. A comparison of dynamic tertiary and competition models for describing the fate of Listeria monocytogenes in Minas fresh cheese during refrigerated storage. Food Microbiol. 2019, 79, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Campagnollo, F.B.; Magalho, L.P.; Kamimura, B.A.; Feliciano, M.D.; Freire, L.; Lopes, L.S.; Alvarenga, V.O.; Cadavez, V.A.P.; Gonzales-Barron, U.; Schaffner, D.W.; et al. Selection of indigenous lactic acid bacteria presenting anti-listerial activity, and their role in reducing the maturation period and assuring the safety of traditional Brazilian cheeses. Food Microbiol. 2018, 73, 2088–2097. [Google Scholar] [CrossRef] [PubMed]
- Dogan, C.; Erkmen, O. High pressure inactivation kinetics of Listeria monocytogenes inactivation in broth, milk, and peach and orange juices. J. Food Eng. 2004, 62, 47–52. [Google Scholar] [CrossRef]
- Viazis, S.; Farkas, B.E.; Jaykus, L.A. Inactivation of bacterial pathogens in human milk by high-pressure processing. J. Food Prot. 2008, 71, 109–118. [Google Scholar] [CrossRef]
- Mussa, D.M.; Ramaswamy, H.S.; Smith, J.P. High pressure (HP) destruction kinetics of Listeria monocytogenes Scott A in raw milk. Food Res. Int. 1998, 31, 343–350. [Google Scholar] [CrossRef]
- Xu, H.; Lee, H.-Y.; Ahn, J. High pressure inactivation kinetics of Salmonella enterica and Listeria monocytogenes in milk, orange juice, and tomato juice. Food Sci. Biotechnol. 2009, 18, 861–866. [Google Scholar]
- Mishra, N.; Puri, V.M.; Demirci, A. Inactivation and injury of Listeria monocytogenes under combined effect of pressure and temperature in UHT whole milk. J. Food Process. Eng. 2013, 36, 374–384. [Google Scholar] [CrossRef]
- Amina, M.; Kodogiannis, V.S.; Petrounias, I.P.; Lygouras, J.N.; Nychas, G.J.E. Identification of the Listeria monocytogenes survival curves in UHT whole milk utilising local linear wavelet neural networks. Expert Syst. Appl. 2012, 39, 1435–1450. [Google Scholar] [CrossRef]
- Alpas, H.; Bozoglu, F. The combined effect of high hydrostatic pressure, heat and bacteriocins on inactivation of foodborne pathogens in milk and orange juice. World J. Microbiol. Biotechnol. 2000, 16, 387–392. [Google Scholar] [CrossRef]
- Koseki, S.; Mizuno, Y.; Yamamoto, K. Use of mild-heat treatment following high-pressure processing to prevent recovery of pressure-injured Listeria monocytogenes in milk. Food Microbiol. 2008, 25, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Reina, L.D.; Jin, Z.T.; Zhang, Q.H.; Yousef, A.E. Inactivation of Listeria monocytogenes in milk by pulsed electric field. J. Food Prot. 1998, 61, 1203–1206. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Yang, R.; Shen, X.; Zhang, S.; Chen, X. Lethal and sublethal injury and kinetics of Escherichia coli, Listeria monocytogenes and Staphylococcus aureus in milk by pulsed electric fields. Food Control 2013, 32, 6–12. [Google Scholar] [CrossRef]
- Fleischman, G.J.; Ravishankar, S.; Balasubramaniam, V.M. The inactivation of Listeria monocytogenes by pulsed electric field (PEF) treatment in a static chamber. Food Microbiol. 2004, 21, 91–95. [Google Scholar] [CrossRef]
- Gabriel, A.A. Inactivation of Listeria monocytogenes in milk by mmultifrequency power ultrasound. J. Food Process. Preserv. 2015, 39, 846–853. [Google Scholar] [CrossRef]
- Gera, N.; Doores, S. Kinetics and mechanism of bacterial inactivation by ultrasound waves and sonoprotective effect of milk components. J. Food Sci. 2011, 76, M111–M119. [Google Scholar] [CrossRef] [PubMed]
- Gunter-Ward, D.M.; Patras, A.; Bhullar, M.S.; Kilonzo-Nthenge, A.; Pokharel, B.; Sasges, M. Efficacy of ultraviolet (UV-C) light in reducing foodborne pathogens and model viruses in skim milk. J. Food Process. Preserv. 2018, 42, e13485. [Google Scholar] [CrossRef]
- Matak, K.; Churey, J.; Worobo, R.; Sumner, S.; Hovingh, E.; Hackney, C.; Pierson, M. Efficacy of UV light for the reduction of Listeria monocytogenes in goat’s milk. J. Food Prot. 2005, 68, 2212–2216. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, A.A.; Marquez, G.G.F. Inactivation behaviors of selected bacteria in ultraviolet-C-treated human breast milk. Innov. Food Sci. Emerg. Technol. 2017, 41, 216–223. [Google Scholar] [CrossRef]
Country | Type of Milk | Samples Analyzed (N) | Positive Samples n (%) | Reference |
---|---|---|---|---|
America: | ||||
Brazil | Raw cow milk | 20 | 0 (0.0%) | [33] |
Brazil | Pasteurized cow milk | 12 | 0 (0.0%) | [33] |
Brazil | Raw goat milk | 53 | 0 (0.0%) | [34] |
Brazil | Raw cow milk | 548 | 6 (1.1%) | [35] |
Brazil | Raw cow milk | 210 | 0 (0.0%) | [36] |
Brazil | Goat milk | 96 | 0 (0.0%) | [37] |
Brazil | Raw cow milk | 36 | 0 (0.0%) | [38] |
Brazil | Cow milk kept in cooler tank | 27 | 1 (3.7%) | [39] |
Brazil | Raw cow milk | 165 | 0 (0.0%) | [40] |
Colombia | Raw cow milk | 85 | 13 (16%; traditional method) | [41] |
21 (26% Real Time-PCR) | ||||
United States | Raw cow milk | 12 | 0 (0.0%) | [42] |
Raw goat milk | 5 | |||
Raw sheep milk | 4 | |||
United States | Raw cow milk | 172 | 34 (19.7%) | [12] |
United States | Raw cow milk | 1412 | 184 (13.0%) | [43] |
United States | Raw cow milk | 536 | 24 (4.5%) | [44] |
Europe: | ||||
Austria | Cow milk and products | 230 | 0 (0.0%) | [45] |
Czech Republic | Raw goat milk | 48 | 0 (0.0%) | [46] |
Pasteurized goat milk | 40 | |||
Czech Republic | Raw cow milk | 12 | 1 (8.3%) | [47] |
Estonia | Raw cow milk | 14 | 4 (28.6%) | [48] |
Estonia | Raw cow milk | 105 | 19 (18.1%) | [49] |
Finland | Raw cow milk | 115 | 2 (1.7%) | [13] |
Finland | Retailed raw cow milk bottles | 105 | 5 (4.8%) | [13] |
Finland | Raw cow milk | 183 | 10 (5.5%) | [50] |
Italy | Raw cow milk | 8716 | 145 (1.7%) | [51] |
Italy | Raw cow milk From vending machines | 60,907 | 83 (0.1%) | [52] |
Italy | Raw cow milk From vending machines | 15,264 | 83 (0.54%) | [32] |
Italy | Raw cow milk | 27 | 1 (3.7%) | [39] |
Portugal | Raw milk | 179 | 7 (3.9%) | [52] |
Republic of Cyprus | Raw cow milk | 205 | 2 (1.0%) | [53] |
Turkey | Raw milk of: | [54] | ||
Cow | 50 | 1 (2.0%) | ||
Sheep | 75 | 2 (2.7%) | ||
Goat | 15 | 0 (0.0%) | ||
Turkey | Raw cow milk | 175 | 1 (0.6%) | [55] |
Africa: | ||||
Botswana | Raw cow milk | 278 | 3 (1.1 %) | [56] |
Egypt | Raw camel milk | 185 | 2 (1.1%) | [57] |
Egypt | Raw cow milk | 30 | 0 (0.0%) | [58] |
Egypt | Sheep and goat milk | 102 | 1 (0.9%) | [59] |
107 | 2 (1.9%) | |||
Ethiopia | Raw cow milk | 60 | 2 (3.4%) | [60] |
Ethiopia | Raw cow milk | 50 | 2 (4.0%) | [61] |
Pasteurized cow milk | 50 | 0 (0.0%) | ||
Ethiopia | Raw cow milk | 100 | 22 (22.0%) | [62] |
Ethiopia | Raw cow milk | 343 | 7 (2.0%) | [63] |
Morocco | Raw cow milk | 96 | 8 (8.33%) | [64] |
Morocco | Raw cow milk | 120 | 1 (0.8%) | [65] |
Nigeria | Raw cow milk | 192 | 17 (22.4%) | [66] |
Asia and Oceania: | ||||
China | Raw cow milk | 5211 | 19 (0.36%) | [67] |
India | Raw cow milk | 2060 | 105 (5.1%) | [68] |
India | Raw cow milk | 195 | 11 (5.6%) | [69] |
India | Raw cow milk | 5 | 2 (25.0%) | [1] |
India | Pasteurized milk | 5 | 0 (0.0%) | [1] |
India | Raw cow milk | 50 | 3 (6.0%) | [70] |
India | Raw cow milk | 137 | 4 (2.91%) | [71] |
India | Raw cow milk | 292 | 4 (1.5%) | [72] |
India | Raw cow milk | 457 | 5 (1.1%) | [73] |
India | Raw cow milk | 120 | 7 (5.8%) | [74] |
Pasteurized cow milk | 48 | 0 (0%) | ||
Iran | Raw cow milk | 100 | 5 (5.0%) | [75] |
Iran | Raw cow milk | 91 | 1 (1.1%) | [76] |
Iran | Raw cow milk | 59 | 0 (0%) | [77] |
Iran | Raw cow milk | 100 | 4 (4.0%) | [78] |
Iran | Raw cow milk | 8 | 0 (0%) | [79] |
Iran | Raw cow milk | 240 | 13 (5.4%) | [80] |
Raw sheep milk | 166 | 4 (2.4%) | ||
Raw goat milk | 41 | 1 (2.4%) | ||
Iran | Raw cow milk | 120 | 3 (2.5%) | [81] |
Iran | Raw cow milk | 18 | 9 (50.0%) | [19] |
Iran | Raw cow milk | 90 | 1 (1.1%) | [82] |
Raw sheep milk | 62 | 4 (6.5%) | ||
Raw goat milk | 60 | 1 (1.7%) | ||
Raw camel milk | 48 | 0 (0.0%) | ||
Iran | Pasteurized cow milk | 100 | 0 (0%) | [83] |
Raw cow milk | 100 | |||
Iraq | Raw cow milk | 100 | 11 (11.0%) | [84] |
Raw sheep milk | 100 | 8 (8.0%) | ||
Raw buffalo milk | 100 | 3 (3.0%) | ||
Jordan | Raw sheep milk | 165 | 19 (11.5%) | [85] |
Syria | Raw cow milk | 766 | 35 (4.6%) | [86] |
Uganda | Raw cow milk | 40 | 5 (13 %) | [87] |
New Zealand | Raw cow milk | 297 | 2 (0.7%) | [7] |
Technologies | Fundamentals of Technology | Main Process Parameters | Main Mechanisms of Microbial Inactivation |
---|---|---|---|
HIP | Application of high isostatic pressures (100–1000 MPa) under mild temperatures (20–60 °C) |
| Combinations of factors such as changes in cell membranes, increased cell wall permeability, and leakage of intracellular material, phospholipid crystallization, protein denaturation, and destruction of vital complexes [88] |
PEFs | Application of high intensities of pulsed electric fields (5–80 kV/cm) for a short time (s or ms) under mild temperatures (<50 °C) |
| Induction of electroporation in microbial cells, which changes membrane permeability (temporarily or permanently), resulting in intracellular material extravasation and losses in cell viability [89] |
UV | Application of an electromagnetic spectrum with wavelengths between 100 and 400 nm |
| Formation of lesions in the genomic DNA of organisms, by UV-B and UV-C radiation, inhibiting DNA replication [89] |
US | Application of sonic waves with frequencies exceeding 16–18 kHz |
| Cavitation phenomenon. This phenomenon results in the explosion of bubbles, causing the molecules to collide violently and produce shock waves. These shock waves promote the generation of high temperatures and pressures in the cell, which are the main factors that result in microbial inactivation [90]. |
Type of Milk | Technologies | Operational Parameters | Reduction Effect (n = log10) or Inactivation Kinetics ** | References | ||
---|---|---|---|---|---|---|
Doses * | Time (unit) | Temperature (°C) | ||||
Whole Raw Milk | HHP | 300–600 MPa | 1–105 (min) | 25 | D300 MPa = 10.99 min | [103] |
D400 MPa = 6.00 min | ||||||
D600 Mpa = 2.43 min | ||||||
Human milk | HHP | 400 MPa | 0–50 (min) | 31 | n = 8.0 log10 (2 min) | [104] |
Raw milk | HHP | 150–400 MPa | 10–120 (min) | 25 | D150 MPa = 84.4 min | [105] |
D250 MPa = 46.0 min | ||||||
D300 MPa = 26.6 min | ||||||
D350 MPa = 13.9 min | ||||||
Whole milk | HHPP | 300–500 MPa | <10 (min) | 30 | D300 MPa = 9.56 min | [106] |
UHT whole milk | HHPP | 400–600 MPa | 0–30 (min) | 27–60 | D400 MPa/27 °C = 592.1 s | [107] |
D400 MPa/43 °C = 238.4 s | ||||||
D400 MPa/60 °C = 15.4 s | ||||||
D500 MPa/27 °C = 75.5 s | ||||||
D500 MPa/43 °C = 52.7 s | ||||||
D600 MPa/27 °C = 19 s | ||||||
D600 MPa/43 °C = 12 s | ||||||
UHT whole milk | HHPP | 350–600 MPa | 0–40 (min) | 25 | D350 MPa = 14.53 min | [108] |
D450 MPa = 7.71 min | ||||||
D550 MPa = 2.05 min | ||||||
D600 MPa = 1.46 min | ||||||
Milk | HHPP | 345 MPa | 5 (min) | 50 | n > 8 log10 | [109] |
Milk | HHPP | 550 Mpa | 5 (min) | 25 | n ~7 log10 | [110] |
Whole (W), low-fat (LF) and skim (S) milk | PEF | 25–35 kV/cm; 1700 Hz; 1.5 μs; (square waves) | 100–600 (μs) | 10–50 | n ~ 2.5 log10 (W, LF, S; 30 kV/cm; 600 μs 25 °C) | [111] |
n ~ 4 log10 (W, 30 kV/cm; 600 μs 50 °C) | ||||||
n ~ 3 log10 (W, 30 kV/cm; 300 μs 50 °C) | ||||||
n n ~ 1.5 log10 (W, 30 kV/cm; 300 μs 25 °C) | ||||||
Milk | PEF | 15–30 kV/cm; 200 Hz; 2 μs (square waves) | 0–600 (μs) | <35 | n ~ 1 log10 (15 kV/cm; 200 μs) | [112] |
n ~ 2.1 log10 (25 kV/cm; 200 μs) | ||||||
n ~ 3.5 log10 (30 kV/cm; 200 μs) | ||||||
n ~ 5.2 log10 (30 kV/cm; 600 μs) | ||||||
Sweet whey | PEF | 25 kV/cm; 1000 Hz; 3 μs (bipolar waves) | 48 (μs) | 23 | n ~ 1.8–3.6 log10 *** | [94] |
Skim milk | PEF | 15–30 kV/cm; 3.25 μs | 5–50 (μs) | 0– 60 | n ~ 0.75 log10 (30 kV/cm; 10 μs; 35 °C) | [113] |
n ~ 0.85 log10 (20 kV/cm; 50 μs; 35 °C) | ||||||
n ~ 4.5 log10 (20 kV/cm; 10 μs; 55 °C) | ||||||
Milk | US | 20 kHz; 750 W; 124 μm | 2.5–10 (min) | <26 | D750 W = 5.1 min | [92] |
n ~ 2 log10 (10 min) | ||||||
Nonfat; low-fat; whole milk | US | 28–100 kHz **; 600 W | 50 (min) | 60 (max) | D600 W = 3.22 min (nonfat) | [114] |
D600 W = 2.71 min (low-fat) | ||||||
D600 W = 4.24 min (whole) | ||||||
Whole (W), skim (S) milk | US | 24 kHz; 100 μm | 50 (min) | <35 | D = 9.31 min (W) | [115] |
D = 8.61 min (S) | ||||||
Skim milk | UV Light | 0–40 mJ/cm² | NI | 22 | n = 5 log10 (20 mJ/cm²) | [116] |
D = 2.46 mJ/cm² | ||||||
Raw goat milk | UV Light | 0–20 mJ/cm² | NI | NI | n = 5 log10 (15.8 mJ/cm²) | [117] |
Human breast milk | UV light | 0–5000 mJ/cm² | 0–60 (min) | NI | D630.51 mJ/cm² = 7.67 min ****; | [118] |
n = 4.51 log10 (60 min) | ||||||
Milk | UV Light | 21.3 mJ/cm² | 60 (min) | 25 | n ~ 6 log10 (60 min) | [91] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.H.I.; Cappato, L.P.; Guimarães, J.T.; Balthazar, C.F.; Rocha, R.S.; Franco, L.T.; da Cruz, A.G.; Corassin, C.H.; de Oliveira, C.A.F. Listeria monocytogenes in Milk: Occurrence and Recent Advances in Methods for Inactivation. Beverages 2019, 5, 14. https://doi.org/10.3390/beverages5010014
Lee SHI, Cappato LP, Guimarães JT, Balthazar CF, Rocha RS, Franco LT, da Cruz AG, Corassin CH, de Oliveira CAF. Listeria monocytogenes in Milk: Occurrence and Recent Advances in Methods for Inactivation. Beverages. 2019; 5(1):14. https://doi.org/10.3390/beverages5010014
Chicago/Turabian StyleLee, Sarah Hwa In, Leandro Pereira Cappato, Jonas Toledo Guimarães, Celso Fasura Balthazar, Ramon Silva Rocha, Larissa Tuanny Franco, Adriano Gomes da Cruz, Carlos Humberto Corassin, and Carlos Augusto Fernandes de Oliveira. 2019. "Listeria monocytogenes in Milk: Occurrence and Recent Advances in Methods for Inactivation" Beverages 5, no. 1: 14. https://doi.org/10.3390/beverages5010014
APA StyleLee, S. H. I., Cappato, L. P., Guimarães, J. T., Balthazar, C. F., Rocha, R. S., Franco, L. T., da Cruz, A. G., Corassin, C. H., & de Oliveira, C. A. F. (2019). Listeria monocytogenes in Milk: Occurrence and Recent Advances in Methods for Inactivation. Beverages, 5(1), 14. https://doi.org/10.3390/beverages5010014