Development of Functional Fruit, Vegetable, and Herbal Beverages Enriched with Gamma-Aminobutyric Acid and Polyphenols: Is It Feasible?
Abstract
1. Introduction
2. Daily Intake of GABA and Polyphenols
3. Polyphenol and GABA Content in Fruit and Vegetable Juices and Beverages
3.1. Polyphenol and GABA Content in Fruits and Vegetables, Suitable for Preparation of Beverages
3.2. Polyphenol and GABA Content in Fruit and Vegetable Juices
4. Polyphenol and GABA Content in Medicinal Plants and Herbal Infusions
4.1. Polyphenol and GABA Content in Medicinal Plants
4.2. Polyphenol and GABA Content of Herbal Infusions
5. Fermented Beverages as a Source of GABA and Polyphenols
5.1. GABA Production in Fermented Plant Beverages by Lactic Acid Bacteria
5.2. Optimization of Culture Conditions for GABA Production
6. Limitations of the Study and Concluding Remarks
6.1. Limitations of the Study
6.1.1. Predefining GABA and Polyphenol Content in Functional Beverages
6.1.2. Considering Total Polyphenol Content, Instead of Individual Constituents
6.1.3. Considering Only GABA and Polyphenols as Bioactive Components
6.2. Concluding Remarks
- Sourcing fruits and vegetables with naturally high GABA and polyphenol content.
- Mixing fruit and vegetable juices with complementary profiles.
- Addition of medicinal plants to enhance polyphenol content.
- Fermentation of fruit and vegetable juices with lactic acid bacteria and MSG.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramos-Ruiz, R.; Poirot, E.; Flores-Mosquera, M. GABA, a non-protein amino acid ubiquitous in food matrices. Cogent Food Agric. 2018, 4, 1534323. [Google Scholar] [CrossRef]
- Yang, N.C.; Jhou, K.Y.; Tseng, C. Antihypertensive effect of mulberry leaf aqueous extract containing γ-aminobutyric acid in spontaneously hypertensive rats. Food Chem. 2012, 132, 1796–1801. [Google Scholar] [CrossRef]
- Hagiwara, H.; Seki, T.; Ariga, T. The effect of pre-germinated brown rice intake on blood glucose and PAI-1 levels in streptozotocin-induced diabetic rats. Biosci. Biotechnol. Biochem. 2004, 68, 444–447. [Google Scholar] [CrossRef]
- Roohinejad, S.; Omidizadeh, A.; Mirhosseini, H.; Rasti, B.; Saari, N.; Shuhaimi, M.; Yusof, R.M.; Hussin, A.; Hamid, A.; Manap, M. Effect of hypocholesterolemic properties of brown rice varieties containing different gamma-aminobutyric acid (GABA) levels on Sprague-Dawley male rats. J. Food Agric. Environ. 2009, 7, 197–203. [Google Scholar]
- Mody, I.; De Koninck, Y.; Otis, T.S.; Soltesz, I. Bridging the cleft at GABA synapses in the brain. Trends Neurosci. 1994, 17, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.; Bottiglieri, T.; Snead, O. GABA, gamma-hydroxybutyric acid, and neurological disease. Ann. Neurol. 2003, 54, 3–12. [Google Scholar] [CrossRef]
- Oh, C.H.; Oh, S. Effects of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis. J. Med. Food 2004, 7, 19–23. [Google Scholar] [CrossRef]
- Dai, S.F.; Gao, F.; Xu, X.L.; Zhang, W.H.; Song, S.X.; Zhou, G. Effects of Dietary Glutamine and Gamma-Aminobutyric Acid on Meat Colour, pH, Composition, and Water-Holding Characteristic in Broilers under Cyclic Heat Stress. Br. Poult. Sci. 2012, 53, 471–481. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [PubMed]
- Fernández-González, P.; Mas-Sánchez, A.; Garriga, P. Polyphenols and visual health: Potential effects on degenerative retinal diseases. Molecules 2021, 26, 3407. [Google Scholar] [CrossRef] [PubMed]
- Min, J.; Yu, S.W.; Baek, S.H.; Nair, K.M.; Bae, O.N.; Bhatt, A.; Kassab, M.; Nair, M.G.; Majid, A. Neuroprotective effect of cyanidin-3-O-glucoside anthocyanin in mice with focal cerebral ischemia. Neurosci. Lett. 2011, 500, 157–161. [Google Scholar] [CrossRef]
- Mauray, A.; Felgines, C.; Morand, C.; Mazur, A.; Scalbert, A.; Milenkovic, D. Nutrigenomic analysis of the protective effects of bilberry anthocyanin-rich extract in apo E-deficient mice. Genes. Nutr. 2010, 5, 343–353. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pietta, P. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef]
- Perron, N.R.; Brumaghim, J. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. 2009, 53, 75–100. [Google Scholar] [CrossRef]
- Du, Y.; Guo, H.; Lou, H. Grape seed polyphenols protect cardiac cells from apoptosis via induction of endogenous antioxidant enzymes. J. Agric. Food Chem. 2007, 55, 1695–1701. [Google Scholar] [CrossRef]
- Zhou, B.; Wu, L.M.; Yang, L.; Liu, Z. Evidence for alpha-tocopherol regeneration reaction of green tea polyphenols in SDS micelles. Free Radic. Biol. Med. 2005, 38, 78–84. [Google Scholar] [CrossRef]
- Bertelli, A.; Biagi, M.; Corsini, M.; Baini, G.; Cappellucci, G.; Miraldi, E. Polyphenols: From Theory to Practice. Foods 2021, 10, 2595. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.D.; Saimaiti, A.; Luo, M.; Huang, S.Y.; Xiong, R.G.; Shang, A.; Gan, R.Y.; Li, H. Fermentation with tea residues enhances antioxidant activities and polyphenol contents in kombucha beverages. Antioxidants 2022, 11, 155. [Google Scholar] [CrossRef] [PubMed]
- Swinbanks, D.; O’Brien, J. Japan explores the boundary between food and medicine. Nature 1993, 364, 180. [Google Scholar] [CrossRef]
- Jayabalan, R.; Waisundara, V.Y. Kombucha as a Functional Beverage. In Functional and Medicinal Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing (Elsevier): Duxford, UK; Cambridge MA, USA, 2019; Volume 11, pp. 413–446. ISBN 9780128163979. [Google Scholar]
- Panou, A.; Karabagias, I. Composition, properties, and beneficial effects of functional beverages on human health. Beverages 2025, 11, 40. [Google Scholar] [CrossRef]
- Islam, J.; Kabir, Y. Effects and Mechanisms of Antioxidant-Rich Functional Beverages on Disease Prevention. In Functional and Medicinal Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing (Elsevier): Duxford, UK; Cambridge MA, USA, 2019; Volume 11, pp. 157–234. ISBN 9780128163979. [Google Scholar]
- Fuhrman, B.; Volkova, N.; Aviram, M. Pomegranate juice polyphenols increase recombinant paraoxonase-1 binding to high-density lipoprotein: Studies in vitro and in diabetic patients. Nutrition 2010, 26, 359–366. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, M.; Zhang, B.; Nie, F.; Jiang, H. Dietary supplementation of blueberry juice enhances hepatic expression of metallothionein and attenuates liver fibrosis in rats. PLoS ONE 2013, 8, e58659. [Google Scholar] [CrossRef]
- Nowak, D.; Grabczewska, Z.; Goslinski, M.; Obonska, K.; Dabrowska, A.; Kubica, J. Effect of chokeberry juice consumption on antioxidant capacity, lipids profile and endothelial function in healthy people: A pilot study. Czech J. Food Sci. 2016, 34, 39–46. [Google Scholar] [CrossRef]
- Park, Y.K.; Park, E.; Kim, J.S.; Kang, M. Daily grape juice consumption reduces oxidative DNA damage and plasma free radical levels in healthy Koreans. Mutat. Res. 2003, 529, 77–86. [Google Scholar] [CrossRef]
- Guarnieri, S.; Riso, P.; Porrini, M. Orange juice vs vitamin C: Effect on hydrogen peroxide-induced DNA damage in mononuclear blood cells. Br. J. Nutr. 2007, 97, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Hinton, T.; Jelinek, H.F.; Viengkhou, V.; Johnston, G.A.; Matthews, S. Effect of GABA-fortified Oolong tea on reducing stress in a university student cohort. Front. Nutr. 2019, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Kajimoto, O.; Hirata, H.; Nakagawa, S.; Kajimoto, Y.; Hayakawa, K.; Kimura, M. Hypotensive effect of fermented milk containing gamma-aminobutyric acid (GABA) in subjects with high normal blood pressure. J. Nutr. Food 2004, 51, 79–86. [Google Scholar]
- Yamakoshi, J.; Shiojo, R.; Nakagawa, S.; Izui, N. Hypotensive effects and safety of less-salt soy sauce containing γ-aminobutyric acid (GABA) on high-normal blood pressure and mild hypertensive subjects. Yakuri Chiryo 2006, 34, 691–709. [Google Scholar]
- Matsubara, F.; Ueno, H.; Tadano, K.; Suyama, T.; Imaizumi, K.; Suzuki, T.; Saruta, T. Effects of GABA supplementation on blood pressure and safety in adults with mild hypertension. Jpn. Pharmacol. Ther. 2002, 30, 963–972. [Google Scholar]
- Inoue, K.; Shirai, T.; Ochiai, H.; Kasao, M.; Hayakawa, K.; Kimura, M.; Sansawa, H. Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives. Eur. J. Clin. Nutr. 2003, 57, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Kajimoto, O.; Hirata, H.; Nishimura, A. Hypotensive action of novel fermented milk containing γ-aminobutyric acid (GABA) in subjects with mild or moderate hypertension. J. Jpn. Soc. Food Sci. Technol. 2003, 51, 79–86. [Google Scholar] [CrossRef]
- Kanehira, T.; Nakamura, Y.; Nakamura, K.; Horie, K.; Horie, N.; Furugori, K.; Yokogoshi, H. Relieving occupational fatigue by consumption of a beverage containing γ-amino butyric acid. J. Nutr. Sci. Vitaminol. 2011, 57, 9–15. [Google Scholar] [CrossRef]
- Cavagnini, F.; Benetti, G.; Invitti, C.; Ramella, G.; Pinto, M.; Lazza, M.; Müller, E. Effect of γ-Aminobutyric Acid on Growth Hormone and Prolactin Secretion in Man: Influence of Pimozide and Domperidone. J. Clin. Endocrinol. Metab. 1980, 51, 789–792. [Google Scholar] [CrossRef]
- Cavagnini, F.; Invitti, C.; Pinto, M.; Maraschini, C.; Di Landro, A.; Dubini, A.; Marelli, A. Effect of Acute and Repeated Administration of Gamma Aminobutyric Acid (GABA) on Growth Hormone and Prolactin Secretion in Man. Acta Endocrinol. 1980, 93, 149–154. [Google Scholar] [CrossRef]
- Diana, M.; Quílez, J.; Rafecas, M. Gamma-aminobutyric acid as a bioactive compound in foods: A review. J. Funct. Foods 2014, 10, 407–420. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Liu, X.; Wang, Y.; Mao, F.; Mao, J.; Wang, Q. Study of GABA in healthy volunteers: Pharmacokinetics and pharmacodynamics. Front. Pharmacol. 2015, 6, 260. [Google Scholar] [CrossRef]
- Sarkisyan, V.A.; Kochetkova, A.A.; Bessonov, V.V.; Isakov, V.A.; Nikityuk, D. Estimation of gamma-aminobutyric acid intake from the human diet. Vopr. Pitan. 2024, 93, 120–124. [Google Scholar] [CrossRef]
- Ito, S.; Takara, K.; Shiroma, K.; Namihira, C.; Todoriki, H. Comparison of analyzed and calculated values of gamma-aminobutyric acid (GABA) intake from hospital diet. J. Nutr. Sci. Vitaminol. 2021, 67, 139–142. [Google Scholar] [CrossRef]
- Health Canada. Cognitive Function Products—Monograph. Available online: https://webprod.hc-sc.gc.ca/nhpid-bdipsn/atReq?atid=fonc.cognitive.func2&lang=eng (accessed on 31 October 2025).
- Oketch-Rabah, H.A.; Madden, E.F.; Roe, A.L.; Betz, J. United States Pharmacopeia (USP) safety review of gamma-aminobutyric acid (GABA). Nutrients 2021, 13, 2742. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Knaze, V.; Rothwell, J.A.; Hémon, B.; Moskal, A.; Overvad, K.; Tjønneland, A.; Kyrø, C.; Fagherazzi, G.; Boutron-Ruault, M.C.; et al. Dietary polyphenol intake in Europe: The European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur. J. Nutr. 2016, 55, 1359–1375. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Stepaniak, U.; Topor-Mądry, R.; Szafraniec, K.; Pająk, A. Estimated dietary intake and major food sources of polyphenols in the Polish arm of the HAPIEE study. Nutrition 2014, 30, 1398–1403. [Google Scholar] [CrossRef]
- Taguchi, C.; Fukushima, Y.; Kishimoto, Y.; Suzuki-Sugihara, N.; Saita, E.; Takahashi, Y.; Kondo, K. Estimated dietary polyphenol intake and major food and beverage sources among elderly Japanese. Nutrition 2015, 7, 10269–10281. [Google Scholar] [CrossRef]
- Huang, Q.; Braffett, B.H.; Simmens, S.J.; Young, H.A.; Ogden, C. Dietary polyphenol intake in US adults and 10-year trends: 2007–2016. J. Acad. Nutr. Diet. 2020, 120, 1821–1833. [Google Scholar] [CrossRef]
- Carnauba, R.A.; Hassimotto, N.; Lajolo, F. Estimated Dietary Polyphenol Intake and Major Food Sources of the Brazilian Population. Br. J. Nutr. 2021, 126, 441–448. [Google Scholar] [CrossRef]
- Sedláček, P.; Bludovská, M.; Plavinová, I.; Zavaďáková, A.; Müller, L.; Müllerová, D. Dietary intake of plant polyphenols: Exploring trend in the Czech population. Cent. Eur. J. Public Health 2024, 32, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Ham, T.H.; Chu, S.H.; Han, S.J.; Ryu, S. γ-Aminobutyric acid metabolism in plant under environment stresses. Korean J. Crop Sci. 2012, 57, 144–150. [Google Scholar] [CrossRef]
- Pencheva, D.; Teneva, D.; Denev, P. Validation of HPLC method for analysis of gamma-aminobutyric and glutamic acids in plant foods and medicinal plants. Molecules 2023, 28, 84. [Google Scholar] [CrossRef] [PubMed]
- Steward, F.C.; Thompson, J.F.; Dent, C. Gamma-aminobutyric acid: A constituent of the potato tuber? Science 1949, 110, 439–440. [Google Scholar]
- Choi, S.H.; Kozukue, N.; Kim, H.J.; Friedman, M. Analysis of Protein Amino Acids, Non-Protein Amino Acids and Metabolites, Dietary Protein, Glucose, Fructose, Sucrose, Phenolic, and Flavonoid Content and Antioxidative Properties of Potato Tubers, Peels, and Cortexes (Pulps). J. Food Compos. Anal. 2016, 50, 77–87. [Google Scholar] [CrossRef]
- Nakamura, K.; Nara, K.; Noguchi, T.; Ohshiro, T.; Koga, H. Contents of gamma-aminobutyric acid (GABA) in potatoes and processed potato products. J. Jpn. Soc. Food Sci. Technol. 2006, 53, 514–517. [Google Scholar] [CrossRef][Green Version]
- Saito, T.; Matsukura, C.; Sugiyama, M.; Watahiki, A.; Ohshima, I.; Iijima, Y.; Konishi, C.; Fujii, T.; Inai, S.; Fukuda, N.; et al. Screening for gamma-aminobutyric acid (GABA)-rich tomato varieties. J. Jpn. Soc. Hortic. Sci. 2008, 77, 242–250. [Google Scholar] [CrossRef]
- Na, H.; Ye, X.; Li, L. Effects of different stress treatments on γ-aminobutyric acid (GABA) content in cabbage. J. Nanjing Agric. Univ. 2013, 36, 111–116. [Google Scholar]
- Wu, Z.C.; Yang, Z.Y.; Li, J.G.; Chen, H.B.; Huang, X.M.; Wang, H. Methyl-inositol, gamma-aminobutyric acid and other health benefit compounds in the aril of litchi. Int. J. Food Sci. Nutr. 2016, 67, 762–772. [Google Scholar] [CrossRef] [PubMed]
- Collado, J.; Pérez, Z.C.; Medina, S.; Mellisho, C.D.; Hernández, P.R.; Galindo, A.; Egea, I.; Ferreres, F.; Romojaro, F.; Torrecillas, A.; et al. Effects of Water Deficit during Maturation on Amino Acids and Jujube Fruit Eating Quality. Maced. J. Chem. Chem. Eng. 2014, 33, 105–119. [Google Scholar] [CrossRef]
- Clements, R.L.; Leland, H.V. Ion-exchange study of free amino acids in juices of 6 varieties of citrus. J. Food Sci. 1962, 27, 20. [Google Scholar] [CrossRef]
- Stein-Chisholm, R.E.; Beaulieu, J.C.; Grimm, C.C.; Lloyd, S. LC–MS/MS and UPLC–UV evaluation of anthocyanins and anthocyanidins during rabbiteye blueberry juice processing. Beverages 2017, 3, 56. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, J.H.; Kim, S.D.; Chang, M.S.; Jo, I.S.; Kim, S.J.; Hwang, K.T.; Jo, H.B.; Kim, J. Chemical composition, functional constituents, and antioxidant activities of berry fruits produced in Korea. J. Korean Soc. Food Sci. Nutr. 2015, 44, 1295–1303. [Google Scholar] [CrossRef]
- Choi, S.W.; Kim, E.O.; Lee, Y.J.; Leem, H.H.; Seo, I.H.; Yu, M.H.; Kang, D. Comparison of Nutritional and Functional Constituents, and Physicochemical Characteristics of Mulberries from Seven Different Morus alba L. J. Korean Soc. Food Sci. Nutr. 2010, 39, 1467–1475. [Google Scholar] [CrossRef]
- Tsuda, T. Recent progress in anti-obesity and anti-diabetes effect of berries. Antioxidants 2016, 5, 13. [Google Scholar] [CrossRef]
- Denev, P.N.; Kratchanov, C.G.; Ciz, M.; Lojek, A.; Kratchanova, M.G. Bioavailability and Antioxidant Activity of Black Chokeberry (Aronia melanocarpa) Polyphenols: In vitro and in vivo Evidences and Possible Mechanisms of Action: A Review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 471–489. [Google Scholar] [CrossRef]
- Gündeşli, M.A.; Korkmaz, N.; Okatan, V. Polyphenol content and antioxidant capacity of berries: A review. Int. J. Agric. For. Life Sci. 2019, 3, 350–361. [Google Scholar]
- Cieślik, E.; Gręda, A.; Adamus, W. Contents of polyphenols in fruit and vegetables. Food Chem. 2006, 94, 135–142. [Google Scholar] [CrossRef]
- Mirmiran, P.; Houshialsadat, Z.; Gaeini, Z.; Bahadoran, Z.; Azizi, F. Functional properties of beetroot (Beta vulgaris) in management of cardio-metabolic diseases. Nutrients Metab. 2020, 17, 3. [Google Scholar] [CrossRef]
- Nagraj, G.S.; Chouksey, A.; Jaiswal, S.; Jaiswal, A.K. Broccoli. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Jaiswal, A.K., Ed.; Academic Press: Amsterdam, The Netherlands, 2020; pp. 5–17. ISBN 9780128127803. [Google Scholar] [CrossRef]
- Leja, M.; Kamińska, I.; Kramer, M.; Maksylewicz-Kaul, A.; Kammerer, D.; Carle, R.; Barański, R. The content of phenolic compounds and radical scavenging activity varies with carrot origin and root color. Plant Foods Hum. Nutr. 2013, 68, 163–170. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic Compounds in Plants and Agri-Industrial By-Products: Antioxidant Activity, Occurrence and Potential Uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Koyama, M.; Ogasawara, Y.; Endou, K.; Akano, H.; Nakajima, T.; Aoyama, T.; Nakamura, K. Fermentation-induced changes in the concentrations of organic acids, amino acids, sugars, and minerals and superoxide dismutase-like activity in tomato vinegar. Int. J. Food Prop. 2017, 80, 888–898. [Google Scholar] [CrossRef]
- Harmanescu, M.; Gergen, I.; Isengard, H. Polyphenols content, total antioxidant and radical scavenging capacities for different tomatoes and apples juices. J. Agroaliment. Process. Technol. 2006, 12, 83–88. [Google Scholar]
- Wang, D.; Wang, Y.; Lan, H.; Wang, K.; Zhao, L.; Hu, Z. Enhanced production of γ-aminobutyric acid in litchi juice fermented by Lactobacillus plantarum HU-C2W. Food Biosci. 2021, 42, 101155. [Google Scholar] [CrossRef]
- Zeng, D.; Xiao, G.; Xu, Y.; Zou, B.; Wu, J.; Yu, Y. Protein and polyphenols involved in sediment formation in cloudy litchi juice. Food Sci. Biotechnol. 2019, 28, 945–953. [Google Scholar] [CrossRef]
- Cautela, D.; De Sio, F.; Balestrieri, M.L.; Casale, R.; Laratta, B.; Castaldo, D.; Pastore, A.; Servillo, L.; D’Onofrio, N. Amino Acids, Betaines and Related Ammonium Compounds in Neapolitan Limmo, a Mediterranean Sweet Lime, Also Known as Lemoncetta Locrese. J. Sci. Food Agric. 2021, 101, 981–989. [Google Scholar] [CrossRef] [PubMed]
- Díaz-García, M.C.; Obón, J.M.; Castellar, M.R.; Collado, J.; Alacid, M. Quantification by UHPLC of total individual polyphenols in fruit juices. Food Chem. 2013, 138, 938–949. [Google Scholar] [CrossRef]
- Abad-García, B.; Garmón-Lobato, S.; Sánchez-Ilárduya, M.B.; Berrueta, L.A.; Gallo, B.; Vicente, F.; Alonso-Salces, R. Polyphenolic Contents in Citrus Fruit Juices: Authenticity Assessment. Eur. Food Res. Technol. 2014, 238, 803–818. [Google Scholar] [CrossRef]
- Kelebek, H.; Selli, S. Identification of phenolic compositions and the antioxidant capacity of mandarin juices and wines. J. Food Sci. Technol. 2014, 51, 1094–1101. [Google Scholar] [CrossRef]
- Kapuler, A.M.; Matgursiddiah, S. The amino acids precursory to proteins are primary human food: Proline, glutamine, and arginine found free in the juices of common vegetables and herbs. J. Med. Food 1998, 1, 97–115. [Google Scholar] [CrossRef]
- Belošević, S.D.; Milinčić, D.D.; Gašić, U.M.; Kostić, A.Ž.; Salević-Jelić, A.S.; Marković, J.M.; Đorđević, V.B.; Lević, S.M.; Pešić, M.B.; Nedović, V.A. Broccoli, Amaranth, and Red Beet Microgreen Juices: The Influence of Cold-Pressing on the Phytochemical Composition and the Antioxidant and Sensory Properties. Foods 2024, 13, 757. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Choi, S. Physicochemical characteristics and analysis of functional constituents of four different mulberry (Morus alba L.) fruit juices. J. East. Asian Soc. Diet. Life 2013, 23, 768–777. [Google Scholar]
- Stój, A.; Targoński, Z. Use of amino acid analysis for estimation of berry juice authenticity. Acta Sci. Pol. Technol. Aliment. 2006, 5, 61–72. [Google Scholar]
- Rosenblat, M.; Volkova, N.; Attias, J.; Mahamid, R.; Aviram, M. Consumption of polyphenolic-rich beverages (mostly pomegranate and black currant juices) by healthy subjects for a short term increased serum antioxidant status, and the serum’s ability to attenuate macrophage cholesterol accumulation. Food Funct. 2010, 1, 99–109. [Google Scholar] [CrossRef]
- Konić-Ristić, A.; Šavikin, K.; Zdunić, G.; Janković, T.; Juranić, Z.; Menković, N.; Stanković, I. Biological activity and chemical composition of different berry juices. Food Chem. 2011, 125, 1412–1417. [Google Scholar] [CrossRef]
- Callejón, R.M.; Ubeda, C.; Hidalgo, C.; Mas, A.; Troncoso, A.M.; Morales, M. Changes on Free Amino Acids during the Alcoholic Fermentation of Strawberry and Persimmon. Int. J. Food Sci. Technol. 2015, 50, 48–54. [Google Scholar] [CrossRef]
- González, E.; Vegara, S.; Martí, N.; Valero, M.; Saura, D. Physicochemical characterization of pure persimmon juice: Nutritional quality and food acceptability. J. Food Sci. 2015, 80, C532–C539. [Google Scholar] [CrossRef] [PubMed]
- Dizy, M.; Martin-Alvarez, P.J.; Cabezudo, M.D.; Polo, M. Grape, apple and pineapple juice characterisation and detection of mixtures. J. Sci. Food Agric. 1992, 60, 47–53. [Google Scholar] [CrossRef]
- Cosme, F.; Pinto, T.; Vilela, A. Phenolic Compounds and Antioxidant Activity in Grape Juices: A Chemical and Sensory View. Beverages 2018, 4, 22. [Google Scholar] [CrossRef]
- Bakir, E.; Turker, N.; Istanbullu, O. Chemical Composition of Peaches Used for Commercial Juice Production in Turkey: Sugars, Organic Acids and Amino Acids. J. Food 2007, 32, 15–23. [Google Scholar]
- Mahdavi, R.; Nikniaz, Z.; Rafraf, M.; Jouyban, A. Determination and comparison of the total polyphenol contents of fresh and commercial fruit juices. Br. Food J. 2011, 113, 744–752. [Google Scholar] [CrossRef]
- Tasinov, O.; Dincheva, I.; Badjakov, I.; Grupcheva, C.; Galunska, B. Comparative phytochemical analysis of Aronia melanocarpa L. Plants 2022, 11, 1655. [Google Scholar] [CrossRef]
- Kahle, K.; Kraus, M.; Richling, E. Polyphenol profiles of apple juices. Mol. Nutr. Food Res. 2005, 49, 797–806. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Elsadek, M.F.; Mohamed, A.S.; Taha, A.E.; Ahmed, B.M.; Saad, A. Effects of chemical and natural additives on cucumber juice’s quality, shelf life, and safety. Foods 2020, 9, 639. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, Y.; Li, T.; Dai, F.; Luo, G.; Xiao, G.; Tang, C. Phenolic profiles and antioxidant capacities of mulberry (Morus atropurpurea Roxb.) juices from different cultivars. Int. J. Food Prop. 2019, 22, 1340–1352. [Google Scholar] [CrossRef]
- Chuah, H.Q.; Tang, P.L.; Ang, N.J.; Tan, H. Submerged Fermentation Improves Bioactivity of Mulberry Fruits and Leaves. Chin. Herb. Med. 2021, 13, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Lee, M.Y.; Ji, G.E.; Lee, Y.S.; Hwang, K. Production of γ-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100. Int. J. Food Microbiol. 2009, 130, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Oh, M.; Bae, S.Y.; Lee, J.H.; Cho, K.J.; Kim, K.H.; Chung, M. Antiviral effects of black raspberry (Rubus coreanus) juice on foodborne viral surrogates. Foodborne Pathog. Dis. 2012, 9, 915–921. [Google Scholar] [CrossRef]
- Wu, H.; Johnson, M.C.; Lu, C.H.; Fritsche, K.L.; Thomas, A.L.; Cai, Z.; Greenlief, C. Determination of anthocyanins and total polyphenols in a variety of elderberry juices by UPLC-MS/MS and other methods. Acta Hortic. 2015, 1061, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Lachowicz, S.; Oszmiański, J. The influence of addition of cranberrybush juice to pear juice on chemical composition and antioxidant properties. J. Food Sci. Technol. 2018, 55, 3399–3407. [Google Scholar] [CrossRef]
- Opara, E.I.; Chohan, M. Culinary herbs and spices: Their bioactive properties, the contribution of polyphenols and the challenges in deducing their true health benefits. Int. J. Mol. Sci. 2014, 15, 19183–19202. [Google Scholar] [CrossRef]
- Minto, R.E.; Blacklock, B. Biosynthesis and function of polyacetylenes and allied natural products. Prog. Lipid Res. 2008, 47, 233–306. [Google Scholar] [CrossRef]
- Poswal, F.S.; Russell, G.; Mackonochie, M.; MacLennan, E.; Adukwu, E.C.; Rolfe, V. Herbal teas and their health benefits: A scoping review. Plant Foods Hum. Nutr. 2019, 74, 266–276. [Google Scholar] [CrossRef]
- Carratù, B.; Boniglia, C.; Giammarioli, S.; Mosca, M.; Sanzini, E. Free Amino Acids in Botanicals and Botanical Preparations. J. Food Sci. 2008, 73, C323–C328. [Google Scholar] [CrossRef]
- Ramaiya, S.D.; Bujang, J.S.; Zakaria, M.H. Assessment of total phenolic, antioxidant, and antibacterial activities of Passiflora species. Sci. World J. 2014, 2014, 167309. [Google Scholar] [CrossRef] [PubMed]
- Malathy, R.; Prabakaran, M.; Kalaiselvi, K.; Chung, I.-M.; Kim, S.-H. Comparative Polyphenol Composition, Antioxidant and Anticorrosion Properties in Various Parts of Panax ginseng Extracted in Different Solvents. Appl. Sci. 2021, 11, 93. [Google Scholar] [CrossRef]
- Burlou-Nagy, C.; Bănică, F.; Negrean, R.A.; Jurca, T.; Vicaș, L.G.; Marian, E.; Bácskay, I.; Kiss, R.; Fehér, P.; Vicaș, S.I.; et al. Determination of the Bioactive Compounds from Echinacea purpurea (L.) Moench Leaves Extracts in Correlation with the Antimicrobial Activity and the In Vitro Wound Healing Potential. Molecules 2023, 28, 5711. [Google Scholar] [CrossRef]
- Chiou, S.-Y.; Sung, J.-M.; Huang, P.-W.; Lin, S.-D. Antioxidant, Antidiabetic, and Antihypertensive Properties of Echinacea purpurea Flower Extract and Caffeic Acid Derivatives Using In Vitro Models. J. Med. Food 2017, 20, 171–179. [Google Scholar] [CrossRef]
- Bi, W.; He, C.; Ma, Y.; Shen, J.; Zhang, L.H.; Peng, Y.; Xiao, P. Investigation of Free Amino Acid, Total Phenolics, Antioxidant Activity and Purine Alkaloids to Assess the Health Properties of Non-Camellia Tea. Acta Pharm. Sin. B 2016, 6, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Sáyago-Ayerdi, S.G.; Arranz, S.; Serrano, J.; Goñi, I. Dietary fiber content and associated antioxidant compounds in roselle flower (Hibiscus sabdariffa L.) beverage. J. Agric. Food Chem. 2007, 55, 7886–7890. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-R.; Lee, S.-Y.; Chen, C.-H.; Lin, S.-D. Bioactive Compounds of Underground Valerian Extracts and Their Effect on Inhibiting Metabolic Syndrome-Related Enzymes Activities. Foods 2023, 12, 636. [Google Scholar] [CrossRef]
- Jurčević Šangut, I.; Šamec, D. Seasonal Variation of Polyphenols and Pigments in Ginkgo (Ginkgo biloba L.) Leaves: Focus on 3′,8″-Biflavones. Plants 2024, 13, 3044. [Google Scholar] [CrossRef]
- Wang, S.-T.; Gao, W.; Fan, Y.-X.; Liu, X.-G.; Liu, K.; Du, Y.; Wang, L.-L.; Li, H.-J.; Li, P.; Yang, H. Phenol profiles and antioxidant capacities of Bistort Rhizoma (Polygonum bistorta L.) extracts. RSC Adv. 2016, 6, 27320–27328. [Google Scholar] [CrossRef]
- Formisano, C.; Delfine, S.; Oliviero, F.; Tenore, G.C.; Rigano, D.; Senatore, F. Correlation among environmental factors, chemical composition and antioxidative properties of essential oil and extracts of chamomile (Matricaria chamomilla L.) collected in Molise (South-central Italy). Ind. Crops Prod. 2015, 63, 256–263. [Google Scholar] [CrossRef]
- Zhao, M.; Ma, Y.; Wei, Z.Z.; Yuan, W.X.; Li, Y.L.; Zhang, C.H.; Xue, X.T.; Zhou, H. Determination and comparison of γ-aminobutyric acid (GABA) content in Pu-erh and other types of Chinese tea. J. Agric. Food Chem. 2011, 59, 3641–3648. [Google Scholar] [CrossRef] [PubMed]
- Hilal, Y.; Engelhardt, U. Characterisation of white tea—Comparison to green and black tea. J. Verbr. Lebensm. 2007, 2, 414–421. [Google Scholar] [CrossRef]
- Badea, M.L.; Ion, V.A.; Barbu, A.; Petre, A.; Frîncu, M.; Lagunovschi-Luchian, V.; Bădulescu, L. Lophantus anisatus (Nett.) Benth. Used as Dried Aromatic Ingredient. Sci. Pap. Ser. B Hortic. 2022, LXVI, 233–239. [Google Scholar]
- Ahmed, W.E.; Almutairi, A.A.; Almujaydil, M.S.; Algonaiman, R.; Mousa, H.M.; Alhomaid, R.M. Nutraceutical potential of parsley (Petroselinum crispum Mill.): Comprehensive overview. Ital. J. Food Sci. 2025, 37, 194–209. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Nguyen, N.Q.; Thi, N.Q.N.; Thi, C.Q.N.; Truc, T.T.; Nghi, P.T.B. Studies on chemical, polyphenol content, flavonoid content, and antioxidant activity of sweet basil leaves (Ocimum basilicum L.). IOP Conf. Ser. Mater. Sci. Eng. 2021, 1092, 12083. [Google Scholar] [CrossRef]
- Gutiérrez-Grijalva, E.P.; Picos-Salas, M.A.; Leyva-López, N.; Criollo-Mendoza, M.S.; Vazquez-Olivo, G.; Heredia, J.B. Flavonoids and Phenolic Acids from Oregano: Occurrence, Biological Activity and Health Benefits. Plants 2018, 7, 2. [Google Scholar] [CrossRef]
- Zengin, G.; Ak, G.; Ceylan, R.; Uysal, S.; Llorent-Martínez, E.; Di Simone, S.C.; Rapino, M.; Acquaviva, A.; Libero, M.L.; Chiavaroli, A.; et al. Novel Perceptions on Chemical Profile and Biopharmaceutical Properties of Mentha spicata Extracts: Adding Missing Pieces to the Scientific Puzzle. Plants 2022, 11, 233. [Google Scholar] [CrossRef] [PubMed]
- Syu, K.Y.; Lin, C.L.; Huang, H.C.; Lin, J. Determination of theanine, GABA, and other amino acids in green, oolong, black, and Pu-erh teas with dabsylation and high-performance liquid chromatography. J. Agric. Food Chem. 2008, 56, 7637–7643. [Google Scholar] [CrossRef]
- Horanni, R.; Engelhardt, U.H. Determination of amino acids in white, green, black, oolong, pu-erh teas and tea products. J. Food Compos. Anal. 2013, 31, 94–100. [Google Scholar] [CrossRef]
- Nhu-Trang, T.-T.; Nguyen, Q.-D.; Cong-Hau, N.; Anh-Dao, L.-T.; Behra, P. Characteristics and Relationships between Total Polyphenol and Flavonoid Contents, Antioxidant Capacities, and the Content of Caffeine, Gallic Acid, and Major Catechins in Wild/Ancient and Cultivated Teas in Vietnam. Molecules 2023, 28, 3470. [Google Scholar] [CrossRef]
- Su, Y.S.; Lin, Y.P.; Cheng, F.C.; Jen, J. In-capillary derivatization and stacking electrophoretic analysis of γ-aminobutyric acid and alanine in tea samples to redeem the detection after dilution to decrease matrix interference. J. Agric. Food Chem. 2010, 58, 120–126. [Google Scholar] [CrossRef]
- Hartanti, D.; Hamad, A. The effect of brewing time on the antioxidant properties and consumer’s preference of green tea and jasmine tea. Adv. Food Sci. Sustain. Agric. Agroind. Eng. 2023, 6, 106–115. [Google Scholar] [CrossRef]
- Tarapatskyy, M.; Zaguła, G.; Bajcar, M.; Puchalski, C.; Saletnik, B. Magnetic Field Extraction Techniques in Preparing High-Quality Tea Infusions. Appl. Sci. 2018, 8, 1876. [Google Scholar] [CrossRef]
- Sahin, S.; Eulenburg, V.; Kreis, W.; Villmann, C.; Pischetsrieder, M. Three-step test system for the identification of novel GABAA receptor modulating food plants. Plant Foods Hum. Nutr. 2016, 71, 355–360. [Google Scholar] [CrossRef]
- Raal, A.; Orav, A.; Püssa, T.; Valner, C.; Malmiste, B.; Arak, E. Content of essential oil, terpenoids and polyphenols in commercial chamomile (Chamomilla recutita L. Rauschert) teas from different countries. Food Chem. 2012, 131, 632–638. [Google Scholar] [CrossRef]
- Yaman, C. Lemon balm and sage herbal teas: Quantity and infusion time on the benefit of the content. Cienc. Agrotecnol. 2020, 44, e023220. [Google Scholar] [CrossRef]
- Nowak, D.; Kłębukowska, L.; Gośliński, M. Antioxidant properties and antibacterial activity of selected herbal teas. Sci. Rep. 2025, 15, 41438. [Google Scholar] [CrossRef] [PubMed]
- Wyrostek, J.; Kowalski, R.; Pankiewicz, U.; Solarska, E. Estimation of the Content of Selected Active Substances in Primary and Secondary Herbal Brews by UV-VIS and GC-MS Spectroscopic Analyses. J. Anal. Methods Chem. 2020, 2020, 8891855. [Google Scholar] [CrossRef]
- Kolniak-Ostek, J.; Kita, A.; Giacalone, D.; Vázquez-Araújo, L.; Noguera-Artiaga, L.; Brzezowska, J.; Michalska-Ciechanowska, A. Physicochemical and Instrumental Flavor Analysis of Plant-Based Drinks with Plant Powder Additions. Foods 2025, 14, 2593. [Google Scholar] [CrossRef]
- Teneva, D.; Pencheva, D.; Petrova, A.; Ognyanov, M.; Georgiev, Y.; Denev, P. Addition of Medicinal Plants Increases Antioxidant Activity, Color, and Anthocyanin Stability of Black Chokeberry (Aronia melanocarpa) Functional Beverages. Plants 2022, 11, 243. [Google Scholar] [CrossRef] [PubMed]
- Lyte, M. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: Microbial endocrinology in the design and use of probiotics. Bioessays 2011, 33, 574–581. [Google Scholar] [CrossRef]
- Milon, R.B.; Hu, P.; Zhang, X.; Hu, X.; Ren, L. Recent advances in the biosynthesis and industrial biotechnology of Gamma-amino butyric acid. Bioresour. Bioprocess. 2024, 11, 32. [Google Scholar] [CrossRef]
- Icer, M.A.; Sarikaya, B.; Kocyigit, E.; Atabilen, B.; Çelik, M.N.; Capasso, R.; Ağagündüz, D.; Budán, F. Contributions of gamma-aminobutyric acid (GABA) produced by lactic acid bacteria on food quality and human health: Current applications and future prospects. Foods 2024, 13, 2437. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, A.G.; El-Dougdoug, N.K. Controlling foodborne pathogens with natural antimicrobials by biological control and antivirulence strategies. Heliyon 2020, 6, e05020. [Google Scholar] [CrossRef]
- Yogeswara, I.B.A.; Kittibunchakul, S.; Rahayu, E.S.; Domig, K.J.; Haltrich, D.; Nguyen, T.H. Microbial Production and Enzymatic Biosynthesis of γ-Aminobutyric Acid (GABA) Using Lactobacillus plantarum FNCC 260 Isolated from Indonesian Fermented Foods. Processes 2021, 9, 22. [Google Scholar] [CrossRef]
- Hou, D.; Tang, J.; Feng, Q.; Niu, Z.; Shen, Q.; Wang, L.; Zhou, S. Gamma-aminobutyric acid (GABA): A comprehensive review of dietary sources, enrichment technologies, processing effects, health benefits, and its applications. Crit. Rev. Food Sci. Nutr. 2023, 64, 8852–8874. [Google Scholar] [CrossRef]
- Sori, N.; Khan, M. Gamma amino butyric acid (GABA) and ferulic acid esterase (FAE) producing psychobiotic bacteria isolated from cereal-based fermented food. Curr. Microbiol. 2024, 81, 59. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Hong, J.; Wang, L.; Cai, C.; Mo, H.; Wang, J.; Fang, X.; Liao, Z. Effect of lactic acid bacteria fermentation on plant-based products. Fermentation 2024, 10, 48. [Google Scholar] [CrossRef]
- Wicaksono, S.; Nuraida, L.; Faridah, D.N. Tapping the potential of lactic acid bacteria: Optimizing gamma-aminobutyric acid production for enhanced health benefits in fermented milk. Brazil. J. Food Technol. 2024, 27, e2024015. [Google Scholar] [CrossRef]
- Cataldo, P.G.; Villena, J.; Elean, M.; Savoy de Giori, G.; Saavedra, L.; Hebert, E.M. Immunomodulatory Properties of a γ-Aminobutyric Acid-Enriched Strawberry Juice Produced by Levilactobacillus brevis CRL 2013. Front. Microbiol. 2020, 11, 610016. [Google Scholar] [CrossRef]
- Ali, M.S.; Lee, E.-B.; Lee, S.-J.; Lee, S.-P.; Boby, N.; Suk, K.; Birhanu, B.T.; Park, S.-C. Aronia melanocarpa Extract Fermented by Lactobacillus plantarum EJ2014 Modulates Immune Response in Mice. Antioxidants 2021, 10, 1276. [Google Scholar] [CrossRef]
- Yogeswara, I.; Kusumawati, I.; Nursini, N.W.; Mariyatun, M.; Rahayu, E.S.; Haltrich, D. Health-promoting role of fermented pigeon pea (Cajanus cajan L (Mill)) milk enriched with γ-aminobutyric acid (GABA) using probiotic Lactiplantibacillus plantarum Dad-13. Fermentation 2023, 9, 587. [Google Scholar] [CrossRef]
- Nakatani, Y.; Fukaya, T.; Kishino, S.; Ogawa, J. Production of GABA-enriched tomato juice by Lactiplantibacillus plantarum KB1253. J. Biosci. Bioeng. 2022, 134, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Wu, J.; Hu, D.; Li, J.; Zhu, W.; Yuan, L.; Chen, X.; Yao, J. Gamma-Aminobutyric Acid-Producing Levilactobacillus brevis Strains as Probiotics in Litchi Juice Fermentation. Foods 2023, 12, 302. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wang, J.; Li, C.; Zheng, M.; Zhang, Q.; Xiang, W.; Tang, J. The Use of γ-Aminobutyric Acid-Producing Saccharomyces cerevisiae SC125 for Functional Fermented Beverage Production from Apple Juice. Foods 2022, 11, 1202. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Nan, B.; Cao, Y.; Piao, C.; Li, X.; Wang, Y. Optimization of fermentation for gamma-aminobutyric acid (GABA) production by Lactiplantibacillus plantarum Lp3 and the development of fermented soymilk. LWT 2024, 195, 115841. [Google Scholar] [CrossRef]
- Di Cagno, R.; Mazzacane, F.; Rizzello, C.G.; De Angelis, M.; Giuliani, G.; Meloni, M.; De Servi, B.; Gobbetti, M. Synthesis of gamma-aminobutyric acid (GABA) by Lactobacillus plantarum DSM19463: Functional grape must beverage and dermatological applications. Appl. Microbiol. Biotechnol. 2010, 86, 731–741. [Google Scholar] [CrossRef]
- Kittibunchakul, S.; Yuthaworawit, N.; Whanmek, K.; Suttisansanee, U.; Santivarangkna, C. Health beneficial properties of a novel plant-based probiotic drink produced by fermentation of brown rice milk with GABA-producing Lactobacillus pentosus isolated from Thai pickled weed. J. Funct. Foods 2021, 86, 104710. [Google Scholar] [CrossRef]
- Kantachote, D.; Ratanaburee, A.; Hayisama-ae, W.; Sukhoom, A.; Nunkaew, T. The use of potential probiotic Lactobacillus plantarum DW12 for producing a novel functional beverage from mature coconut water. J. Funct. Foods 2017, 32, 401–408. [Google Scholar] [CrossRef]
- Hirose, N.; Ujihara, K.; Teruya, R.; Maeda, G.; Yoshitake, H.; Wada, K.; Yoshimoto, M. Development of GABA-enhanced lactic acid beverage using sugar cane and its functionality. J. Jpn. Soc. Food Sci. 2008, 55, 209–214. [Google Scholar] [CrossRef]
- Wanyo, P.; Chamsai, T.; Chomnawang, C. Enhancing bioactivity and bioaccessibility of mulberry leaf tea: The influence of pretreatment and kombucha fermentation. ACS Food Sci. Technol. 2025, 5, 999–1009. [Google Scholar] [CrossRef]
- Kim, G.-H.; Baek, K.-R.; Lee, G.-E.; Lee, J.-H.; Moon, J.-H.; Seo, S.-O. Development of starter cultures for precision fermentation of kombucha with enriched gamma-aminobutyric acid (GABA) content. Fermentation 2025, 11, 17. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Mortensen, A.; Aguilar, F.; Crebelli, R.; Di Domenico, A.; Dusemund, B.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; et al. Scientific Opinion on the re-evaluation of glutamic acid (E 620), sodium glutamate (E 621), potassium glutamate (E 622), calcium glutamate (E 623), ammonium glutamate (E 624) and magnesium glutamate (E 625) as food additives. EFSA J. 2017, 15, 4910–5000. [Google Scholar] [CrossRef]
- Li, H.; Qiu, T.; Huang, G.; Cao, Y. Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb. Cell Fact. 2010, 9, 85. [Google Scholar] [CrossRef]
- Komatsuzaki, N.; Shima, J.; Kawamoto, S.; Momose, H.; Kimura, T. Production of γ-aminobutyric acid (GABA) by Lacticaseibacillus paracasei isolated from traditional fermented foods. Food Microbiol. 2005, 22, 497–504. [Google Scholar] [CrossRef]
- Cho, Y.R.; Chang, J.Y.; Chang, H. Production of γ-Aminobutyric Acid (GABA) by Lactobacillus buchneri Isolated from Kimchi and Its Neuroprotective Effect on Neuronal Cells. J. Microbiol. Biotechnol. 2007, 17, 104–109. [Google Scholar]
- Yang, S.Y.; Lu, F.X.; Lu, Z.X.; Bie, X.M.; Jiao, Y.; Sun, L.J.; Yu, B. Production of γ-aminobutyric acid by Streptococcus salivarius subsp. Amino Acids 2008, 34, 473–478. [Google Scholar] [CrossRef]
- Thuy, D.; Nguyen, A.; Khoo, K.S.; Chew, K.W.; Cnockaert, M.; Vandamme, P.; Ho, Y.C.; Huy, N.D.; Cocoletzi, H.H.; Show, P. Optimization of culture conditions for gamma-aminobutyric acid production by newly identified Pediococcus pentosaceus MN12 isolated from ‘mam nem’, a fermented fish sauce. Bioengineered 2021, 12, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Komatsuzaki, N.; Nakamura, T.; Kimura, T.; Shima, J. Characterization of glutamate decarboxylase from a high gamma-aminobutyric acid (GABA)-producer, Lacticaseibacillus paracasei. Biosci. Biotechnol. Biochem. 2008, 72, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Li, X.; Li, D.; Liu, W.; Han, Y.; Xu, X.; Yang, P.; Meng, K. Optimization of Gamma-Aminobutyric Acid Production by Lactiplantibacillus plantarum FRT7 from Chinese Paocai. Foods 2023, 12, 3034. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, M.-H.; Kim, M.-S.; Kim, G.-H.; Yoon, S.-S. Probiotic properties and optimization of gamma-aminobutyric acid production by Lactiplantibacillus plantarum FBT215. J. Microbiol. Biotechnol. 2022, 32, 783–791. [Google Scholar] [CrossRef]
- Tajabadi, N.; Ebrahimpour, A.; Baradaran, A.; Rahim, R.A.; Mahyudin, N.A.; Manap, M.Y.A.; Bakar, F.A.; Saari, N. Optimization of γ-Aminobutyric Acid Production by Lactobacillus plantarum Taj-Apis362 from Honeybees. Molecules 2015, 20, 6654–6669. [Google Scholar] [CrossRef]
- Lyu, C.; Zhao, W.; Peng, C.; Hu, S.; Fang, H.; Hua, Y.; Yao, S.; Huang, J.; Mei, L. Exploring the contributions of two glutamate decarboxylase isozymes in Lactobacillus brevis to acid resistance and γ-aminobutyric acid production. Microb. Cell Fact. 2018, 7, 180. [Google Scholar] [CrossRef]
- Shin, S.-M.; Kim, H.; Joo, Y.; Lee, S.-J.; Lee, Y.-J.; Lee, S.J.; Lee, D.-W. Characterization of glutamate decarboxylase from Lactobacillus plantarum and its C-terminal function for the pH dependence of activity. J. Agric. Food Chem. 2014, 62, 12186–12195. [Google Scholar] [CrossRef] [PubMed]
- Sa, H.D.; Park, J.Y.; Jeong, S.-J.; Lee, K.W.; Kim, J. Characterization of glutamate decarboxylase (GAD) from Lactobacillus sakei A156 isolated from Jeotgal. J. Microbiol. Biotechnol. 2015, 25, 696–703. [Google Scholar] [CrossRef]
- Shan, Y.; Man, C.; Han, X.; Li, L.; Guo, Y.; Deng, Y.; Li, T.; Zhang, L.; Jiang, Y. Evaluation of improved γ-aminobutyric acid production in yogurt using Lactobacillus plantarum NDC75017. J. Dairy Sci. 2015, 98, 2138–2149. [Google Scholar] [CrossRef]
- Lim, H.S.; Cha, I.-T.; Roh, S.W.; Shin, H.-H.; Seo, M.-J. Enhanced Production of Gamma-Aminobutyric Acid by Optimizing Culture Conditions of Lactobacillus brevis HYE1 Isolated from Kimchi, a Korean Fermented Food. J. Microbiol. Biotechnol. 2017, 27, 450–459. [Google Scholar] [CrossRef]
- Cui, Y.; Miao, K.; Niyaphorn, S.; Qu, X. Production of Gamma-Aminobutyric Acid from Lactic Acid Bacteria: A Systematic Review. Int. J. Mol. Sci. 2020, 21, 995. [Google Scholar] [CrossRef]
- Villegas, J.M.; Brown, L.; Savoy De Giori, G.; Hebert, E.M. Optimization of batch culture conditions for GABA production by Lactobacillus brevis CRL 1942, isolated from quinoa sourdough. LWT Food Sci. Technol. 2016, 67, 22–26. [Google Scholar] [CrossRef]
- Jia, M.; Zhu, Y.; Wang, L.; Sun, T.; Pan, H.; Li, H. pH auto-sustain-based fermentation supports efficient gamma-aminobutyric acid production by Lactobacillus brevis CD0817. Fermentation 2022, 8, 208. [Google Scholar] [CrossRef]
- Binh, T.T.T.; Ju, W.-T.; Jung, W.-J.; Park, R.-D. Optimization of γ-amino butyric acid production in a newly isolated Lactobacillus brevis. Biotechnol. Lett. 2014, 36, 93–98. [Google Scholar] [CrossRef]
- Song, H.Y.; Yu, R. Optimization of culture conditions for gamma-aminobutyric acid production in fermented adzuki bean milk. J. Food Drug Anal. 2018, 26, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Zareian, M.; Ebrahimpour, A.; Bakar, F.A.; Mohamed, A.; Forghani, B.; Ab-Kadir, M.S.B.; Saari, N. A glutamic acid-producing lactic acid bacteria isolated from Malaysian fermented foods. Int. J. Mol. Sci. 2012, 13, 5482–5497. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Cao, G.; Prior, R. Absorption and metabolism of anthocyanins in elderly women after consumption of elderberry or blueberry. J. Nutr. 2002, 132, 1865–1871. [Google Scholar] [CrossRef] [PubMed]
- Espín, J.C.; Garcia-Conesa, M.T.; Tomás-Barberán, F. Nutraceuticals: Facts and fiction. Phytochemistry 2007, 68, 2986–3008. [Google Scholar] [CrossRef]
- Crupi, P.; Faienza, M.F.; Naeem, M.Y.; Corbo, F.; Clodoveo, M.L.; Muraglia, M. Overview of the Potential Beneficial Effects of Carotenoids on Consumer Health and Well-Being. Antioxidants 2023, 12, 1069. [Google Scholar] [CrossRef]
- Borges, T.; Coelho, P.; Prudêncio, C.; Gomes, A.; Gomes, P.; Ferraz, R. Bioactive Peptides from Milk Proteins with Antioxidant, Anti-Inflammatory, and Antihypertensive Activities. Foods 2025, 14, 535. [Google Scholar] [CrossRef]
| Raw Material | Latin Name | GABA Content, mg/L | Polyphenol Content, mg/L | References |
|---|---|---|---|---|
| Tomatoes (raw juice) | Lycopersicon esculentum Roma VF | 4220 | 396.4–421.9 | [70,71] |
| Lychee (pasteurized juice) (cloudy fresh juice) | Litchi chinensis | 887.5 nd | 620 >500 | [72,73] |
| Orange (commercial juice) (Fresh juice) | Citrus ×sinensis | 240–320 180–500 | 840.6 548–1407 | [58,74,75,76] |
| Grapefruit (fresh juice) | Citrus paradisi | 180–570 | 1173–2216 | [74,76] |
| Tangerine juice (fresh juice) | Citrus reticulata | 150–500 | 36.6–132.6 | [74,77] |
| Broccoli (fresh juice) | Brassica oleracea var. italica | 90.75–509.4 | 929.2 | [78,79] |
| White mulberry (fresh juice) | Morus alba L. | 66.2–98.7 | nd | [80] |
| Black currant (fresh juice) (commercial juices) | Ribes nigrum | 62.9–140.2 | 6800 | [81,82] |
| Lemon (Fresh juice) | Citrus limon | 70 60–185 | 658–1538 | [58,74,76] |
| Red currant juice (fresh juice) | Ribes rubrum | 48.5–151.6 | 1330 | [81,83] |
| Persimmon (purees) (pasteurized juice) | Diospy ros kaki var. Sharoni | 36.6 | 303.58 | [84,85] |
| Grape juice (commercial juice) | Vitis vinifera | 34.8 | 400–3000 | [86,87] |
| Peach (commercial and fresh juice) | Prunus persica L. | 30.2–130.2 | 63.6 | [88,89] |
| Black chokeberry, (commercial), (fresh juice) | Aronia melanocarpa | 6.68 | 9154 | [63,90] |
| Apple (commercial juice), (fresh juice) | Malus domestica Malus pumila P. Mill. | 5.2 | 154–178 | [86,91] |
| Strawberry (commercial puree) | Fragaria × ananassa | 2.2–34.9 | 1406 | [75,84] |
| Cucumber (fresh juice) | Cucumis sativus | 2.1–19.6 | 532.7 mg/L | [78,92] |
| Radicchio (fresh juice) | Cichorium intybus var. foliosum | 2.1–4.1 | nd | [78] |
| Black mulberry (fresh or pasteurized juice) | Morus atropurpurea Roxb | nd | 412.55–3210 | [93,94] |
| Black raspberry (fresh juice) | Rubus occidentalis | nd | 640 | [95,96] |
| Elderberry (fresh juice) | Sambucus nigra | nd | 2160–8590 | [97] |
| Blueberries (commercial juice concentrate) | Vaccinium sect. Cyanococcus Vaccinium myrtillus L. wild | nd | 3845 | [75] |
| Pineapple (fresh juice) | Ananas comosus | nd | 10.6 | [89] |
| Pear (pasteurized juice) | Pyrus communis | nd | 7735 | [85] |
| Raw Material | Latin Name | GABA Content, mg/100 g | Polyphenol Content, mg/100 g | References |
|---|---|---|---|---|
| Passiflora | Passiflora incarnate Passiflora quadrangularis Passiflora edulis | 629 | 1030–3740 | [102,103] |
| Ginseng (root, fresh) | Panax ginseng | 322 | 721–3021 | [102,104] |
| Echinacea | Echinacea purpurea | 249 | 141–19,570 | [102,105,106] |
| Hibiscus | Hibiscus sabdariffa | >102 | 66.1 | [107,108] |
| Vine | Ampelopsis grossedentata | >102 | 17,725 | [107] |
| Isodon | Isodon serra | >102 | 9784 | [107] |
| Valeriana (root) | Valeriana officinalis | 85 | 1454–3316 | [102,109] |
| Ginkgo biloba | Ginkgo biloba L. | 77 | 1515–4518 | [109,110] |
| Bistort (roots) | Polygonum bistorta L. | 57.3 | 2569–15,216 | [50,111] |
| Chamomile | Matricaria chamomilla | 51.4 | 2689 | [50,112] |
| White tea | Camellia sinensis | 50.5 | 16,230–25,950 | [113,114] |
| Lophanthus | Lophanthus anisatus | 49.3 | 7048.13 | [50,115] |
| Parsley | Petroselinum crispum | 28.2 | 1740 | [50,116] |
| Basil | Ocimum basilicum | 26.9 | 2960 | [50,117] |
| While oregano | Origanum vulgare | 19.8 | 7900–14,700 | [50,118] |
| Spearmint | Mentha spicata | 17.0 | 1188–14,262 | [50,119] |
| Green tea | Camellia sinensis | 10.5 | 8007 | [107,120] |
| Black tea | Camellia sinensis | 7–55 | 6060–22,250 | [121,122] |
| Black tea | Camellia sinensis | 5.5 | 3977 | [107,120] |
| Green tea | Camellia sinensis | 5–87 | 2872 | [121,122] |
| Jasmine green tea | Camellia sinensis | 2.5 | 8405 | [123,124] |
| Raw Material | Latin Name | GABA Content, mg/L | Polyphenol Content, mg/L | References |
|---|---|---|---|---|
| Darjeeling (black) English Breakfast (black) Bancha (green) Gyokuro (green) Sencha (green) | Camellia sinensis | 16.01–37.05 (1:50) | nd | [125] |
| Chamomile flowers | Matricaria chamomilla | 0.81 (1:40) | 40–345 (1 pack:200 mL) | [126,127] |
| Lemon balm leaves | Melissa officinalis | 0.61 (1:40) | 252.3–1436 (1:33) | [126,128,129] |
| Hop cones | Humulus lupulus | 0.44 (1:40) | nd | [126] |
| Sage leaves | Salvia officinalis | 0.33 (1:40) | 509–880 (1:33) | [126,128] |
| Lavender flowers | Lavendula officinalis | 0.22 (1:40) * | 500 (1:20) | [126,130] |
| Fermented Beverage | Microorganisms | GABA Content, mg/L | Polyphenol Content, mg/L | Reference |
|---|---|---|---|---|
| strawberry juice | L. brevis | 27,019 | nd | [142] |
| black raspberry juice | L. brevis | 26,500 | nd | [94] |
| aronia extract (10% juice) | L. plantarum | 10,400 | 312.54 | [143] |
| germinated pigeon pea | L. plantarum | 5600 | nd | [144] |
| tomato juice | L. plantarum | 4228 | 293–473 | [145] |
| lychee juice | L. brevis | 327–3070 | 95–105 | [146] |
| lychee juice | L. plantarum | 1340 | 710 | [72] |
| apple juice | S. cerevisiae | 898.35 | nd | [147] |
| fermented soymilk | L. plantarum S. thermophilus | 552 | nd | [148] |
| grape must | L. plantarum | 498.05 | nd | [149] |
| brown rice milk | L. pentosus | 143 | 152.3 | [150] |
| mature coconut water | L. plantarum | 128 | 134 | [151] |
| sugar cane juice | Lc. lactis | 80 | nd | [152] |
| kombucha | A. xylinum Gluconobacter spp. S. cerevisiae | 36.5 | 1360.6 | [153] |
| kombucha | A. pasteurianus L. plantarum S. cerevisiae | 2.2 | nd | [154] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denev, P.; Pencheva, D.; Teneva, D.; Ognyanov, M.; Todorova, Z. Development of Functional Fruit, Vegetable, and Herbal Beverages Enriched with Gamma-Aminobutyric Acid and Polyphenols: Is It Feasible? Beverages 2025, 11, 176. https://doi.org/10.3390/beverages11060176
Denev P, Pencheva D, Teneva D, Ognyanov M, Todorova Z. Development of Functional Fruit, Vegetable, and Herbal Beverages Enriched with Gamma-Aminobutyric Acid and Polyphenols: Is It Feasible? Beverages. 2025; 11(6):176. https://doi.org/10.3390/beverages11060176
Chicago/Turabian StyleDenev, Petko, Daniela Pencheva, Desislava Teneva, Manol Ognyanov, and Zornica Todorova. 2025. "Development of Functional Fruit, Vegetable, and Herbal Beverages Enriched with Gamma-Aminobutyric Acid and Polyphenols: Is It Feasible?" Beverages 11, no. 6: 176. https://doi.org/10.3390/beverages11060176
APA StyleDenev, P., Pencheva, D., Teneva, D., Ognyanov, M., & Todorova, Z. (2025). Development of Functional Fruit, Vegetable, and Herbal Beverages Enriched with Gamma-Aminobutyric Acid and Polyphenols: Is It Feasible? Beverages, 11(6), 176. https://doi.org/10.3390/beverages11060176

