Novel Method for the Identification of the Variety of Grape Using Their Capability to Form Gold Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhao, P.; Li, N.; Astruc, D. State of the art in gold nanoparticle synthesis. Coord. Chem. Rev. 2013, 257, 638–665. [Google Scholar] [CrossRef]
- Anuradha, S.; Anand, V.R.; Hemanth, K. Surface modification of chitosan for selective surface–protein interaction. Carbohydr. Polym. 2006, 66, 321–332. [Google Scholar] [CrossRef]
- Bhumkar, D.R.; Joshi, H.M.; Sastry, M.; Pokharkar, A.V. Chitosan Reduced Gold Nanoparticles as Novel Carriers for Transmucosal Delivery of Insulin. Pharmacol. Res. 2007, 24, 1415–1426. [Google Scholar] [CrossRef] [PubMed]
- Malathi, S.; Balakumaran, M.D.; Kalaichelvan, P.T.; Balasubramanian, S. Green synthesis of gold nanoparticles for controlled delivery. Adv. Mater. Lett. 2013, 4, 933–940. [Google Scholar] [CrossRef]
- Schulz, A.; Wang, H.; Van Rijin, P.; Boker, A. Synthetic inorganic materials by mimicking biomineralization processes using native and non-native protein functions. J. Mater. Chem. 2011, 21, 18903. [Google Scholar] [CrossRef]
- Arakaki, A.; Shimizu, K.; Oda, M.; Sakamoto, T.; Nishimura, T.; Kato, T. Biomineralization-inspired synthesis of functional organic/inorganic hybrid materials: Organic molecular control of self-organization of hybrids. Org. Biomol. Chem. 2015, 13, 974–989. [Google Scholar] [CrossRef] [PubMed]
- Galloway, J.M.; Staniland, S.S. Protein and peptide biotemplated metal and metal oxide nanoparticles and their patterning onto surfaces. J. Mater. Chem. 2012, 22, 12423–12434. [Google Scholar] [CrossRef]
- Gardea-Torresdey, J.L.; Parsons, J.G.; Gomez, E.; Peralta-Videa, J.; Troiani, H.E.; Santiago, P.; Jose-Yacaman, M. Formation and Growth of Au Nanoparticles inside Live Alfalfa Plants. Nano Lett. 2002, 2, 397–401. [Google Scholar] [CrossRef]
- Bankar, A. Banana peel extract mediated synthesis of gold nanoparticles. Coll. Surf. B Biointerfaces 2010, 80, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, Q.; Sun, D.; Lu, Y.; Su, Y.; Yang, X.; Wang, H.; Wang, Y.; Shao, W.; He, N.; et al. Biosynthesis of Silver and Gold Nanoparticles by Novel Sundried Cinnamon camphora Leaf. Nanotechnology 2007, 18, 105104. [Google Scholar] [CrossRef]
- Shankar, S.S.; Rai, A.; Ankamwar, B.; Singh, A.; Ahmad, A.; Sastry, M. Biological Synthesis of Triangular Gold Nanoprisms. Nat. Mater. 2004, 3, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Haiss, W.; Thanh, N.T.; Aveyard, J.; Fernig, A.D. Determination of Size and Concentration of Gold Nanoparticles from UV-Vis Spectra. Anal. Chem. 2007, 79, 4215–4221. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Singh, B.P.; Gathania, A.K. Synthesis and characterization of dodecanothiol-stabilized gold nanoparticles. Indian J. Pure Appl. Phys. 2014, 52, 93–100. [Google Scholar]
- Olson, J.; Dominguez-Medina, S.; Hoggard, A.; Wang, L.; Chang, W.W.; Link, S. Optical Characterization of Single Plasmonic Nanoparticles. Chem. Soc. Rev. 2015, 44, 40–57. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, M.; Pang, B.; Vara, M.; Xia, Y. Gold nanomaterials at work in biomedicine. Chem. Rev. 2015, 115, 10410–10488. [Google Scholar] [CrossRef] [PubMed]
- Cobley, C.M.; Chen, J.; Cho, E.C.; Wang, L.V.; Xia, Y. Gold nanostructures: A class of multifunctional materials for biomedical applications. Chem. Soc. Rev. 2011, 40, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Liu, L.; Song, S.; Suryoprabowo, S.; Li, A.; Kuang, H.; Wang, L.; Xu, Ch. A gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins. Nanoscale 2016, 8, 5245–5253. [Google Scholar] [CrossRef] [PubMed]
- Medina-Plaza, C.; García-Cabezón, C.; García-Hernández, C.; Bramorski, C.; Blanco-Val, Y.; Martín-Pedrosa, F.; Kawai, T.; de Saja, J.A.; Rodríguez-Méndez, M.L. Analysis of organic acids and phenols of interest in the wine industry using Langmuir-Blodgett films based on functionalized nanoparticles. Anal. Chim. Acta 2015, 853, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Medina-Plaza, C.; Furini, L.N.; Constantino, C.J.L.; de Saja, J.A.; Rodríguez-Mendez, M.L. Synergistic electrocatalytic effect of nanostructured mixed films formed by functionalised gold nanoparticles and bisphthalocyanines. Anal. Chim. Acta 2014, 851, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Yola, M.L.; Atar, N.A. Novel voltammetric sensor based on gold nanoparticles involved in p-aminothiophenol functionalized multi-walled carbon nanotubes: Application to the simultaneous determination of quercetin and rutin. Electrochim. Acta 2014, 119, 24–31. [Google Scholar] [CrossRef]
- Vilela, D.; González, M.C.; Escarpa, A. Nanoparticles as analytical tools for in-vitro antioxidant-capacity assessment and beyond. Trends Anal. Chem. 2015, 64, 1–16. [Google Scholar] [CrossRef]
- Vilela, D.; González, M.C.; Escarpa, A. Gold-nanosphere formation using food sample endogenous polyphenols for in-vitro assessment of antioxidant capacity. Anal. Bioanal. Chem. 2012, 404, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Amarnath, K.; Mathew, N.L.; Nellore, J.; Siddarth, C.R.V.; Kumar, J. Facile synthesis of biocompatible gold nanoparticles from Vitis vinifera and its cellular internalization against HBL-100 cells. Cancer Nanotechnol. 2011, 2, 121–132. [Google Scholar] [CrossRef] [PubMed]
- International Organisation of Vine and Wine (OIV). Compendium of International Methods of Analysis of Wines and Musts. In Bulletin de L’organisation Internationale de la Vigne et du Vin; OIV: Paris, France, 2013. [Google Scholar]
- Klar, T.; Perner, M.; Grosse, S.; Von Plessen, G.; Spirkl, W.; Feldmann, J. Surface-Plasmon Resonances in Single Metallic Nanoparticles. Phys. Rev. Lett. 1998, 80, 4249–4252. [Google Scholar] [CrossRef]
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677. [Google Scholar] [CrossRef]
- Nama, Y.S.; Noh, K.C.; Kim, N.K.; Lee, Y.; Park, H.K.; Lee, K.B. Sensitive and selective determination of NO2 ion in aqueous samples using modified gold nanoparticle as a colorimetric probe. Talanta 2014, 125, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Medina-Plaza, C.; Rodriguez-Mendez, M.L.; Sutter, P.; Tong, X.; Sutter, E. Nanoscale Au-In alloy-oxide core-shell particles as electrocatalysts for efficient hydroquinone detection. J. Phys. Chem. C 2015, 119, 25100–25107. [Google Scholar] [CrossRef]
Variety of Grape | TPI | pH |
---|---|---|
Cabernet Sauvignon | 14 | 3.17 |
Garnacha | 17 | 3.17 |
Juan García | 24 | 3.39 |
Mencía Regadío | 19 | 3.96 |
Mencía Secano | 19 | 3.93 |
Prieto Picudo | 26 | 3.35 |
Rufete | 27 | 3.37 |
Tempranillo | 24 | 3.30 |
ID | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 |
---|---|---|---|---|---|---|---|---|---|
Au3+ | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
Must | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez, S.; De Lamo, B.; García-Hernández, C.; García-Cabezón, C.; Rodríguez-Méndez, M.L. Novel Method for the Identification of the Variety of Grape Using Their Capability to Form Gold Nanoparticles. Beverages 2018, 4, 26. https://doi.org/10.3390/beverages4020026
Rodriguez S, De Lamo B, García-Hernández C, García-Cabezón C, Rodríguez-Méndez ML. Novel Method for the Identification of the Variety of Grape Using Their Capability to Form Gold Nanoparticles. Beverages. 2018; 4(2):26. https://doi.org/10.3390/beverages4020026
Chicago/Turabian StyleRodriguez, Silvia, Beatriz De Lamo, Celia García-Hernández, Cristina García-Cabezón, and Maria Luz Rodríguez-Méndez. 2018. "Novel Method for the Identification of the Variety of Grape Using Their Capability to Form Gold Nanoparticles" Beverages 4, no. 2: 26. https://doi.org/10.3390/beverages4020026
APA StyleRodriguez, S., De Lamo, B., García-Hernández, C., García-Cabezón, C., & Rodríguez-Méndez, M. L. (2018). Novel Method for the Identification of the Variety of Grape Using Their Capability to Form Gold Nanoparticles. Beverages, 4(2), 26. https://doi.org/10.3390/beverages4020026