Effects of Spray-Drying Temperatures and Ratios of Gum Arabic to Microcrystalline Cellulose on Antioxidant and Physical Properties of Mulberry Juice Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Spray-Drying Conditions for Mulberry Juice
2.4. Experimental Methods
2.4.1. Study on Effects of Temperatures
2.4.2. Study on Effects of Gum Arabic/Microcrystalline Cellulose Ratios
2.5. Analytical Methods
2.5.1. Determination of Moisture Content
2.5.2. Determination of Bulk Density
2.5.3. Determination of Water Solubility Index (WSI)
2.5.4. Extraction of Total Phenolic Content
2.5.5. Extraction of Total Anthocyanin Content (TAC)
2.5.6. Determination of Total Phenolic Content (TPC)
2.5.7. DPPH Free Radical Scavenging Assay (AC)
2.5.8. Determination of Total Anthocyanin Content (TAC)
- Mw: relative molecular mass of cyanidin-3-glucoside (cyd-3-glu) (449.38 g/mol)
- ε: molar absorptivity of cyanidin-3-glucoside (cyd-3-glu) (26,900 L/mol·cm)
- Df: dilution factor of the extracts
- AC: anthocyanin content of mulberry powder is expressed as mg cyaniding-3-glucoside (cyd-3-glu) equivalent/g DW.
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effects of Spray-Drying Temperatures on Physiochemical Properties of Instant Mulberry Powder
3.1.1. Moisture Content
3.1.2. Bulk Density
3.1.3. Water Solubility Index
3.1.4. Total Phenolic Content
3.1.5. Total Anthocyanin Content
3.1.6. DPPH Free Radical Scavenging Activity
3.2. Effects of the Ratios of Gum Arabic to Microcrystalline Cellulose on the Quality of Mulberry Powder
3.2.1. Moisture Content
3.2.2. Bulk Density
3.2.3. Water Solubility Index
3.2.4. Total Phenolic Content
3.2.5. Total Anthocyanin Content
3.2.6. DPPH Free Radical Scavenging Activity of the Mulberry Powder
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pérez-Gregorio, M.R.; Regueiro, J.; Alonso-González, E.; Pastrana-Castro, L.M.; Simal-Gándara, J. Influence of alcoholic fermentation process on antioxidant activity and phenolic levels from mulberries (Morus nigra L.). LWT Food Sci. Technol. 2011, 44, 1793–1801. [Google Scholar] [CrossRef]
- Hamzaa, R.G.; El Shahat, A.N.; Mekawey, H.M.S. The antioxidant role of mulberry (Morus alba L.) fruits in ameliorating the oxidative stress induced in γ-irradiated male rats. Biochem. Anal. Biochem. 2012, 1, 1–6. [Google Scholar] [CrossRef]
- Lee, M.-S.; Park, W.-S.; Kim, Y.H.; Kwon, S.-H.; Jang, Y.-J.; Han, D.; Morita, K.; Her, S. Antidepressant-like effects of Cortex Mori Radicis extract via bidirectional phosphorylation of glucocorticoid receptors in the hippocampus. Behav. Brain Res. 2013, 236, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Wattanathorn, J.; Muchimapura, S.; Thukhammee, W.; Tong-un, T.; Wannanon, P.; Phunchago, N.; Kaewkaen, P.; Chantes, T.; Kaewruang, W.; Pimpasalee, S.; et al. Mulberry fruits protects against age-related cognitive decline. Am. J. Appl. Sci. 2012, 9, 1503–1511. [Google Scholar]
- Hassimotto, N.M.A.; Genovese, M.I.; Lajolo, F.M. Identification and characterisation of anthocyanins from wild mulberry (Morus Nigra L.) growing in Brazil. Food Sci. Technol. Int. 2007, 13, 17–25. [Google Scholar] [CrossRef]
- Suh, H.J.; Noh, D.O.; Kang, C.S.; Kim, J.M.; Lee, S.W. Thermal kinetics of color degradation of mulberry fruit extract. Mol. Nutr. Food Res. 2003, 47, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-Y.; Tang, C.-Y. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 2007, 101, 140–147. [Google Scholar] [CrossRef]
- Hertog, M.G.; Sweetnam, P.M.; Fehily, A.M.; Elwood, P.C.; Kromhout, D. Antioxidant flavonols and ischemic heart disease in a Welsh population of men: The Caerphilly Study. Am. J. Clin. Nutr. 1997, 65, 1489–1494. [Google Scholar] [CrossRef] [PubMed]
- Sumner, M.D.; Elliott-Eller, M.; Weidner, G.; Daubenmier, J.J.; Chew, M.H.; Marlin, R.; Raisin, C.J.; Ornish, D. Effects of pomegranate juice consumption on myocardial perfusion in patients with coronary heart disease. Am. J. Cardiol. 2005, 96, 810–814. [Google Scholar] [CrossRef] [PubMed]
- Fazaeli, M.; Emam-Djomeh, Z.; Kalbasi-Ashtari, A.; Omid, M. Effect of process conditions and carrier concentration for improving drying yield and other quality attributes of spray dried black mulberry (Morus nigra) juice. Int. J. Food Eng. 2012, 8, 1–20. [Google Scholar] [CrossRef]
- Fazaeli, M.; Emam-Djomeh, Z.; Kalbasi Ashtari, A.; Omid, M. Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food Bioprod. Process. 2012, 90, 667–675. [Google Scholar] [CrossRef]
- Fazaeli, M.; Emam-Djomeh, Z.; Omid, M.; Kalbasi-Ashtari, A. Prediction of the Physicochemical Properties of Spray-Dried Black Mulberry (Morus nigra) Juice using Artificial Neural Networks. Food Bioprocess Technol. 2013, 6, 585–590. [Google Scholar] [CrossRef]
- Jiménez-Aguilar, D.M.; Ortega-Regules, A.E.; Lozada-Ramí-rez, J.D.; Pérez-Pérez, M.C.I.; Vernon-Carter, E.J.; Welti-Chanes, J. Color and chemical stability of spray-dried blueberry extract using mesquite gum as wall material. J. Food Compost. Anal. 2011, 24, 889–894. [Google Scholar] [CrossRef]
- Tonon, R.V.; Brabet, C.; Hubinger, M.D. Influence of process conditions on the physicochemical properties of acai (Euterpe oleraceae Mart.) powder produced by spray drying. J. Food Eng. 2008, 88, 411–418. [Google Scholar] [CrossRef]
- Tonon, R.V.; Brabet, C.; Hubinger, M.D. Anthocyanin stability and antioxidant activity of spray-dried acai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Res. Int. 2010, 43, 907–914. [Google Scholar] [CrossRef]
- Robert, P.; Gorena, T.; Romero, N.; Sepulveda, E.; Chavez, J.; Saenz, C. Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. Int. J. Food Sci. Technol. 2010, 45, 1386–1394. [Google Scholar] [CrossRef]
- Bhandari, B.R.; Senoussi, A.; Dumoulin, E.D.; Lebert, A. Spray drying of concentrated fruit juices. Dry Technol. 1993, 11, 1081–1092. [Google Scholar] [CrossRef]
- Igual, M.; Ramires, S.; Mosquera, L.H.; MartÃ-nez-Navarrete, N. Optimization of spray drying conditions for lulo (Solanum quitoense L.) pulp. Powder Technol. 2014, 256, 233–238. [Google Scholar] [CrossRef]
- Truong, V.; Bhandari, B.R.; Howes, T. Optimization of co-current spray drying process of sugar-rich foods. Part I-Moisture and glass transition temperature profile during drying. J. Food Eng. 2005, 71, 55–65. [Google Scholar] [CrossRef]
- Miller, D.A.; Gil, M. Spray-Dry Technol. In Formulating Poorly Water Soluble Drugs; Williams, R.O., III, Watts, A.B., Miller, D.A., Eds.; Springer: New York, NY, USA, 2016; pp. 363–442. [Google Scholar]
- Cano-Chauca, M.; Stringheta, P.C.; Ramos, A.M.; Cal-Vidal, J. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innov. Food Sci. Emerg. 2005, 6, 420–428. [Google Scholar] [CrossRef]
- Kha, T.C.; Nguyen, M.H.; Roach, P.D. Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. J. Food Eng. 2010, 98, 385–392. [Google Scholar] [CrossRef]
- Quek, S.Y.; Chok, N.K.; Swedlund, P. The physicochemical properties of spray-dried watermelon powders. Chem. Eng. Process. 2007, 46, 386–392. [Google Scholar] [CrossRef]
- Goula, A.M.; Adamopoulos, K.G. Effect of maltodextrin addition during spray drying of tomato pulp in dehumidified air: I. drying kinetics and product recovery. Dry Technol. 2008, 26, 714–725. [Google Scholar] [CrossRef]
- Jittanit, W.; Niti-Att, S.; Techanuntachaikul, O. Study of spray drying of pineapple juice using maltodextrin as an adjunct. Chiang Mai J. Sci. 2010, 37, 498–506. [Google Scholar]
- Daza, L.D.; Fujita, A.; Fávaro-Trindade, C.S.; Rodrigues-Ract, J.N.; Granato, D.; Genovese, M.I. Effect of spray drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC.) fruit extracts. Food Bioprod. Process. 2016, 97, 20–29. [Google Scholar] [CrossRef]
- Kalt, W. Effects of production and processing factors on major fruit and vegetable antioxidants. J. Food Sci. 2006, 70, R11–R19. [Google Scholar] [CrossRef]
- Capanoglu, E.; Beekwilder, J.; Boyacioglu, D.; Hall, R.; de Vos, R. Changes in Antioxidant and Metabolite Profiles during Production of Tomato Paste. J. Agric. Food Chem. 2008, 56, 964–973. [Google Scholar] [CrossRef]
- Toydemir, G.; Capanoglu, E.; Gomez Roldan, M.V.; de Vos, R.C.H.; Boyacioglu, D.; Hall, R.D.; Beekwilder, J. Industrial processing effects on phenolic compounds in sour cherry (Prunus cerasus L.) fruit. Food Res. Int. 2013, 53, 218–225. [Google Scholar] [CrossRef]
- Nicoli, M.C.; Anese, M.; Parpinel, M. Influence of processing on the antioxidant properties of fruit and vegetables. Trends Food Sci. Technol. 1999, 10, 94–100. [Google Scholar] [CrossRef]
- Nguyen, C.L.; Nguyen, H.V.H. The Quality of mulberry juice as affected by enzyme treatments. Beverages 2018, 4, 41. [Google Scholar] [CrossRef]
- Tan, S.P.; Kha, T.C.; Parks, S.; Stathopoulos, C.; Roach, P.D. Optimising the encapsulation of an aqueous bitter melon extract by spray-drying. Foods 2015, 4, 400–419. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gathersberg, MD, USA, 2002. [Google Scholar]
- Barbosa-Cánovas, G.V.; Ortega-Rivas, E.; Juliano, P.; Yan, H. Bulk Properties. In Food Powders: Physical Properties, Processing, and Functionality; Springer: Boston, MA, USA, 2005; pp. 55–90. [Google Scholar]
- Anderson, R.A.; Conway, H.F.; Pfeifer, V.F.; Griffin, E.L. Gelatinization of corn grits by roll- and extrusion-cooking. Cereal Sci. Today 1969, 14, 4–12. [Google Scholar]
- Vinson, J.A.; Hao, Y.; Su, X.; Zubik, L. Phenol antioxidant quantity and quality in foods: Vegetables. J. Agric. Food Chem. 1998, 46, 3630–3634. [Google Scholar] [CrossRef]
- Liu, G.-L.; Guo, H.-H.; Sun, Y.-M. Optimization of the extraction of anthocyanins from the fruit skin of Rhodomyrtus tomentosa (ait.) hassk and identification of anthocyanins in the extract using High-Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (HPLC-ESI-MS). Int. J. Mol. Sci. 2012, 13, 6292–6302. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- De Souza, R.F.V.; De Giovani, W.F. Antioxidant properties of complexes of flavonoids with metal ions. Redox Rep. 2004, 9, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Walton, D.E. The morphology of spray-dried particles a qualitative view. Dry Technol. 2010, 18, 1943–1986. [Google Scholar] [CrossRef]
- Chegini, G.R.; Ghobadian, B. Effect of spray-drying conditions on physical properties of orange juice powder. Dry Technol. 2005, 23, 657–668. [Google Scholar] [CrossRef]
- Sousa, A.S.D.; Borges, S.V.; Magalhães, N.F.; Ricardo, H.V.; Azevedo, A.D. Spray-dried tomato powder: Reconstitution properties and colour. Braz. Arch. Biol. Technol. 2008, 51, 607–614. [Google Scholar] [CrossRef]
- Kaur, C.; Kapoor, H.C. Antioxidants in fruits and vegetables—The millennium’s health. Int. J. Food Sci. Technol. 2001, 36, 703–725. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Di Scala, K.; Rodríguez, K.; Lemus-Mondaca, R.; Miranda, M.; López, J.; Perez-Won, M. Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chem. 2009, 117, 647–653. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Murtijaya, J. Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT Food Sci. Technol. 2007, 40, 1664–1669. [Google Scholar] [CrossRef]
- Mishra, P.; Mishra, S.; Mahanta, C.L. Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food Bioprod. Process. 2014, 92, 252–258. [Google Scholar] [CrossRef]
- Ferrari, C.C.; Marconi Germer, S.P.; Alvim, I.D.; de Aguirre, J.M.C. Storage stability of spray-dried blackberry powder produced with maltodextrin or gum Arabic. Dry Technol. 2013, 31, 470–478. [Google Scholar] [CrossRef]
- Madrau, M.A.; Piscopo, A.; Sanguinetti, A.M.; Del Caro, A.; Poiana, M.; Romeo, F.V.; Piga, A. Effect of drying temperature on polyphenolic content and antioxidant activity of apricots. Eur. Food Res. Technol. 2008, 228, 441. [Google Scholar] [CrossRef]
- Ahmed, M.; Akter, M.S.; Lee, J.-C.; Eun, J.-B. Encapsulation by spray drying of bioactive components, physicochemical and morphological properties from purple sweet potato. LWT Food Sci. Technol. 2010, 43, 1307–1312. [Google Scholar] [CrossRef]
- Chong, S.Y.; Wong, C.W. Effect of spray dryer inlet temperature and maltodextrin concentration on colour profile and total phenolic content of Sapodilla (Manilkara zapota) powder. Int. Food Res. J. 2017, 24, 2543–2548. [Google Scholar]
- Demarchi, S.M.; Quintero Ruiz, N.A.; Concellón, A.; Giner, S.A. Effect of temperature on hot-air drying rate and on retention of antioxidant capacity in apple leathers. Food Bioprod. Process. 2013, 91, 310–318. [Google Scholar] [CrossRef]
- Ersus, S.; Yurdagel, U. Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. J. Food Eng. 2007, 80, 805–812. [Google Scholar] [CrossRef]
- Cai, Y.Z.; Corke, H. Production and properties of spray-dried amaranthus betacyanin pigments. J. Food Sci. 2000, 65, 1248–1252. [Google Scholar] [CrossRef]
- Rigon, R.T.; Zapata Noreña, C.P. Microencapsulation by spray-drying of bioactive compounds extracted from blackberry (Rubus fruticosus). J. Food Sci. Technol. 2016, 53, 1515–1524. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, S.; Emam-Djomeh, Z.; Mousavi, M.; Kobarfard, F.; Zbicinski, I. Developing spray-dried powders containing anthocyanins of black raspberry juice encapsulated based on fenugreek gum. Adv. Powder Technol. 2015, 26, 462–469. [Google Scholar] [CrossRef]
- Yousefi, S.; Emam-Djomeh, Z.; Mousavi, S.M. Effect of carrier type and spray drying on the physicochemical properties of powdered and reconstituted pomegranate juice (Punica Granatum L.). J. Food Sci. Technol. 2010, 48, 677–684. [Google Scholar] [CrossRef] [PubMed]
% Maltodextrin | % Gum Arabic | % Microcrystalline Cellulose | Overall Concentration (%, w/w) |
---|---|---|---|
21 | 9 | 0 | 30 |
21 | 8.5 | 0.5 | 30 |
21 | 8 | 1 | 30 |
21 | 7.5 | 1.5 | 30 |
21 | 7 | 2 | 30 |
Inlet Temperatures ( °C) | Moisture Content (%) | Bulk Density (g/mL) | Water Solubility Index (%) | Total Phenolic Content (mg GAE/g DW) | Total Anthocyanin Content (mg cyd-3-glu)/g DW) | Antioxidant Capacity (µmol TE/g DW) |
---|---|---|---|---|---|---|
120 | 5.15 ± 0.13 a | 0.49 ± 0.02 a | 65.81 ± 0.7 °C | 36.99 ± 1.07 ab | 3.61 ± 0.11 bc | 587.10 ± 3.08 b |
130 | 4.78 ± 0.16 b | 0.46 ± 0.02 ab | 70.05 ± 0.91 b | 35.90 ± 1.22 abc | 3.44 ± 0.07 c | 642.93 ± 5.92 a |
140 | 4.54 ± 0.10 b | 0.45 ± 0.02 ab | 71.58 ± 0.56 b | 35.69 ± 1.14 bc | 4.69 ± 0.18 a | 648.09 ± 22.98 a |
150 | 4.06 ± 0.18 c | 0.42 ± 0.01 b | 77.23 ± 0.62 a | 34.35 ± 0.98 c | 3.80 ± 0.20 b | 583.66 ± 3.27 b |
160 | 3.90 ± 0.14 c | 0.41 ± 0.03 b | 78.70 ± 0.75 a | 38.32 ± 0.36 a | 3.53 ± 0.14 bc | 593.63 ± 20.91 b |
% GA (w/w) | % MCC (w/w) | Moisture Content (%) | Bulk Density (g/mL) | Water Solubility Index (%) | Total Phenolic Content (mg GAE/g DW) | Toal Anthocyanin Content (mg cyd-3-glu/g DW) | Antioxidant Capacity (µmol TE/g DW) |
---|---|---|---|---|---|---|---|
9 | 0 | 4.54 ± 0.1 a | 0.49 ± 0.02 a | 71.58 ± 0.56 a | 35.69 ± 1.14 a | 4.68 ± 0.05 a | 504.89 ± 1.61 e |
8.5 | 0.5 | 3.85 ± 0.07 b | 0.40 ± 0.02 b | 68.65 ± 0.29 b | 35.28 ± 1.05 a | 3.41 ± 0.04 b | 609.64 ± 1.33 a |
8.0 | 1 | 3.42 ± 0.07 c | 0.35 ± 0.01 bc | 66.68 ± 0.58 b | 35.83 ± 1.14 a | 3.56 ± 0.07 b | 586.47 ± 3.41 c |
7.5 | 1.5 | 3.12 ± 0.06 d | 0.32 ± 0.02 c | 62.78 ± 0.53 c | 32.42 ± 0.77 b | 3.30 ± 0.07 bc | 591.73 ± 2.94 b |
7 | 2 | 3.20 ± 0.05 d | 0.31 ± 0.02 c | 60.07 ± 0.26 c | 31.36 ± 0.53 b | 3.19 ± 0.05 c | 554.02 ± 2.88 d |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Do, H.T.T.; Nguyen, H.V.H. Effects of Spray-Drying Temperatures and Ratios of Gum Arabic to Microcrystalline Cellulose on Antioxidant and Physical Properties of Mulberry Juice Powder. Beverages 2018, 4, 101. https://doi.org/10.3390/beverages4040101
Do HTT, Nguyen HVH. Effects of Spray-Drying Temperatures and Ratios of Gum Arabic to Microcrystalline Cellulose on Antioxidant and Physical Properties of Mulberry Juice Powder. Beverages. 2018; 4(4):101. https://doi.org/10.3390/beverages4040101
Chicago/Turabian StyleDo, Hoa T. T., and Ha V. H. Nguyen. 2018. "Effects of Spray-Drying Temperatures and Ratios of Gum Arabic to Microcrystalline Cellulose on Antioxidant and Physical Properties of Mulberry Juice Powder" Beverages 4, no. 4: 101. https://doi.org/10.3390/beverages4040101
APA StyleDo, H. T. T., & Nguyen, H. V. H. (2018). Effects of Spray-Drying Temperatures and Ratios of Gum Arabic to Microcrystalline Cellulose on Antioxidant and Physical Properties of Mulberry Juice Powder. Beverages, 4(4), 101. https://doi.org/10.3390/beverages4040101